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AafTflAC"T In the following pnpcr, wc prcscnt 11 bricf survey of the manncr in which 

lt>pi>kipcai nM"lhods (such ¡~ fixcd point thoory) a re utilized to prove ex\stcncc of 

\'tU'MNt ouuomts for cert11in clll8!!Cl:I of NT U coopcrat ive ga.mes. 

lntroduct ion 

C1unr t bf.'ory hu been dcfined [JO] as "thc study of rnathematical models of confüct and 

COO\)('rahon bet''tt'n mtclligent rntional decision makers"'. In t he theory of coopcrative 

11amt'l 1t • a.um00 thst t hc participants (players) mo.y form groups (coali tions) who can 

M"hll'Vl' \'t.OOla outromes, and tlmt the playcrs may reach binding agreements 1lbout how 

lo ~hn.rr lb.ro !t¡>Ol~ Th11s, 111 a free m1\rket , o. setler nnd a buyer reach ru1 111:,'Teernent uboul. 

tlw prirt ud quant1ty oí goods suppli~d; in a multi-party parlirunentary syst.em, one may 

rt'p;Ard t'ach pohtlC&i party as s plnyel'. In t he formcr case we are faced with a two players 

(or h•l>-ptnOQ} prne, whe.rca.a in the second case we have n players (n equals t.o the mun ber 

llÍ r l)l\lt!I) aM lh«- numbcr of possible coaliLions may be ln.rge. 

A n31wal ttqu1re:mcnt from u thcory is thnt the prcdicted outoome(s) are sufficicnt.ly 

Jtl\blr 'IO th.t ontt such IU1 out.come ho.s been renched, no indi\'idual and no conlition could 

KAln "~"by iotn& 1heir own w1\yS. A moment's reflect ion show that if according to thc 

' f'11(4 ud i...:tw.¡ .1-.el.on Proíeuor of Theorcl ico.l f.·hu hcm11.tic.. Thi.s reeean:h Wl\ll pt\l'tly ~upportcd 
by• Ml'IER\A Fouiadt.1kin (Cernumy) grnnt. Thls pl\per WM con1ple1ed while 1hc 11.uthor WCllJ vi~iling thc 
Un1.,.r11'JclW-.. 
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rules of a three-person game any coalition of t\\'O or more p\a.ycrs may get the entire cake, 

then no agreement can be stable: if x 1, x2 , :z:3 denote t he fTaction of cake promiscd to the 
ind ividual players, then the inequo.l ities x 1 +x2 ;::: l , :r: 1 + :z:3 ;::: l , x2 +:i:3 ;?: J (no two-person 

coalit iou may improve) are incompatible wi th the requi rement z 1 + x 2 + x3 !S 1 (the cake 
is too small). The notion that no non-empty coalition can im provc is fo rmaliied by the 
concept. of "core" - see Section 2. 

In most cases , the participants evaluate differently the same outcome - 011 peMJOn's 

satisfaction with a piece of cake of size a is in general a funct ion of a, peculinr to that per9011 

The power of a government is hardly a sca lar, and while one political party rnay havc secu nty 

and fo reign affairs high on its agenda, another may be mostly i11terested iu socio-economic 

issues. Sit uations like these are best modeled by associat ing with cnch coal it ion S a set 

V(S) of vectors whose components represent thc payoffs ava ilablc to mcmbers of S. In tht' 

3-person case mentioned earlier wc may associate with each coalition S e {1 ,2, 3}, w1lh 

containing at least two players, the set V(S ) = {x E R3 : E.es X ; :S 1 }. (We ha.ve inequnhty 

rather t han equa!ity beca.use players may throw away freely some of the cake.) T hc gcncrnl 

case, whcre the sets V (S) are not half- spaces, is called NT U (11011 t rnnsfernb lc ut1lity) 

(Sometimes such a game is called an n-person game without s ide pay111e11ts.) Topological 

methods are required to study the NTU ca.se - linear prograrnming a nd relnted mcthods 

do not suffi ce. 

Another natural property of a solu tion concept is that it admita 110 "o.symmct ric dcpc11-

dencies". A solution displays an asynunetric dependency if one playcr neecls thc prcscncc of 

a second player to rca lize his puyoff (in the solution), but the sccond playcr <loes not nct'<I thc 

presence of thc first . In such a case thc first player 's pos1t1011 is vulnerable. Considera two­

persons d ivide thc cake game. Any division gi ving the ent ire cake to one pl aycr displnys l\n 

s..symmetric dependency ; t he player receiving thc cake is dependent 0 11 thc plnycr rcctiving 

nothing, whereas the pln.yer rcce ivi ng nothing docs not h&\'e to join the two-pcrson coalltion 

in arder to recelve her part of the payoff . On the other hand 1t is impossible to achicvc o. 

division givi ng a positive amount to each player unless both of them join the coalit ion 

therc is no s..symmet ric dcpendence and the players are parlnered. lf a solution payoff is not 

partnered, t here is an opportun ity fo r one player to demand a la.rger share of thc cake from 

the other player; a payoff that is not part nered exhibits a potential fo r instability. 

A combinatoria] conccpt of partnerJhip will be made precise in Scction 2, wherc thc 

concept of partnered payoffs will be dcfined s..s well . 

