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God made the integers, the rest are works of man.

L. KRONECKER

The concept of number, in the first instance that of a natural number, belongs to
the fundamentals of mathematics since its earliest manifestation as a component of human
culture. When regarded as ordinal numbers, natural numbers are abstracted from the process
of counting. By way of a second abstraction, disregarding the order of counting, natural
numbers rep the cardinalities of finite pty sets. Cardinal and ordinal numbers
do not yet fall apart in the world of finite numbers, and this is not the only respect in which
natural numbers are fundamental.

The observation that counting can be inverted soon leads to the discovery of negative
numbers, and thus to the ring of integers. It seems to be a popular opinion that rings have
to be commutative as long as numbers are in the focus of study. Our article deals with this
matter, and our first aim will be to show that the integers have a structural predisposition
to non-commutativity, though in an embryonic state, waiting to become unfolded. The
following sections will be concerned with unfolding, paving a way that eventually borders
on the shores of present research.
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1 The Ring Z

Before dealing with non-commutative entities, let us have a closer look upon Z, the ring of
integers. Admittedly, this ring is commutative. But why at all is Z a ring?

The answer will direct our attention to module theory. Here is a quick formalization of
counting. Forward and backward counting should be unique, so we consider a set Z with
a bijection o: Z — Z. For any a € Z, counting one step forward leeds to the element
o(a). We assume Z to be connected, i. e. Z # @, and there is no partition Z = AU B into
non-empty disjoint sets A, B invariant under o. Let us call such a system (Z,0) a cycle.
The structure of a cycle is easily determined. For any natural number n there is a finite
cycle Z, = {a1,...,an} with o(a;) = ai41 for i < n and o(as) = a;. Furthermore, there is
an infinite cycle Zp = {...,a-3,a-1,a0,@1,az, ...} with o(a;) = ai41 for alli € Z.
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For cycles Z and Z' we define a homomorphism f: Z — Z' as a map which respects
counting, i. e.

floa) = af(a) 1)

for all a € Z. The concept of homomorphism applies to all kinds of mathematical structures
(groups, rings, partially ordered sets, etc.). It simply means that the operations and relations
that constitute the structure are preserved. A bijective homomorphism is also called an
isomorphism. Obviously, every cycle Z admits an isomorphism Z ~—Z,, for some n € N :=
{0,1,2,...}. To have a convenient notation, let us fix an element 0 for any cycle Z,, and
denote o™ (0) by m for all m € Z. (Note that o is invertible; so negative powers of o are to
be taken as powers of the inverse 0~1.) For the finite cycles Z,, this leads to an overlap of
notation such that 0 coincides with all multi; of n. While synonyms do not oppose logic,
this has the advantage that o can be defined for all cycles Z,, by the same rule a(m) = m+1.

For a cycle Z, let End(Z) denote the set of homomorphisms Z — Z. (Homomorphisms
between the same object are also called endomorphisms.) Amazingly, End(Z) is again a
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cycle. Namely, there is a natural bijection
End(Z) ~Z2 (2)
which maps f € End(Z) to f(0). So the cycle structure of Z can be transported to End(Z).
What is more, End(Z) is even a group with composition of maps as group operation:
(f +9)(m) := f(g(m)). ®)

1 don’t believe in accidents of nature. But here is a case where map composition is commu-
tative. So it is justified to denote the group operation of End(Z) by +. The attentive reader
will notice that we have got the collection of cyclic groups Cy, := End(Zy,) in this way.

Now a homomorphism between groups is defined as a map f which respects the group
operation (say, +):

fla+b) = f(a) + f(b). 4

This automatically implies f(0) = 0 for the neutral element 0. So let us define
Z, :=End(C,) (5)
for all n € N. The group operation on C, leads to an operation on Z,, namely (Vf, g € Z,),
(£ +9)(m) := f(m) + g(m). (6)
Since €y, is abelian, this makes Z, into an abelian group. Moreover, the composition of

maps leads to another operation on Z:

(£ - 9)(m) = f(g(m)). (7)

So Zy, becomes a ring with the identical map as unity. Again, we encounter the “accident of
nature” that the operation (7) is commutative! Among these rings, we find Zo = Z, our ring
of integers, and its residue class rings Z, = Z/nZ which are of basic importance in number
theory.

So far, we have shown that the ring Z emerges from the counting operation by a twofold
application of “End”. We shall see in a minute that endomorphism rings play a particular
part in representation theory. Most of them are non-commutative. We conclude this section
with the remark that the ring Z is distinguished among all (not necessarily commutative)
rings.

