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1 Control as a Basic Human Activity

Most human activities are based on the control exerted by the brain on the body. For

example, when we walk around the street we employ several control actions on our legs in

order to move step by step in the correct direction. to remain reasonable stable during the

motion, to avoid obstacles we encounter, o maintain or to change if needed the de
speed, ete.

These nctivities are directed to let the physical system (i.e. our body) operate in such a way

to nchieve some preassigned aims, taking into account the external world which of course

lem (not nec

influences the behavior of the s

arily cooperating with the prassigned goals).

Moreover the

em must be able to react in a reasonable way. if some unpredictable event

happens suddenly during the control actions.

For example, if we are peacefully walking on the street and a crazy driver crosses suddenly
our strect, we are (sometimes !) able to react quickly in order to avoid a crash. Our sensors
(eyes, enrs ete.) are such that when receiving a message of danger, we are able to process
itin a very short time and to provide a corresponding behavior. The environment which
sorrounds the system (i.e. our body) we want to control is, after all, full of uncertain events

and we should be able to handle most of them successfully.

During centuries men tried to imitate such natural behaviors in order to build control sys-
tems, Lo obtain prespecified results from controlled machines. A quantitative step in this
direction, from which the modern history of control s started,

was taken by J. Maxwell around 1868.

stems and control technolog,
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2 Feedback Control

Driving a car is one of the most common control activities. The basic point is the following:
the decisions of the driver, at each time instant, are dictated not only by his or her explicit
will (e.g. to reach some point of the town in the shortest possible time), but also by the
instantaneous state of the system (i.e. the controlled car).

When the car comes close to a red light, the driver’s action will of course take this into
account. At the time when the car approaches several crossing roads, the driver will perhaps
need to turn right say. Of course the corresponding time instant cannot be exactly planned in
advance, due to unavoidable small delays during the driving, or to more or less unpredictable
circumstances. Hence the controller (the driver in this example) acts on the physical system
(the car) by driving in the appropriate way on the basis not only of the time instant at
which some action must be exerted, but also of the actual state of the system.

The instantaneous state, if mathematically modeled. will consist of several functions of the
time, like the coordinates of the position (with respect to some fixed reference frame), those
of its velocity. the available fuel etc.

The control action, if mathematically modeled, will be rep: 1 by a vector di di

at least on time and the instantaneous state. The usual control terminology is feedback
control, meaning that the control action, as explained before, will be some function of time
and state. The basic feature is that the control action depends in a crucial way upon the
measured state vector.

If an automated pilot system is built, to control the motion of a vehicle by an automatic
procedure in the form of some suitably feedback control law, then, based on the instantaneous
tem state, the controller can react in the appropriate way to changes of the state in order
to follow the desired control aims, taking into account such disturbances.

3 Variable Structure and Sliding Mode Control

A basic control problem is to stabilize a controlled dynamical system. To simplify, suppose

that the ideal state we want to reach at least asymptotically is the identically zero vector. ‘
Let the controlled system be described by a linear second order ordinary differential equation |
with scalar input u and scalar unknown state x. We write |

1
() = ;W"“)

for the time-derivative of the function «(t). The state variables are then x(t), &(t) which give
rise to a two-dimensional vector. In a mechanical system we interpret the pair (x(t), &(t)) as
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ble inf

comprising all

about the i position and velocity at time
t. As discussed in the previous section 2, the feedback control u(z;.z;) is a mathematical
model for the control device we can use corresponding to an available state variable z;, z3.
Hence if the pair (z(t),@(t)) is available for measures (by an ideally exact measurement
equipment) for each time instant ¢, then the corresponding control action will be represented
by ulw(t), (t))-

We want to select the input u in such a way that every solution z to

&+ aw + bx

(2)
fulfils

w(t) = 0'and @(t) — 0 ast — +oc. 3)
Here the time derivative d/dt is denoted by a dot and similarly d®z/dt? = &, moreover a, b

are given real numbers. The state variables (z),27) are related to x by the phase plane
coordinates

Hence an equivalent rewriting of the control system (2) in terms of (xy.a5) is given by the
following system of two first order differential equations

—awy—buwy +u

We want to choose the feedback control law as a linear function of the state, namely
w=he + ki (4)
where the constant parameters h, k are at our disposal. By injecting (4) into (2) we obtain

i+ (a= k)i + (b= h)w=0

a lincar | i ial equation of second order with constant coefficients.