T he main purpose of this survey is to present a result about existence o ( outcomc.s thol 

ca.nnot be improved upou and admit no ssymmetric dependency (i.e., thot thc partncred 

core is 11011-empty). This result , dueto Reny and Wooders ft IJ, will be statcd prcciscty and 

proved in Section 5, besides somc more rcfined results \Ve will derive game- thcoret ic resull.I 

• 
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frtllll thCOftml about closcd covorings of simplexes. Those theorems bave n long history. 
Thf fiunous KnMt.er-Kurntowski-Mazurkiewicz (KKM) T heorem, wbich states tha.t under 

etrtaln cond1uons & family of subsets of the simplex has a non-enpty imersectlon, hus u 
numh<'r of appha.tioll! in Ge.me Theory (soo 12]). The first proof of the non·emptiness of 

thf core (undtr 1uit.fl.ble assumptions; in general t hc core may be empt:y, as in the 3· person 

lllltl" t1xhlbilt!d abo ... e) of NTU grunes was givcn by Sca.rí in [I3J. Thc topological nnture 
of tlll' proof 15 f'\•tdcnl and wBB further ~lucidated in [14], see also (4] and [15]. In fact, 

8 vnnalmuon (KKM theorem) by Scnrf [13] nnd Shapley [141 of tbe KKM Theorem is 

11111numtnta! m pr0\1i11g 11011-cmptiucss of the core of NT U games. A further extcnsion by 
Rrn,Y and \\'oodE'rs ¡12J looms in the bo.ckground of their stud}' of pan.nered cores. Our 

nlt'diod ln\'Oh furthc.r cxtensious of the KKMS t hcorem (Kannai and Wooders [5]). T hc 
tflMl0111 ~Wttll the Brouwer fixed point theorem, Sperner's lemma and t he KKM 1.md 

l\KMS thfoomnS are well cstablished [2), (4.j, nnd non-emptiness of the part nered core seems 

to be rtla.ltd to t0p0logicnl degroo theory [5]. 

Clffil" throtttJC oonoept.s nre i1Moduced formnlly in Section 2. Closed covcrings o.nd 

1ht1r rttlatM>nS lO multi-vu.lued functions (corrcspondences) are discussed in Sect ion 3. We 

dl'!!Crltw- In S«-tton 1 the simpleRt degree thcory, nnme\y the mod 2 degrec theory. (I barcly 
rt'lluiltd t~ t('mptation to cnll this pnpcr "A crnsh coursc in degree theory" .) lt turus 

aut 1hat tha suffices to re-derive ull thc mnin resulcs on generalized KKt-.·IS theorems nnd 
(trhnfd) putntttd cores. The topologicnl theorems are proved and applied to gnme theory 

ln Srtuon 5 HCf1' .. ~ follow mainly [5]. ~Urther applicntions are mentioned brieíly in Sectiou 

6 

oop rative Games 

Ltit N {1.2. , u} be the set of all players. A subsct of Nis called a coalit.io1l. An 

outcome ol tM pme (11o payoff vector) is simply an n-dimensional vector x = (x 1 , • • ,x,.); 
th11 l11tu1tM mn.nmg l8 that the i.-th plnycr "receives" x,. 

In tbt aroplell case (tmn..'l/cmble utili ty) the players may t ransíer "puymcnts" nmong 

cl'Chotbn, ami tht pnie is given by mea.ns of a claamcteristtc funchon (or n worth function), 

whlch • wnpl,- a real-\'ftlued function u defined on the conlit ions, such t.hnt 

u(0) = O. (1) 

Uaulll.ty ._. rtqwteS that a payoff vector satisfies (at least) the foUowing conditiom;: 

I :X. =u(N) (2) 

·-· 
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Ueuibilit.y and Pareto-optimality) , and 

x, 2 v({; ) ) i = 1, ··, n (3) 

( individual mtionality). The condition (2) incorporal.es both the requirement th1u. the 

members of the grand coalition N can actuall}' acli. ieve the outcome x (E~ 1 :c , 5 u(N) . 
feasibility) a.nd cannot nchieve more (l:~ .. 1x; ;::: v(N) - Pa.rcto-optimality). Thc condit ion 
(3) means that no individual can achieve more tha.n the amount a llocl:lled to him &11 8 l)t.y-off 

Note t hat individual rat ionality and feasibility are not necessarily compatible; clee.rly 

L •(( i })~v(N) (• ) 

is needed 

We are interested in t he more genera l case, in which payoffs cannot be transfered frL'Cly 

between different players (even if they e.re members of the same coalition). Hencci we hn.\'t' 

always to sped fy all components of a vector ;z; = (x 1, · · ·, xn) e R N (= /l") . \Ve dcnott by 

R5 the subspace of RN defined by x ; = O for i 1. S. A coalition S controls thc projectton 
x5 of x on R5 given by the restrict ion of x to the coordinates indexed by thc ctcmcnt.5 of S 

Formally, it is convenient to defi ne a non-tra.ns ferable uti lity 11-pcrson game (NTU 
game) as n set-valued function V defi ned on the coali tions, such thnt: 

V(0) = 0 (S) 

for ali S f. 0, V(S) is a 110 11 - empty closed subsct of nN (6) 

if x E V(S) nnd y;$ x , for ali 1 ES, t.hen y E V(S) . (7) 

The meaning of (7) is thnt V(S) is n "cylinder" , that IS, the Cartesio.n product of a subset 
of R5 with RN\S (this is done only fo r technical convenience), and tlmt "coalition S can 
achicve, nlong with every vector, a. JI vectors paying less to every member of S (tl11s ~a 
more substantive o.ssumption). A transferable utihty game v can be trnnsfonncd into A 

non-transferable utili ty gamc V by setting 

V(S) = (x E nN' ¿ z, $ v(S)} () 
•ES 

for all non-empty conlitions S. This example suggcs1.s the fot lowing condition, which "" 
will always assume: 