Proposition 1. For every ring R there is a unique homomorphism f: Z — R.

Note that a ring homomorphism is defined as a map f that preserves addition (4) and
multiplication, and the unit element, i. e. f(1) = 1.




N W

100 Non-C ing Numbers and Fu

2 Non-Commutative Arithmetics

‘We may have got a suspicion that commutativity of Z results from a couple of accidents. To
see more, let us try to classify finite abelian groups up to isomorphism. For any such group
A, Proposition 1 provides a unique homomorphism

f 12 — End(A). 8)

This means that for n € Z and a € A, there is an element na := f(n)(a) subject to the
following rules (m,n € Z,a,b € A):
n(a +b) = na +nb
(m +n)a=ma+na ©
(mn)a = m(na)
l-a=a.
We say that Z operates on A such that A becomes a Z-module. More generally, when a
homomorphism (8) is given with Z replaced by a ring R, then (9) holds for m,n € R. Then
A is said to be an R-module. We call an R-module M finitely generated if there are finitely
many elements z,,...,T, € M such that every z € M can be written in the form

T=71T) +* + TnTn (10)

with suitable r1,...,7, € R. In particular, every finite abelian group A is finitely generated
as a Z-module. For a given prime p, let A, denote the subgroup of all z € A such that
p™z = 0 for some m € N. Then there are finitely many primes py,...,p, such that every
€ A has a unique representation

z=xy 4+ +a, (11)
with z; € 4,,. We express this by saying that A is a direct sum
A=A, & - ®A, (12)

of the subgroups A,,. This reduces our problem to the case of a finite abelian group A with
p™A =0 for some prime p.

Since A is finitely generated, there exists a surjective homomorphism
p:Fy— A (13)

with Fy free, i. e. Fy = A1 @+ @ Ay, A; & Cp (the infinite cyclic group). The kernel
Fy := {z € Fy | p(z) = 0} of p is again free. So we obtain a pair (ﬁ“’ of finitely generated
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free abelian groups with Fy a subgroup of Fy, and p™Fy C Fy. Conversely, every such pair
gives rise to a finite abelian group A with an epimorphism (13) having F; as kernel.

The pairs (?‘:) can be interpreted as modules over the ring

zZ z
A= (p,,,z z)' (14)
a b

The elements of A are matrices (&) with entries in Z such that c is divisible by p™. A pair
(:‘;) with p"Fy € Fy € F; becomes a A-module via ordinary matrix multiplication. The
condition that F, and F) are free means that (5‘.‘) is a A-lattice. i. e. a A-module that is free
as a Z-module. With respect to multiplication, A itself is a A-lattice. For this reason. A is
said to be an order. There is one indecomposable A-lattice. namely (%) which corresponds

to the abelian group A = 0. To get rid of that A-lattice. we replace A by the overorder

e (74 11’12) &
N = (;I'"Z 7 (15)

Proposition 2. Up to womerphism. there is a one-to-one correspondence between finite
abehan groups A with p"' A = 0 and A'-lattices. The mdecomposable X'-lattices are

(NG e (16)

So the problem to determine finite Z-modules has turned into a problem on lattices over a
ving A whicli is certainly non-commutative.

3 Curves and Orders

A plane algebraic curve C is a set of points (z,y) € R* satisfying a polynomial equation
f(r,y) = 0. For example, let C',,) be given by the polynomial fm(z,y) = y* — a2m+1,
m € N. So C(g) is a parabola, and C(y) the Neil parabola’. For m > 1, the curve C(,,) has a
singularity at the origin O. A singularity can be regarded as an infinitesimal distortion. To
reveal its structure, we may introduce a t-axis perpendicular to the plane and take t = y/a
as an additional equation. Then we obtain a space curve f'(,,., such that the projection along
the t-axis yields a bijection between f'(,,,, and Cj,,) except x = 0 (where t is undefined).
Excluding « = 0. the curve (;<,,.) is given by the equation t? — +*"~* = 0, whence a,,., is
of the form €(,,,—y)- So after m steps, the singularity disappears

This so-called a-process of desingularization can be interpreted in terms of ring theory.
Lot R, y} denote the ring of polynomials f in two variables a. y with real coefficients. We

