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ABSTRACT: The purpose of this note is to present a new “real world” appli-
cation of Room squares. Almost no theory is presented and some will note that
our treatment is rather naive. In particular not even the idea of starters, which
would make the presentation more elegant, is explicitly defined. We choose this
way to hold the attention and arouse the curiosity of those who never heard
of this combinatorial structure. An interesting theory. however, arises from the
problem in this article. This will be developed elsewhere

1 Introduction

Suppose we have a round-robin tournament among 2n + 1 individual competitors. (Round-
1abin means that any two competitors play precisely once). Each game involves the two
fompetitors and an extra person, which is also a competitor, to be the referee and/or to
perfor bookeeping functions relative to the game. The tournament is divided into 2n + 1
tutinds of n games each. Each round is subdivided into a number of phases. The games of a
pliase are to be played at the same time. The restriction that the referee is also a competitor
iplies thit the number of phases is at least two for each round, because a person cannot
play while refereeing. The games of a phase of a round are played simultaneously in a
fixed mumber of different “boards”. The conditions of a board are supposed to be slightly
different Thus, we have the first requirement:

L ———mm N



W

170 A New Application for Room Squares: Tournaments with Internal Referees

(rql) Each competitor plays the same number of times in each board.
The condition about an internal referee, which motivated the present scheduling prob-
lem, is a natural one for amateur tournaments. In these tournaments it is not desirable
to pay for external referees. Being a referee is considered a boring task (the price to
pay for participation), hence we have the next two requirements:

(rq2) Each competitor is referee at most once for round. If he is referee in a round he plays
in another phase of that round.

(rg3) Each competitor is the referee of precisely n games.
The last requirement (which we imposed after solving the problem) for certain n's is

a particularly pleasing one:

(rqd) Given any ordered pair of competitors (p, g), there exists precisely one game in which
p is the referee of a game involving g.

2 Room Squares: A way to Schedule the Games

A Room square of order 2n, is an arrangement of the n(2n — 1) distinct pairs of 2n objects
in a square array of side 2n — 1, such that each cell of the square is either empty or contains
one pair and each of the 2n objects appears exactly once in each row and column.

The symbol set for the objectsis {1,2,...,2n—1,00}, and we permute rows and columns
of the square array such as to position the pair {co, i} in cell (i.7). A Room square is called
cyelic if {p. q} in cell (¢, ) implies {p+ 1,¢ + 1} in cell (i + 1, + 1) where addition is mod
2n — 1 and oo + n = oo for arbitrary integer n.

We show that the existence of a cyclic Room square of order 2n + 2 implies a solution
for the schedule problem which satisfies (rql):--(rq4). Initially we give an example of a
solution for the specific case that originated the question in 1975. We were playing a special
kind of game called “futebol de mesa” or loosely translating “table soccer”. For this game a
irable. Also the boards are distinguishable since they offer

referee and bookeeper is highly des
different conditions of illumination smoothness, etc. Hence, the need for (rql), (rq2), (rq3)
Condition (rq4) was highly welcome after the solution using Room squares was obtained.

There were 13 people and 3 hoards available. In Table 1, below we present the scheduling



Séstenes Lins
rel’ K FT LC MB|GH|[ EJ
A 1y 2+ | 28 18 [2a|la
K rel LE GJ | MD AC|[ HI
la B 13 2y 28 18 | 2a
T TGL ref M HK | AE BD
2a 1a C 19 279 28 18
ETJK [HM | ref IL [ BF
18 |2af1a| D 1y 2+ | 28
DF | KL [ TA ref’ BH JM [ CG
18| 2a | 1a | E 1y 2+ | 28
EG|[LM| JB ref (] KA
248 13 | 2a la B 19 2y
LB EI FH|MA|[KC [ rel DJ
29 23 18] 2a la G 19
MC|[ FJ GI [AB [ LD ref
24 | 28 18| 2a|1a| H 14
AD | GK HI[BC[ME ref’ FL
24 | 28 18 |aa|1a| 1 1y
GM BE | HL IK [CD [ AF ref
15 29 23 13 2a la J
LY CF [TM JL [ DE | BG | rer
19 24 | 24 180,20 [.1a | K
B DG | JA KM | EF | CH | ref
15 21 [ 28 13 lwBias | dia oL
el EH | KB LA|FG| DI | ref
1y 2y | 28 18 | 2a | 1a M

off the main diagonal. each cell of the above array is either empty or contains four entries:
two capital latin letters in {A, B,..., M}, a number 1 or 2, and a greek letter a, 3, or v. The
latin letters mean the c itors; the I P the phase of a round, which is
represented by the columns; the greek letters represent the boards. Observe that restricting
ourselves to the latin letters and replacing the entries “ref” by “c0” we obtain a cyclic Room
square of side 13. This Room square was obtmned from [SM]. The referees are represented
by the rows. As two i of we have: J plays A in the 2nd.
phase of round 7, the referee is L, and the board is 8. C plays I in the lst. phase of round
10, the referee is F, and tle board is W

Note that the set of non-empty entries of a cyclic Room square can be partitioned into
41 (eyelic) diagonals one of which is the main diagonal and plays no important role here
other than indexing. Each other diagonal is labeled by a pair consisting of a phase and a
board. In the case of Table 1 we have diagonals: la, 13, 1y, 2a. 23. 27. Observe that
o board is never iddle. So, in general for cyclic Room squares, we want to have a pair
(phiase, board)= (. 5) associated with one diagonal. Since each diagonal have each element
Appearing twice (one as first element, one as second) requirement (rql) is automatically
satisfied in an even stronger form: each competitor plays twice in a given board and phase

for

In some tournaments it might be useful to consider two “sides”™ for the board
Instanice, white and black in chess. In this case for cach pair (p.b) each competitor plays
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once in each side.