There exists a closed set Fe RN such that 

\l(N) = {z E HN : 3y E F w1th z, $lb for all 1 E N) (9) 

• 
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In the NTU cue, a.n outcome oí the game (a payoff vector) is once again an n­

duutnik>oal vtC\OI' :i: •(:ti. ··· , :t.,). Time, a paYQff vector is fcasible ií 

xE V(N) (10) 

l i ., the membert of thc grand coalition N can actua\ly achieve t be out.come :t. By (9), a 

J*íOfl' z 11 fta.s:ib~ if there exist.8 y E F with :t; :5 y1 for ali i E N . T be payoff vector x is 

\ndiv\dua.Jly ration&l if 

for no i E N therc exista y E V ( {i}) such the.t :z:., < y,. (11) 

1 t, no lnd1vtdual can achicvo, acting alone, more than t he amount allocated to him as o. 
payoff To aampUfy mat tcrs, we will O&lume that 

V((i)) ~ {x e R" , x; $ O) (12) 

Urna: feM1b&t, md1vldually rat ional payoff vectors exist o nl}' if F contains a t least sorne 

\ un witb non-ncga1ive components. We will assume t hat 

F n {z E RN : :t¡;::: O far a li i E N} is a non-empty compact set (13) 

Tht! mmiben of the coalition S can improve their payoffs by their own efforts if there 

r:d1\tl • \"t"ttor 11 E V(S) with :t¡ < Y1 far ali i E S. By (7) the members of S co.n improve 

upon z lfl z E 1nl V(S). Hence the core of the gam e V , defined a.s the set of ali feasible 

p.yoff vteton: tbal cannot be improved upan by any coalition, (i.e., no individual and no 

poup can imp«J\-e} coincides with V(N)\ UscN int V(S). (l n thc transferable utility case, 

thc mtmbtn ola coalil ion S cau improve upan x i f I:,es:t, < v(S), and the core coincides 

wnh the "' of ali fe-a.siblc pa.yoff such tha.t far a ll Se N , 

I:•; 2! u(S).) 
<eS 

(14) 

h lt titar tbat tbe set. V(N) has to be sufficiently large far the corc to be no1H mpty. 

(In th' lram.."trablt utility case v(N) ha.s to be a sufficiently large number .} Annlysis 

of lrk115Íttabat ul.thty gtu11es lea<ls, via the theory of linear inequalities, to study certnin 
collrct1CJCW or coalitJCHU, called balanced collections (see [4J for a brief survcy). 

Th, colRcuon 8 of subscts of N is cal\ed balanccd if there exist nonnegative weights 

\.\'l.s e ..t. Uw. íor 1wc.ry i E N , 

L >.s ~ l. 
IESEB 
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Every pa.rtition of N is a balnnced collection , with weights equal to l. Note that it iJ 
possible to write the balancedncss condition as 

L ,\S,l = e N 

sea 
(15) 

where e5 denote the vector in RN whose ¡rh coordinate is 1 if i E S nnd O othcrwi11e. (In 
other words, e5 denotes the indicator íunction of S.) 

lt is easy to see that if the core of a trnnsferable utj)jt;y game is non cmpty thcn 

I:: A5 v(S) $ v( N ). (16) 
SeB 

A game satisfying the condit ion (16) is called balanced . lt fotlows from duality thcory of 

linear inequalities that a TU game has a non-empty core if and ouly if the game is balanocd 

(Shapley and Bondareva; see [4]). Motivnted by the case of tro.nsfernble utili ty, Sco.rf j13J 
defined a balanced game to be o. game V in whicb the rc.lation 

nseu V(S) e V(N) (17) 

holds for every bo.Jnnced collection B of subset.s of N , and proved the following 

Tbeorem 2.1 Every balanced game lia.s a nonempty core. 

We wish to consider a subset of the core consist.ing of pnyoff vectors which are o.lito 
partncred. Let P be o. collection of subsets of N . For each i in N lct 

We say thnt P is partnered if for each i in N thc set P, is nonempty nnd for cvcry i and J 

in N thc following requirement is satisñed: 

if P1 ~ P; then P1 ~ P,; 

i.e. if ali subsets in P that contaiu i also contain j then ali subsets cont.aining j also contn.ín 

i. Let. P\i\ denote the set. of those j E N such that 'P, = P1. We say thn. t P is min1maflv 

porfoered if it is partnered a.nd for cach i E N , Pjif = {i} . 

Let. (N , V) be o game and Jet x E R" be a payoff for (N, \/ ). A coalition S Is sold 

to support. the ¡iayoff x if x E V(S) . Let S (x) denote thc set of coalí tions supporting thc 
payoff x. The payoff x is co.llcd n pa rt11ered payoffif the collcction S (x ) ha..s thc pnnncrship 
property. The payoff x is minimally partncred i( it is partnercd and if t hc set of supportmg 

coal it ions is minimnlly pnrtncrcd . Note that part nered payoffs need not be fea.si blc. 

• 
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Let P{N, V) ~note lhe set of ali partnered payoffs for the game (N, V ). The partnered 

con~ d<1>01ed by C"(N, V) and is dcfined by 

C"(N.V) = P(N.V)íl C(N, V) 

whnll C(N, V) dmotes thc corc of the game (N, V). 