IW. Neil determined the arc length of C;) in 1657

| RS



L

Non-C¢ ing N and Fu

102

have already seen in §1 that for some non-zero n € N a formal identification n = 0 turns
Z into a finite ring Zn = Z/n’. Similarly, we may form the ring Oy := R(z,y]/fR[z,y] by
stipulating f = 0. (Thus g, € Rlz,y] have to be identified whenever g — / is a multiple
of f.) Every point (zo,30) on the curve C with equation f(z.y) = 0 gives rise to a ring
homomorphism P; Oy — R with P(g) := g(xo,y0), and vice versa. The curve C can thus
be recovered from the ring Oy as the collection Spec Oy of ring homomorphisms P, also
called the spectrum of Oy. In other words, the ring Oy is just an algebraic substitute for the
curve C. Its elements g € O can be regarded as polynomial functions on C'. There is still
some ambiguity caused by the fact that C can also be given by the equation flz,y)? = 0.
However, the ring Oz contains the non-zero element f satisfying f2 = 0. As a function
on C, such an element vanishes identically. A commutative ring without elements a # 0
satisfying a? = 0 is said to be reduced.

To analyse C in the near of a singularity at O, we replace Rz, y] by the ring C[[z,y/!
of power series over C to get the local ring 6, which describes the vicinity of O. Note that
Spec (?)/ consists of just one point. We already defined an order as a ring A which is finitely
generated and free as a Z-module. The ring 6/ is free as a C[[x]}-module with generators
1 and y. Therefore, it can be regarded as an R-order with R := C[[z]]. It is not hard
lattices (i. . finitely generated

to show that there are exactly 7 + 1 indecomposable 0
R-free O, -modules), up to isomorphism. One step of desingularization leads from 0, to
the overorder O .- By this process, we loose just one indecomposable 6," -lattice, namely
@/,,, itself, while the other indecomposables can be regarded as @/W \~lattices. Proceeding

in this way, we end up with the regular ring 0;, = C[|

Virtually the same consideration applies to the non-commutative Z-order (14). By
Proposition 2, A has exactly m + 1 indecomposables, and there is a series A = A,, C
Am-1 C -+ C Ay C Ag of overorders ending with Ag, a non-commutative regular order.
Here, a Z-order A is said to be regular if every A-lattice is projective, i. e. a direct summand
of a free A-lattice A @ --- @ A. (For commutative C[z]-orders this property says that the
corresponding curve has no singular points.) Generalizing reduced commutative rings, we
call A serniprime if there is no non-zero g € A with ghg = 0 for all h € A. Now the existence

of a desingularization generalizes to
Proposition 3 (see [16]). Fuery semiprime Z-order has a regular overorder.

In the following section, we will consider orders A corresponding to surfaces instead of curves,
For arbitrary dimensions, there is an analogue of a A-lattice called a Cohen-Macaulay module.

(T T
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4 The Desingularization Quiver®

The curve singularities considered in §3 belong to the classes A, A;. Ag ... among the so-
called simple singularities. The other classes are Ay, A3, As, ..., Dy, Ds. D, ..., Eg, Eq, Eg,
according to a pattern that arises in various branches of mathematics. For example, the
class Ey consists of the singularities (at O) of the form

falzy o za) =2+ 23+ 22+ 22 =0. ()
This class of singularities is interesting in several respects. For n = 3, equation (17) describes
a complex surface § € C3. It was known to invariant theorists of the 19th century [13] that
the symmetry group G of the icosahedron is a homomorphic image of the binary icosahedral
group G, b group of 2 x 2 matrices, such that the elements of G are mapped in pairs
to the elements of G. They found three G-invariant polynomials @y, &0, P4y € Clz,y)
which generate the ring Cla, u]c of G-invariant polynomials in Cla.y). Furthermore. these
polvnomials are related by the equation
DY, + D + b3 = 0. (18)
which shows that Cir.y]‘"‘ is isomorphic to the ring Oy, (over C) of a type Ey surface.

Among all the rings 6, of an isolated surface singularity f = 0. only 6/, has the prop-
erty that its elements admit a unique factorization into prime elements [3].. The intersection
of the zero set fs = 0 with the sphere S° = {z € C® | |z| = 1} is topologically equivalent
with the 7-dimensional sphere S7, but its differential structure differs from that of S7.