Condition (rq2) is clearly met by the solutions given by Room squares, because the
person which does not play in a round does not have to be a referee either in that round.
Condition (rg3) is trivial from the properties of Room squares, because there are n off
diagonal non-empty cells in a given row. Condition (rq4) is also clear, because each element
other than i appears once in row i of a Room square.

3 Schedule for Internally — Referee Tournaments

In this section we define an irt-schedule (which is merely a new name of the class of structures
that give a solution for the original scheduling problem) and show that no more than three
phases by round are sufficient to schedule a round. An irt-schedule is a cyclic Room square
with an ordered pair of labels from disjoint sets P and B attached to each off main diagonal
entry satisfying the following conditions:

(irt1) Two distinct entries not in the main diagonal have the same pairs of labels if and
if they are in the same (cyclic) diagonal.

(irt2) If XY is an entry which has label (p,b) and is in row Z, then the entry UZ(or
ZU) in the same column as XY has first component of its label distinct from p.

Condition (irt2) is necessary to impose, otherwise Z would be a referee in phase p, but
also supposed to play at the same time, which is not permitted.

Condition (irt1) is natural to impose because to determine how many phases and boards
we need is sufficient to examine one column (round).

We show that given a cyclic Room square we can attach labels from sets P, B with
|P| = 2 or 3 to have an irt-schedule. To this end we define the position digraph G of a
cyclic Room square R. Consider any column ¢ of R. The vertices of G are elements of the
form ({@.y},r) where zy is an entry in row r, column ¢, with ¢ # r. We have dart from
({xr.y1}ei) to ({@2, 2}, ¢2) if ey € {@2,y2}. This completes the definition of G. Observe
that since R is cyclic G is abstractly the same digraph independently of the column used
Note also that the minimum number of phases required is precisely the minimum number
of colors in which we can paint the vertices of G such that adjacent vertices have different
colors (chromatic number, y(G), of G): just let the vertices of the same color be games to

be played in the same phase,

Our problen is then to establish that the chromatic munber of a position digraph of &
cyclic Room square is two or three. Actually the direction of the edges in G is irrelevant

for the definition of chromatic number. but as we see. fundamental for the proof. The only
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property of G that we use is the following: the number of darts going away from (outvalency
of) each vertex is one. This property follows from the fact that each element appears once
in a column of a Room square.

The fact that the outvalency of each vertex of G is equal to one implies: (a) Each
component of G contains a directed circuits. (b) No component of G contain two circuits.

From (a) and (b) we obtain that each component of G is tree plus one chord. If for
every component the number of edges in its only circuit is even, then \(G) = 2, otherwise
\(G) = 3. This concludes the proof.

To get the boards assigned is convenient that the sets of vertices of G with the same

s0 to avoid idle boards. If they are

&

color be approximately of the same cardinality. This
all of the same cardinality, as in the case of Table 1, then there are never idle boards, that
is, 1 = |P| x |B|. The more interesting case is when |P| = 2. If that is so, and moreover
there exists a bicoloring of G such that the two classes in the bipartition have the same
cardinality. then we call the irt-schedule a perfect schedule. Of course. n has to be even in

this case.
4 Some Small Perfect Schedules

The eyclic Room squares of [SM] produce perfect schedules for 9, 13, 17.21. The next case.
Room square of side 25, fails because the position digraphs based in a column and in a row
of this sq are non-bipartite. We can obtain a solution for 25 based on a “strong starter”
for &5 x Zs obtained from GF(25), see [MN]. This schedule does not have a cyclid structure
and is not considered here. Below we present the first row and last column of Room squares
which produce perfect schedules for 9,13,17,21 participants. The triples are the two entries
and their column position (row position) in the first row (last column)

Side 9

first row last column
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Observe that the position digraphs based in the row or in the column give a perfect
schedule.
Side 13

first row last column

The above Room square is the same given in Table 1. Only the position digraph based
in the column gives a perfect schedule.
Side 17

first rom last column

e W



Sdstenes Lins 17¢

The same comment relative to side 13 is applicable here.
Side 21

first row last column

In this case only the position digraph based in the row produces a perfect schedule.

Therefore our convention regarding rounds and referees (columns and rows) must be inter-
changed

5 Conclusion

In view of the known freedom to produce Room squares of a given order we conjecture that
there are perfect schedules for every integer of the form 4k + 1, k > 1

Note that some of the position digraphs above are directed polygons. A more strong
question which arises naturally is the following: Are there for every odd integer 2n+41, n > 2
a cyelic Room square such that the position digraphs based in its row and in its columns
are both directed polygons with n vertices? An affirmative answer for this question is also
A positive answer for the conjecture. Perhaps this subclass of cyclic Room squares might be
casier to deal with. An algebraic structure for the class, if discovered, could be very elegant.
A first step towards such a theory is the following result from which we omit the proof.

Theorem 5.1 Let p be an odd prime. If p" = 4k + 1, p" is not a Fermat prime and
P""" % 1 15 not a power of 2 the there exists a (not always cyclic) Room square of size p",

whose posttion digraph is a collection of even polygons.

P~ N
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A proof of this theorem involves an strengthening of the main result of [MN], and will
appear elsewhere. The smallest prime power for which we do not know at present a perfect
schedule is 49. Since 72! + 1 is a power of 2, the above theorem cannot be applied.
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