Rtny Md Wooder1 [I l j proved the fol\owing strengthening oí Scarl's T heorem, ossuming 
ln Mld1tlon to tht &Mumptions made above tho.t there exists a constaJlt M such that for 

tlCh S C N and :r. E V(S) the cstimute 

x 1 ~ M for a li i e S (18) 

Theorcun '1. l Evuy bolanccd game has a no11empty parl.nered core. 

Re11,1 and Woodt.rs proved also that under certain condit ions there exist payoffs in 

C"(N, V) tudi that S(x) is minimally partnered. 

3 Closed Coverings and Correspondences 

ThCI r!!la&1on bec"'!m closcd coverings of the s implex and fixed point theorems goes way 

bKk 1'o IUc 1ht nouicion, let ó. denote thc unit simplex in R"'. Por every SE N define 

ms 

cm1v { e; : i E S}, and 
,s 
¡s¡· 

•ht1rll ~con!/" dmo<el the convex hull and ISI denotes the number of elements in t he set S. 
Th~ polnt ms • cal~ the bal'Jlcentcr of ó. 5 . 

1'he íoUonAg resuh (thc Kns.ster, Kuratowski and Mazurkiewicz Theorem) is a proto­
type of tbf. 1brory 

thcore.m 3.1 {KKM Theorem): Let C;, l $ i $ ri be a /amtl11 o/ closal subset.a o/ ó. sucl1 
lholfornt''J'T C N , 

( 19) 
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(Note that the condition (19) implics in particular tho.t the family C', l 5 i 5 n íorm1 ft 

covering of A - choose T = N. A related result. stat.es lhat if l:l e U{,.1C' and for every i , 
ti, N \ (;} e Ci, then n{ .. 1C; :/: 0.) The KKM Theorem is closely rcle.tcd to the Brouwcr fi.xcd 
point Thereom and to mn.ny existence results in Carne Theory. The fo llowing genernliution 
{4], (141 is es.sentía] for dealing with cores of NTU games. 

Theorem 3.2 (KKMS Theorem): Let {C5 ) be a /arnüy o/ clo.Jed .mb.seU of 6 ind~ b~ 
the non-empt.y coalitions s11ch that for eve'lJ Te N, 

(20) 

Then there e:rists a balanced collection B such t.hat n~e8C5 -:;. 0. 

ln analogy to the terminology used for pa.yoffs, we say the.t a coalition S $Uppor1.1 the 

point x E A if x E C8 , and we denote by S(x) thc set of coalitions supporting x . Rcuy o.nd 

Wooders [12] obto.ined t he following extensions of the KKMS Thoorem: 

Theorem 3.3 a) Let {C5 } be a family of clo.wl subset.t of ó. inde$ed by the non-emptw 

coolitions such tJtat the condition (20) is satisfied. Then there eri!U x· E ó. .!uc11 that the 

supporting collectionforx., S(:t")::: {SEN: x · E e5 }, i.! balanced and partnered. 

b) /j the set 

{:t" E ó. : S(x") is balanced and partnered} 

is at most countablc, then at least one x· E ó. renders U1 e supporting collection S(:i:º ) 
balanced and minimally partnered. 

The study of intersection properties of closed coverings motivo.tes the study of certo.ln 

correspondences (set-valued funct.ions) . The geometric idea is very simple: Lct {C 5 ) ben 

covering of ó. . We may \abe] cvcry x E ó. by t.hc collection of cotUitions L(x) = (S : x E 

e5 } and associatc with x the convex set F(x) = conu{ms : S E L(x)} . Duo to ccrlo.in 

technicalities conccrning boundary behavior wc will hiwc to modify this cons truct.ion a bit 

(see Proposition 1 ). 

Let. F be o. correspondence from X to Y , i.e., fo r every x E X, the "Vl\lue" P(x) Is a. 
sub.se t. of i'. lf X and Y are topological spo.ces, we say t hot F is up1>er-hemicontmuow Í! 

t.he graph G(F) of F (i.e., thc set of pairs (x , y ) s uch t hat v E F(x)) is closed in the produal 

topology of X x Y . If X and Y a.re melric spaces then .F is upper-hcmi contínuous ií f\nd 

only i f fo r every sequence {x .. ,y .. } such that Yn E F(xn) and x., -.. .f, Yn _, jj , wc luwc 

y E F(.f) . In this po.pcr wc will cons ider only lhe case wherc X and Y are subsct,s oí o 

Euclidcan spacc R/\f, and in mosl applications X = Y = 6 . 
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'!'be foUowlag 11 Mlentia.lly weJI known (atronger results will be st.ated and proved in 

s.:110116) 

Tbeore.m :t.• Lcr F (z) be a comiapondencc from 6 into the cloatd oonve:z: aubaets of 6. 

,..clt tAol 
F ia upper - hemicontinuoua ; 

'"' For ali T e N,i f X E 6T tl1en F(x) e ÓT . 

1\1'" tAcrr. ('.tUtl z E o. .ruch that fflN E F (x). 