In §3 we applied the o-process to singular curves lying on a regular surface. The same
process leads to a desingularization of simple surface singularities. After finitely many steps
we obtain a surjection 7: X — X of surfaces with X regular. Then 7~'(0) = UL, L:
with lines L, which may be assumed to i tr lly. The desingularization graph,
given by the vertices 1,...,m with an edge between different i and j whenever L;NL; # @,

determines the type of singularity. For example, the desingularization graph of the surface
S with equation fy = 0 is of the form

Ey: (19)

There is a module-theoretic interpretation of this graph. By the above, the ring L?)/_, can
be regarded as a subring of C([z, y)], generated by the invariants @13, 2. ®30. As an Oy,-
module, Cffx.y)] decomposes into Oy, plus eight indecomposable modules A, which can be

2Oriented graphs (= collections of arrows) were called quivers by P. Gabriel (1970) who used them to
attack problems in representation theory:

B 7~ aa DN
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associated with the lines L; and thus with the nodes of Es. Amazingly, 6,3 and M, ..., My
form a complete set of indecc ble Cohen-M: lay modules over O 15+ Furthermore, the
homomorphisms between the M; can be read off from the desingularization graph. Namely,
let us call a non-isomorphism M; — M irreducible if it cannot be written as a non-trivial
composition M; — @ My — M;. Then for different nodes i, j, there exists an irreducible
homomorphism M; — M; if and only if i and j are connected by an edge.

For a wide class of rings A (e. g., orders), a concept of Cohen-Macaulay module is
available. Then the irreducible homomorphisms between indecomposable Cohen-Macaulay
modules constitute an oriented graph A(A). For the ring 6/ of a simple surface singularity
f = 0. the arrows in A(@,) oceur in pairs ¢ = j. and these pairs. except the one connected
with 0. correspond to the edges of the two, the
graph A(A) should provide a picture of a (possibly non-commutative) “singularity”.

ization graph. So in

Since R-orders A are finitely generated over a commutative ring R, the concept of
isolated singularity can be generalized to R-orders. If an R-order A has this property, then
A(A) looks lik
module. there exists a unique vertex 7Al such that for each arrow X — A there is an

a picce of knitting, For each vertex M which is non-projective as o A

arrow 7M — X and vice versa. The vertices which are not of the form 7/ are dual to the
projective modules and are called injective. S]PI (A) is made up of meshes

™M < \‘ (20)
\.. /

with possible multiplicities among the M,. This important structure, discovered by Auslan-
der and Reiten in the early seventies, furnished with Gabriel's term for a graph with arrows,
has become well-known as the Auslander-Reiten quiver. More generally, an oriented graph
Q with vertex set @y and a bijection 71 Qo ~ P ==Qq ~ J leading to a mesh structure
as described above is called a translation quiver. Similar to Auslander-Reiten quivers, the
vertices in P (resp. J) are called projective (resp. injective). For two-dimensional R-orders A
(i. . those with dim R = 2), even the projective and injective vertices in A(A) are connected

by meshes.

Proposition 4. Let A be a two-dimensional R-order describing an isolated singularity.
Then A(A) can be regarded as a translation quiver with an everywhere defined byjection 7.

This holds since Auslander-Reiten quivers are in a sense “two-dimensional”. By contrast. if
dim A # 2, the projective vertices, i. e. the direct summands of A. give rise to exceptions

I
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5 Non-Commutative Curves

By o striking result of Buchweitz, Greuel, Schreyer [4], and Knorrer [14], the simple sin-
gularities f = 0 can be characterized by the property that A(a,) is finite. By analogy, a
non-commutative singularity, given by a ring A, should be regarded as “simple” if the num-
ber of vertices in A(A) is finite. One of the basic still lved probl in repre i

theory is to determine the orders A with this property (see [17]. p. 2. for one-dimensional
orders). Before non-commutative singularities can be tackled, an understanding of regular
rings A is needed. For a curve, surface, or higher-dimensional complex variety X given by
an equation f = 0. regularity at O simply means that the, ring 6[ is isomorphic to a power
series ring C[z)..... zu)). Modern algebraic geometry has brought about a redefinition of
. nor to a base field like C. In

regularity with no explicit reference to coordinates
this way. the geometric behaviour of arbitrary commutative rings can be studied.

Indeed. our considerations in §1 cicle around the spectrum of Z. Namely. Spec Z consists
of the ving homomorphisis P,: Z — Z/pZ with p prime (i ¢ with Z/pZ a field). and £
Z = @ (Note that every homomorphism Z — F into a field F factors through some F,
or £ In this view. the integers can be regarded as “functions” on Spec Z. Namely. every

non-zero n € Z with factorization

o

n=Epl e (21)

into primes p; is uniquely determined by its values n; at P, and =1 at P;.