We know that (3) is fulfilled if and enly if every complex characteristic root, i.c. every
complex solution \ to the algebraic equation of second degree

N4 (@—kA+b-h=0

fulfils the condition
real part of \ < 0.

This is true (by explicit computation) if and enly if
@> K and b > h. (5)

Now suppose that only x(#) is available for feedback: for example. maybe we are able to

(AT N
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measure z(t) but not &(t). Then we have the parameter k = 0'in (4). Hence if , for example,
a < 0, no choice of k in (4) allows the controller to stabilize the system, because (5) fails;
some solution to (2) will not satisfy (3).

Consider as an example

&= 20+ 4z =w (6)
w =5z oru=ua, (@)
which are particular cases of (2), (4). If w = 5z then we get
=2 —z=0 )
hence every solution @ is a linear combination of

L(14/2) t(1-v2)

n(t)=¢ yat) = ¢
The corresponding phase portrait in the plane (z, ) is shown in fig. 1.

If u = & then we get instead
2 + 3w =0 )

hence every solution @ is noew a superposition of
vs(t) = €' cos(tv2), yu(t) = ¢* sin(tv/2).

) is shown in fig, 2.

The corresponding phase portrait in the phase plane

Both control laws u = 52 and v = @ induce unstable solutions, hence we have not solved
this way the stabilization problem with the choice of the control law (7).

However a basic discovery (by Russian control theorists around the late fifties) allows us to
obtain an asymptotically stable behavior from the two unstable structures (8) and' (9), as
follows.
Fix any ¢ > 0 such that, in the phase plane (), w2) the line

s(wy,w2) = cmy + @3 =0 (10)

lies between the axis x; and the line of slope 1—v/2 through the origin, whicluis an asymptofc
of the trajectories of the system (8). The a closer look to the phase portrait of fig. 3 shows
that, if we follow in a suitable way, starting from any initial point, selected portions of the
trajectories of (8) and (9), we reach the straight line (10) in finite time. The trajectories of
(8) and (9) are directed towards the line (10) if we are sufficiently close to it. Therefore, as
soon as some trajectory (w, i) reaches the line (10), it remains on it forever, hence fulfills
the constraint

cay(t) + aa(t) = 0 (11)




T. Zolezzi

whence the differential equation
cxy(t) + &1 (t) =0 (12)
because i@y = x. From (12) we get
a1(t) = (constant) e™** — 0 as t — +oc

because ¢ > 0, and x5(t) — 0 as well. Then we see that asymptotically stable behavior is
obtained, as desired.

Therefore, by varying in a suitable manner the two unstable structures obtained from (6)
by the feedbacks (7). we obtain an asymptotically stable system. thereby solving the stabi-
lization problem. Moreover we see that, starting from a second order dynamics (6) we need
only to consider (asymptotically) only a first order dynamics (12). hence a simplified model
has been obtained.

The control system (6), (10) employs a feedback control law

(13)

" { ay if ey s(ag. az) > 0.
u® (. a

Bay if ys(ay.w2) < 0

which turns out to be discontinuous along the line s = 0 given by (10). and the line x; = 0.
This discontinuous feedback forces the state variable to slide on the line (10). henee the
name sliding mode control. In a sense, only states (xy.x) fulfilling (10) are of interest. and
using (13) we satisfy the viability constraint (10).

4 A Generalization of Differential Equations

How to give a mathematically correct meaning to sliding mode control we described in the
previous section 3 7 The differential equation we obtain injecting the feedback (13) in (6)
can be written, as we did before, in the standard format of a first order differential system
making use of the phase coordinates

thus obtaining

&) = @g, &2 = 209 — day + u' (2, 22). (14)
The phase portrait of the control system, as we have seen, shows that using the discontinuous
feedback control (13) we obtain, from a two - dimensional system. a one - dimensional
dvianics on the shding manifold (10) which is asymptotically stable, starting from two
unstable dynamics. This is of great interest to control engineers, and can be generalized to
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60 Sliding Mode Control

handle successfully several control problems for non linear systems as well. However (14)
does not fulfill the lard pti which i and uni of the
solution to a system of ordinary differential equations with a given initial data. At least
continuity, and something more (like Lipschitz continuity) is required, which clearly fails in

(14).