(21) 

(22) 

Euimple: TbtOM'-dlmen!k>n61 simplcx A e n'l may be paramet rized 8S ( ( 1 - x,x): X E 

¡o, 1¡¡ Tbe baryct:nttt fllN • (0.(),0.5) corresponds to x = 0.5. Set F(x) = e1 if x E 
¡o,061, F(06) • .1, F(:r:) a e'l if x E (0.5, !] . Then the nssumptions of Thoorem 3.4 are 

• t.t\td, and rn y E F(0.5). lf, hov.-evcr, wc modify F by setting F (0.5) = {O, l} , then F is 

no lon¡n coovu ''-'ued (lt still satisfies conditions (2 1) and (22)), bul mN is not contained 

111""1"' F(z) 

Tht cood1t100 (22} restrictl thc behavior of F on the bounda.ry {}6. of 6.. (We denote 

htt• and in tbt Rqut.l the boundnry of a set A by {JA.) The a.nnoying tecbnical details are 

~n "'' ol by tbe following Proposi tion. 

Prop0tltlon l. Ld {CS : S ~ N} be 11 family of closed subsets of A satisfying (20). Then 

tht-re exilt a au:np¡.cx A' oontaincd in the interior of .6 , a homeomorphism ¡p of .6 onto !:11 

and • conetpODdmct F from .6 into the closcd convex subsets of A satisfying (21), and 

(22), and iuch t.ba1 

for &11 u E A' , F(y) = conu{ms: t.p- 1(u) E C5 }, (23) 

if mN E F(x) theu :tE ó.' . (24) 

F a.sa:urnes e. finitc number of distincl values. (25) 

Proot. I' • ~. 1 • l , ... ,n, 6.' = conu{/' : i EN} . Then the simp\ex ó.,1 is 

R'lnlall\l'\I m tlw mtenor of .6 . Evcry x e !:i me.y be writtcn is the form x = L~. 1 z ;e; where 

E~ .. 1 .1, • I, ••~O for ali 1 E N. Set 1.p(:z;) = L? .. 1 x,f; . Then ¡pis a homeomorphism of 

6ontoC/ "'oct tha1 .,,.(z') • ~ for ali i e N . Let r¡ : 6 - 6 be defined by 

( )• max((n + l )u, - 1, 0) forall iEN. 
11• ~ E,EN mruc ((n + l )Yj - 1,0) 
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Then 1he cont inuous function 11 coincides with rp- 1 on 6.' and '/(6. \ 6.') C 8/l . Wc define e 

labeJing function 

L(y) = {S: r¡(y) E C 5 and (n + l )y, ~ 1 for ali i ES}, (26) 

and a correspondence 

F(y) ~ conu{ms 'SE L(y) ) . 

F'or every y set T = {i: (n + l )y; ~ !} . Then 17(y) E ó.T. By (20) t hcrc exist.s u coalhion 

S C T such that 11(y) E C5 , and S C T implics Lhat L{y) is not empty. The upper­

hemicontinuity of F fo l\ows from thc continuity of '1 a.nd 1he closedness of cnch C5 . F may 

a.ssume at most 22" distinct vnlues. lf y E 6.T then {1: (n + !)y; ;::: 1) C T so that S C T 
whenever SE L(y). Menee ms E ó.T and thus F (y ) e c..r. If y~ t:::. 1 then (11 + l}y, < \ for 
a1. Jeast one index i. Hence i ~ S if Se L(y) , and mN t F(y) . 

Observe t hat the collection Bis balancee! if nnd on ly if rnN E co1w{ms : SE 5) . Th(' 
KKMS Theorem follows immed iatcly from this obscrvation, T heorem 3.'I , ruid Proposit ion 

l. In fact , let mN E F(y) and consider thc coltect.ion 8 = L(y). Then 11(y ) E nscoc5 o.ud 

mN E conv{ms: SE 8}. 

Stronger rcsu lts nbout coveriugs (such as Theorem 3.3) will follow from topological 

theorems on closed coverings t hat are refinemcnts oí Theorem 3.'I . T he conclusions (24) and 

(25) will be used as well. 

4 Topological Methods 

Let O be a boundcd open subset of R"' (whilc thc theor;• may be extended to uuboundL'<i sctf, 

we need only thc bounclcd case) and let. f be a cont inuous function mnpping n (the cloeure 

of O) into R'". We say that f is a piecewue linear mapping if t hcre exists a finltc fo.mlly 

{Pi,, }1<eK of hypcrplnnes such that for cve.ry :t E n \ Ul:e KP,. t hcrc cxists a ncighborhood U 

of x, a matrix A nnd a point b E R'" with /(y)= Av+ b fo r ali y E U. Thc hyperplanes P .. 

decomposc n to open connected subdomai ns 0 1 , • • • , o,. (Observe that A ruid b are conat&nl 

on every n,.) Lct p be n point which is contained neitber in thc image of the boundary of O, 

nor of nny 111- I-d imensionnl set O n Pic : p 't / (80) u l:i: K /(O n P .. ). (Note thnt V ~ 80, for 
all J ~ i ~ j, nnd if thc matrix A rcpresenting f is singul&T in 01 , thcn p 't / (O; .) Dcnot~ 

by n(p, f , n) thc numbcr of sets / (O , ) contain ing p. 