The concept of dimension and regularity can be defined for arbitrary commutative rings.
For instance, the ring Z is one-dimensional and regular at all points of its spectrum. For
non-commutative rings, these concepts are yet to be clarified, at least for higher dimensions.
A (non-commutative) regular point corresponds to a ring of matrices over a skew-field (i. e.
a “field” without the commutative law), whereas the ring A of a regular curve at a point O
looks as follows (cf. [15)).

(22)

Here V'is a discrete valuation ring in a skew-field with maximal ideal A/. Discrete valuations
can be generalized to higher dimensions and thus lead to a class of regular rings of type A
(19]. Presently, non-commutative regular rings are a highly active field of research, with
important contributions made by Artin, Lusztig, Stafford, Tate. Van den Bergh, and many

others. A discussion of those results would go beyond the scope of this article.

i aae——
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Up to dimension two, one can say that regularity is now well-understood. So let us em-
bark for a trip towards the ocean of singularities. Here even dimension zero offers an nbun
dance of singularities. A simple singularity of di ion 0 is ified by a rep
finite ring, that is, a ring A with only finitely many isomorphism classes of indecomposable
A-modules such that every A-module is a direct sum of finitely generated modules. (It is
known that this concept is left-right symmetric.) For K-orders A with K a field (these are
better known as K '-algebras), the possible finite Auslander-Reiten quivers A(A) have been
determined by Igusa, Todorov (7, 8] and Brenner [2]. For two-dimensional orders, an ex-
ceptional class according to Proposition 4, the corresponding problem was solved by Reiten
and Van den Bergh [18].

Just around the millenni the finite Auslander-Reiten quivers ing to one-
dimensional orders have been characterized in a trilogy of papers [9. 10, 11] by a young

Japanese mathematician, Osamu Iyama. Beyond that, with the methods developed there he
was able to prove Auslander’s conjecture on finite representation dimension of 0-dimensional

orders [1]. and Solomon’s second conjecture (5] on C-functions of 1-di

onal orders. A typ-
2C|(z] [z

ical Auslander-Reiten quiver of a one-dimensional C[x]]-order. A = (:

is given as follows.
l G 1 ¢ o) 3
T AR TN N
D i a i 5 v (c]
A DN b Nty S e A
Q 1 (&
AN bRt B2

C>R—-k—f—a

\/\/\/\/\/\/”\/\
\/\/\/\/\/\/\/\

The ends are to be put together with a twist; so A(A) looks like a Mabius strip. Taken in
itself, i. e. as a O-dimensional object, the singular point belongs to a 3 x 3 matrix ring A
over the field K = C((z)) of fractional power series. Thus A is a subring of A, and every
A-lattice E generates an A-module K E. Since there is only one indecomposable A-module
S. up to isomorphism, we have K B = §°(E) with a number p(E) which is called the rational
rank of E. The vertices of A(A) are depicted by four types of symbols: e. g. a,1,1"; A;a: A,
4. The numbers 1.2.3 (vesp. 1'.2',3) refer to the
projective (resp. injective) indecomposables.

according to the rational ranks 1;2:3:

By Ivama’s criterion. finite Auslander-Reiten quivers of orders are characterized essen-

(T
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tially by two conditions, (1) and (I1), formulated in terms of ladders. For a vertex M let
0(M) denote the middle term My @ ... & M, in the mesh (20). For projective M we take
those M; with an arrow M; — M and put 7M := 0. Dually, 3= (M) Mo -&M
according to the arrows M — M. We extend ¥ to direct sums via 9(M & N) = 9(M)@I(N)
and similarly for 7. Now we consider homomorphisms f: M — N such that 9N = M & N’
and define M : . For suitable [ this process can be repeated and leads to a ladder

INEE==SANT == M ===\ (23)

o

i
Nt s N i N —== N

Iyama's condition (1) says that for each injective vertex I, the ladder of I — =TI ends
with an arrow 9P — P with P projective, and that the 9=, (9=1)".(9=1)",. . (for all 1)

exhaust the whole collection of vertices, Condition (II) states. ronghly speaking. that there

are enough projective vertices  Of course. such a condition is necessary smee (1) trivially

holds if there are no projective vertices at all.

The reader may check condition (I} for the above l-order A. For example. the

arrow 1 — U~1" leads to a ladder

R ISl == 1B G =——=bF——>c—— R/

| e e

B Sl A= S == e —— L Td—— Y = G =T =

which, after 23 steps. ends with the arvow 7 — 1. Similarly, the ladders starting with the
second resp. third injective vertex end with the corresponding projective vertex after 29
resp. 39 steps.