In general, an initial value problem for an ordinary diff ial ion with di
uous right-hand side has no (usual) solution at all.

For example, consider the opposite of the signum function

e

Claim : there is no solution to

(15)

Here. solution means the usual concept, namely x is required to be (absolutely) continuous.
thus almost everywhere differentiable and

@(t) = — sgn x(t) = —x(t)/|=(t)|

for almost every t in an interval containing 0. Indeed, if z(t*) > 0 at some t* > 0, then near
t* we must have, from the differential equation, &(t) = —1 hence

x(t) = constant —t,
and similarly if z(¢*) < 0 then near ¢*

z(t) = constant +t,
thereby forbidding existence.

This means that the sliding mode control of the previous section cannot be interpreted in the
standard sense. A different concept of solution to discontinuous differential equations was
developed ( nearly forty years ago by the Russian mathematician A. F. Filippov) in order
to establish a mathematically rigorous theory of sliding mode control and discontinuous
ordinary differential equations. In order to modify the concept of solution to (15) we enlarge
the right-hand side f at its unique discontinuity point 0, by taking into account the behavior
of f at x # 0. We want to obtain more room at 0 for the admissible values of &(t) by replacing
the single - valued function f: R — R by a set - valued function F. in the following way.

If @ = 0 we consider the set of all values of f(y) for y in a neighborhood of 0, hence
obtaining the set {—1.1}. Then we take its closed convex hull, namely the smallest closed
convex set containing {—1,1}. hence obtaining the whole interval (1, 1]. and finally we take

(T )
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the intersection of such sets over all neighborhoods of 0 (which in this case has no effect).
We repeat the same construction at every . The final result will be F(x). Hence

F(0) = (1.1, F(z) = {f(2)) if 2 £0
since f is continuous at every @ # 0.

Then we modify the solution concept by defining a (Filippov) solution y to (15) as a function
which satisfies the initial value problem

U(t) € Fly(t)), y(0) =0
for the differential inclusion
u(t) € Fly(t)]

which replaces the original differential equation we started from. In this way we see that
the (constant) solution y(t) = 0 for every t has been found

The analogous procedure is applied to control systems

ftw.ut)

with a discontinuous feedback u*, and with this definition we get a coherent theory. which
gives a mathematically rigorous way to properly handle sliding mode control problems.

This is an interesting case, where a rather simple concept (sliding mode control) invented
by control engineers in order to solve problems posed by technology. required developing
o new (forty years ago) mathematical theory, namely differential inclusions, to treat in a
mathematically sound way such problems: in a sense, a nonstandard mathematical concept

for w (rather simple) physically motivated idea.

However, a discontinuous control law can often be avoided as far as the mathematical de-
seription of the sliding mode control is concerned. Indeed, if the sliding line is reached, then
by (1)

0= ciy + .
13y (6)
iy g = 2wy — Ay +u,
henee
0= cup + 2wy — 4y +u
whence

1= (e + 2wy

u=i

is the control law we obtain from the dynamics of our control system, namely the so called
oquivalent control law: clearly a continuous function of ;.

AT



62 Sliding Mode Control

It can be proved that @ induces the same motion as the discontinuous feedback u* on the
sliding line.

Both theories of differential inclusions and of sliding mode control have been greatly devel-
oped, sometimes independently to each other. It is of further interest to know that some
more recent problems, again related to stabilization via discontinuous feedback, cannot be
handled satisfactorily within this theory, and new concepts of solution to discontinuous
feedback control systems, have been proposed quite recently.

Differential equations are used as a basic mathematical model of classical mechanics and

physics. New technological issues raised by i i 4 in controlling dy
i In a sense, cross

systems led mathematicians to i new and
fertilization of theory and applications can be considered, not surprisingly, quite effective, as
we know from several points of the history of the development of science and mathematics
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