P roposition 2. Lct p,</ E R'" , ¡1, q '/. / (80) Ul:eK /(O n P .. ), such t ha.t p and q 111ay be 

• 

• 
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pncod by a potygona.I hne l\Ot intcnK.'Cting / (80). Thcn 

n(p,/, íl) = n(q, / , íl) mod 2. (27) 

Proof. \\'t may aaume, without \088 of gcnerality, thnt t he sets /(O,) are open for nll 

1 ~ 1 ~ J (1 t, tht matrices rcprcscnti ng f 011 n, nre nll regular). ln fact. , given p and 

9, 1hnr r:xwu a J>M!ttWlle Bnear fouctiou /' mapping (l t.o Rm such tbat (1) t.he matrices 

tf'Pf9l'Olln& f oo O, att ali regular ; (2) for cvcry i , 11 E /' (O, ) if and only if p E /(O;), o.nd 

t l f'(O,) ,¡ ud only q e /(íl;). Then n(p,/,íl) = n(p, /', íl) and n(q./, íl) = n(q,/',íl) , 

*' 1ha1u1u.ff'Jc.-8 to provc (27) for f' . 
h f<lllawt lhll •'T may join p nud q by a polygonal tine f such that I intersects every m-l­

d1mtnMot1lhl'1 / (P.,nO) m a finltc numbcr of points o.nd if k 7' k' then tnf(P1cnP,.,nn) = 0. 
In parllrul&t PO poant off ia con lnincd ii1 thc imagc of more than onc hyperplane P,.. Thc 

"llJ1Jto(tM i.Dtegn n(:r,/,O} may chango, as x moves along l form p to q, only if x crosscs nn 

1Tt-l ·d1111tnihoaa1 ~ /{ ) wherc se 80; for SOll\C i . Observe that by assumption s 't- an. 
l!rtk... 11 lbt C'OmlOOll boundary OÍ precisely two m dimensional domains fl; aud fl;,. J f 

/ (íl, )n / (O, )• 0 thtn n(x, / ,íl) is 1111cho.nged when x cr06SCS /{S). lf / {íl, ) n /(fl;,) '#- 0 
lhrn n(z. / ,O) ch&ng by 2. In c ithcr cose, thc panty of n(z,/,O) remains fixcd. 

lf p 1 /l81l> thf'll p 111 in thc closure of the set of poinls q for which n(q, / ,O) is well 

llrfülf'I. and tlw rmedut ci8.SI mod 2 (thc parity) of u(q, / , O) is constant near p. We denote 

tMt te111d1Jf' d .. by d(p,/,O), nnd cnll it the degree {mod t) o/ f at p relative to fl . We 

'lr1ll 1!i<1)0lt tbt rtllidut cl&sa of the eveu intcgers by O, a.nd the class or odd int.egers by 1. 

WI' now ~ 1he bchavior of thc dcgrce when f is deformed . 

Propotltlon 3. Lt1 /,(r) be 8 continuous map of n X ¡o, 1) inlO Rm . Let { P,, }ke K be a 

ftnllto Íllmly of ~lml auch that / 1(x) is a piecewise linear mapping with respect to 

•h• fam\ly lor - te ¡o, q. lf p ~ u,.¡o.11 f< (8íl), thcn d(p, /o)= d(p, ti). 

Proof, Co..der lira an arbitrar}' piccewise linear map g of {2 ru1d a point q E nm s uch 

lhl.t q 1 g{81l Uf(UtEKpl n íl). lf q E g(i1), thcn q E g(O;) where 0, onc of the open 

C011nttt«f 1qb-docnam,, 111 the dccomposition of O by thc planes P4 • Let g(:t) = Ax+ b for 
1 E 01 •b-ft A • • niguW m&trix o.nd b E R"' . lf g' is a.:nother piece'9.'Íse li near mo.pping 

otn lnto R"' ... lba.t g'(x). A':c + ll for x near z = g - 1 (q) nn., where A' is regular ru1d 
~ER"' , lbaa 

(A'¡-'(t - 6' ) • A- 1(q - b) + [(A'¡ - 1 - A- ' J(q - b') + A- 1(b - b') = (28) 

f + j(A')- 1 - A- 1J(q - b' ) + A- ' (b- b') . 
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H ma:x,.,enlg(x) - g'(:z:)j is t1ufficienlly smeJ I, t.hen bot.h IJ(A' )- 1 - A- 1 11 and Jb - b'j lln! 

sma.11, so tho.t (A')- 1 (q - b1) is sufficic.nt ly cl06e to Z. Hence n(q, g, O) = n(q, g' , O). 

It follows from the continuity of j, t.hst. if q E R"' is not. conto.incd in / 10 (80) U 

/ 10 (U1reKP .. nl1) then there exists a positive e such thst n(q, /, , O) is wcll defincd lflt - t0 / < t , 

and n (q, / 1, 0) = n(q,/10 ,n) for those values of t . t.ct to E [O, Ij be o.rbitra.ry. Thc11 

d(p, / 10, 0) = d(q,J10 ,0) = n{q.f10, 0 ) mod 2 for al i q near p for wh ich q is notcont.ained In 

J10{80)uJ10(U1reKP1rnn). It fo llows from Proposition 2 th8t. for cach t such thM lt - t0j < <, 

d(q, Ji. O) is independent of q. Hence d(p , /,,O)= d(p, /10, O) if Jt- tol <c. Tho COlnpAClncm 

of (O, !( ;mph"" thnt d(p.fo.í!) ~ d(p, ¡,,O). 

We can now define the mod 2 degree for a general contirmous functiou / : () - Ir" 

and a point pi /(80): \et g be a piecewise linear mappi ng of ri such that. lg(:r} - / (:r)I < 
dist(p , /(80)) for ali x en. If 91 Md !/2 are two such msppings, theu Prop06ition 3 írnplles 

th a t. d(p , 91,0) = d(p,92 ,0). Hence d(p,g ,O) is the same for o.11 such mnppings g, IUld"" 

set d(p, J, O) to be this common value. 