For each mesh (20) in A(A), the relation p(M) + p(rM) = ¥ p(Mf) holds. If M
I8 projective (injective), then p(M) = IM (vesp. = ¥~ M). Therefore. p is said to be
an additive function on A(A). For orders of dimension 0 or 2. a characterization of finite
Auslander-Reiten quivers can be given in terms of additive functions. Therefore, Iyama’s
work led to the problem (12]. 7.4) whether such a characterization is possible in dimension
one. Last year. this question could be answered in the afirmative [20].

We already mentioned that 0:-dimensional simple singularities admit a definition by
means of representation-finite rings. The now existing combinatorial description of finite
Auslander-Reiten quivers of one-dimensional orders A conveys a deep structural insight into
the categories of A-lattices. This suggests a one-dimensional analogue of representation-
finite rings which precisely specifies (non-commutative) simple curve singularities. We call

Uiese vings lattice-finite. Their Auslander-Reiten qui are characterized as follows {20].

107



108 Non-Commuting Numbers and Functions

Theorem. A finite translation quiver satisfying Iyama's condition (II) (enough projectives)
occurs as an Auslander-Reiten quiver of a latiice-finite ring if and only if it admits an
additive function with values in the set of natural numbers.

Much more could be said about non-commutativity. But let us look back on our starting
point. Is commutativity of Z a happy accident? I think we proved just the opposite. From
a phil hical point of view, accidents adhere to essentials. By Proposition 1, the ring 2 is
initial. Number theorists agree that Z is the most fundamental, also the “hardest” ring. It is
the essential ring in which all accidental non-commutative rings are rooted. In other words,
commutativity is the essence, whereas non-commutative rings make up the embellishment.

The reader who wants to know more about non- ive rings is thus well-advised to
acquire a solid knowledge in commutative algebra first (there are excellent textbooks, e. g,
study of ive rings all the more enjoyable.

[6]). which makes a

References

] AUSLANDER. M., Representation dimension of Artin Algebras, Lecture notes, Queen
Mary College, London, 1971.

2 B 5 1Sy A bi ial ch, ization of finite Auslander-Reiten quivers,

Representation Theory I, Finite Dimensional Algebras, Proceedings, Springer LNM

1177 (1984), 13-49.

BRIESKORN, E., Rationale Singularitdten Komplexer Flichen, Inv. math. 4 (1968),

336-358.

BucHwEITZ, R.-O., GREUEL, G.M. AND SCHREYER, F.-O., Cohen-Macaulay mod-
ules on hypersurface singularities II, Invent. math. 88 (1987), 165-182

)

=

(5] BUSHNELL, C.J. AND REINER, ., Zeta Functions of Arithmetic Orders and Solomon'’s
Conjectures, Math. 7. 173 (1980), 135-161.
(6] EisENBUD, D., Commutative Algebra with a View Toward Algebraic Geometry,
Springer Graduate Texts in Math. 150, New York, Corrected third printing, 1999.
7] Icusa, K. AND Toporov, G., Radical Layers of Representable Functors, J. Alge-
bra 89 (1984), 105-147.
[8] Icusa, K. AND TODOROV, G., A Characterization of Finite Auslander-Reiten Quiv-
ers, J. Algebra 89 (1984), 148-177.
[9] Ivama, O., r-categories I, Radical Layers Theorem, Algebras and Representation
Theory, to appear.
[10] IYAMA, O., 7-categories II, Nakayama Pairs and Rejective Subcategories, Algebras
and Representation Theory, to appear.

(T



Wolfgang Rump 109

[11] IYAMA, O., 7-categories III, Auslander Orders and Auslander-Reiten quivers, Algebras
and Representation Theory, to appear.

[12] IYAMA O Representation Theary of Orders, in: Algebra — Representation Theory,
Kluwer Acad Publish 2001.

[18) Krem, F., Lectures on the icosahedron, Dover Publications, New York 1956.

[14] KNORRER, H., Cohen-Macaulay modules on hypersurface singularities I, Invent.
math. 88 (1987), 153-164.

(15] MicHLER, G.O., Structure of Semi-Perfect Hereditary Noetherian Rings, J. Alg. 13

I. AND ROGGENKAMP, K.W., Integral Representations. Springer Lecture
Math. 744, 1979.

. aND BERGH. M. VAN DBN, Two-dimensional tame and maximal orders
of finite representation type, Memoirs Amer. Math. Soc. 408. 1989.

(19) Ruste. W.. Non-commutative regular rings, J. Algebra 243 (2001). 385-408.

(20] Rump, W., The category of lattices over a lattice-finite ring, Preprint.