Example: Consider the fuuction / (x) = :t2 with O= (- 1,2). Then / (IJfl) = {1 , 4) 

C learly, d(p, J, O) vanishes if p < 1 a.s p i /(O ) i ( p < O, a.nd therc a.re two solutions lo lhc 

equation J(:z:) = p for p E (O, l) . The degree is not defined for 1' = 1, nnd d(111 / ,0) • 1 

if pe (1, 4), reRccting the unique solvability t here. lf p > 4 t.here is no liQlut.ion in n and 

d(p, / ,O)= O. T he reader muy wish to illustrate t.he proof oí Proposition 2 by considcring 

the (geometrical!y simi lar) piecewise linear map J defined on ñ by f( :z:) = -:t íor .:z: E /- 1,0j 

aud /(.:z:) = 2x fo r :z: E (0,2/. 

The ha.sic propcrties of the degrce are summariz.ed in the following th eorcrn: 

Theorem 4. 1 Let n be a bounded open .sub,,ct o/ R"' , / a continuow /unctfrm mapping t'l 
into Rm . Thcn 

(/) d(p, I , O) = 1 if I is lhe idenlily map o/ O and p E O. 

(//) lf f 1(x) is a continuoW" map of 0 X fO , lj mto Rm and p 'l. Uic;(o.q /1(80) (O $ t S 1), 
tli~ d(p, Ji. 11) is indepcndcut oJ t E [0 , I j. 

( Ill) IJ {11, H. 1 are pairwise dirjoint open 8ub.set o/ O .tudi tliat / (x) "f:. p wheneucr :r E 
s"l\n7., 111,, th cn . 

d(p,f ,0 ) = ¿: d(p, / ,O.). (29) ,., 
(1 V) 1/ p and q may be joú1ed bv a polygonal fine nor rnt.e.r.so:trng / (8fl), tlicri d(p1 ¡ ,O) • 
d(q,f, O) . 



Y&brKannaj 

(V) i/d(p, / ,O)• l lil<np E /(O). 

Proof. Tbe llAl~U (J), (II), (111), and (IV) follow at once from t be definitions and the 

prtttdinl ~lioru lf f (or J.) aro piecewise linear, and in the general ca.se by a s imple 

ll?JlfOltbnAlioo arpmcm. 1b prove (V), note that d(p,/, 0) is defined only if p r/.. /(80). 
1f \n addilloa p 1. / (O), then diat.(p, / (0) > O. Jf /' is a suffi.cient ly close piecewise linear 

.pprc.lma110D o1 f on '1, thcn dist(p, /'(Í!) > O as well. T hus n(p, /',O) = O so that 

d(pJ, O) •O. Henoe d(p, / ,O) • O, contradicting the assumption. 

R111nark: lt d pcmiblc lo construct , with a little more effort , an int.eger valued degree. 

TIMt mod 2 dtgrtt ruffioes for our purposes. 

Thc! lhtory de-."tloped 90 far is sufficiently strong for many applications, including e.g. 

fllt«e.m 3 1 & 1t:nstons for convcx valued correspondences are well k:nown. ln fact , they are 

ll .utd Ultnu~Y m thc book [7]. Dcgrcc theory for convex va.lued correspondences suffice 

kit prO'lln¡ retulu auch M T hoorems 2. 1, 3.2, and 3.11. lt appears that a natural context for 

tiudyln¡ ~ Ul\1>lvm¡ partnered collections is degree theory for certain classes of non­

~ valurd rorretpondcncee. Such theories wcre constructed long ago and are well known 

'° 1tM- lniti&ltd. but they ne\•cr beco.me very popular with the mas.ses. 

Wr ut CIOll' png lO describe how to extend degree theory to a simple clase of non­

ton"T:X valued a:ntspondcnccs, nnmely to corrcspondences whose \'&.lues are compact and 

h:llllractlbR Rrnll tbat "subset A of R"' ii:i cor~troctible if for e\'Ct)' point a E A there exists 

• ctnh11110U1 m&p j 1(.t:) of A x [O, l] int.o A such that / 0(:r.) =a and / 1(z) := x. (Cleo.rly, ali 
CUl'IO: IC!t Mt' a:mlractiblc; more genornlly, star-sho.ped sets are contract.iblo.) The crucial 

lf'C'h.nlcal ll~ l.11 tbe cxmstruction of degrce is a lcmma (P roposit ion 4 below) which ennbtcs 

•pprcrimn.iatiac lht gn.ph of a correspondence by thc graph of a single \'8.lued continuous 
func1lon 

!.et O bu bounded open subsot. of H"' . A corrcspondence F defined on ñ whose values 

tu"ti tompact «*net.lble subeets oí R"' is admiJ.,ible if 1) F is upper-hemicontinuous and 
2) fur ""Y« > O tbtre cxists o continuous single-vnlued funct ion / e : O - R'" such tho.t 

Q mty .t En thim exllt .t:, E 0 and y E F{x, ) with lx - x,[2 + l/ (x) - yj2 < t:2. In other 

wio.oci., C(flC 8,(C(F)) "'•hcre for cvery Y e Rk we set B,(Y) = Ut'El' {:r; : lx - yl < t:}. 

Ld f be adaulsiblc, Md set F(80 ) = UzEenF(x). Note that 80 is compact . The 
11PPft·be.1IUCWl:l!ml>ty of F' implica that F(80) is c\osed (actually compact) . lf p 't. F(OO) 
tbt>n dnt(.p, 1'{80)) • p > O. Let. f be n s ingle vslucd continuous function from O into 

R"' 1111ch C{/) e B,¡2(G(F)). We set d(p, F, O) = d(p, / , O). lt follows from Theorem 
l 1(11) l~a .,,,F.O)" .. -cu dc.fined far l\dmissible corrcspondc.nces. Moreovcr, the basic 

rtaputie ol Üit dqrtic carry ovcr. 
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Tbcorem 4.2 let n be a bounded open sub.tet o/ Ir", F an admiasibfe conupondono:. 

defin.o:i on (! whose values are compact controctibfe subset.t o/ R'". Then 

(1) d(p, 1, O) = l i/ I ia the identity map o/ O ond p E n. 

( //) lj F,(z) is a upper-liemicont1nuou.! map o/ n X (O, l ] w/10.te vofuu are compact con· 

truclible subsets of Rm sucl1 tliat for mch t E [O, IJ F1 i.s admi.uible, and p ~ U1e1o.ijF1(8íl) 
(O$ t S: 1), tJ1en d(p, F1,0) is independent o/ I E fO, I j. 

{TI!) lf {Oi}f,,. 1 are painuise di3joint open sub.!et o/ O such tlrnt p t. F(x) wheneuer z e 
ñ \nf,. 10;, then 

' 
d(p, F, fl) ~ L d(p, F, fl,) . (30) 

(IV) lf p and q may be joined by a polygonal line not intersecling F(EJn), theri d(p, F, íl) • 
d(q, F,fl). 

( V) lf d(p, F, O)= 1 t/1e11 tf1ere exist.5 x E íl .m ch that p E F(x). 

Proof. The sto.tcments (l), (111), and (fV), follow at once from thc dcRuition of dcgrtt 
íor admissible correspondcnccs 1111d from thc re\evant parLs of Theorcrn '1 . l . Fbr provmg 

statemcnt (11 ) an 11dditional simple compactness argument is rcquired o.s wcl\. Tu provc (V), 
note that ifp ;t F(80) and d(p,F,0) = 1 thcn there exists a sequencc {fn) ofcontlnuoll$ 

single-valued functions from ñ to nm such that p 'f. /n(lJO), d(p,f,,,O) = l, nnd G(/n ) e 
8 1¡n(G(F)). By Thcorcm '1.l(V) tl1erc axists a sequence {xn} such that x ., E íl and 

fn(Xn) = p far cvery n. Wc may assume, by compa.ctness of 0:, that :en - f E 1"2 . Moroovcr, 

for every n there exists (x~.,y .. ) E G(F) such that lxn - :c ~l 2 + IYn - pj 2 < l / 11 . Then 

x~ .- i, y., -+ p, and p E F(i) by uppcr- hcmicontinuit\}' of F. By o.ssumption p 'f. F(OO). 
Hencc i E O. 

In thc rcst of this pnpers o.t i functions and correspondences will be dcfincd on subscu 

oí the n-1-dimensional hypcrplanc H e R" affinely generatcd by !1. This hypcrplnne ~ 

affinely equivalent to R"- 1 ao that the preceding thoory applies (with m = n - 1 ). Wc c¡uote 

now without proof the following Lemma (a special case oí a more general reault esto.bHshcd 

in (8]; the simpler convcx CMC mny be íound in the book !7J). 

Proposition -4. (Approximation Lemma}: Let F be an uppcr-hcmicontinuoua corrcspon· 

dcnce dcfincd in l1 such thnt fo r cvcry ¡¡ E l1 , F (11) is 8 contractiblc nnd compoct subsct of 

fl . Thcn for cvcry <: > O therc cxists a continuous single- ,'B.lued !unction f - Ji such that 

G(/) e B,(G(F)). 

Thus, if F sutisfics thc nssurnptions of Proporltion 4, thcu F is an lldrnisslbtc corre-

• 
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'"°""""' 1or """!ne fo1(t.). 

1'b lllt11t1a1t how tbe pt«Cdlng theory may be applied, we preve tbe following fixed 

poln1 theortm, a spec:i&I case of the Eilenberg-Montgomery fixed point Theorem: 

243 

Thtorom 4.S Lt.1 F be an upper-hcmfoontinuow corrupondence defined in A such that 

for n't'J} v E ó F(~} u o amtrnctiblc and compact subset o/ 6 . Thtn there crista a point 

z E 6 .ucA Mol z e F(:t) . 

Proof. Wc may ILS!umc Lh&.t. x ~ F(x) for every x E 86. Set F1(x) = :i - tF(x) + tmN 

fw I E (O, ti (it.., F, (x) • {11 : 3: E F1(:z:) such that y= :z: - t.:+ tm.v }). By assumption, 

m,v t .C'1(8L\). Momr."e.r, if t < 1 nnd :z: E 8A then :z:¡ = O for sorne i E N a:nd for every 

' E F(i) q ha'"C ~· 2:: O. Meneo x; - ty; + t < ~'so that x - tF(x) + tmN cannot be cqunl 
to rnr1 Thus Fi (z) satisRcs n.11 nssumptions of Theorem 4.2( II) so lhal d(mN, F1 , int(6)) = 

d(nw,F0, m1(A )). But F0(:r:) = x, and by Theorem 4.2(1) d(mN , Fo, int(A)) = 1, so that 

d(ni,v, F1, 111l(O.)) • l. lfo.ncc d(mN,X - F(:z:) + mN , int(A)) = 1, and by Theorem 4.2(V) 

d1trtl cxblu a polnt z E mt(A) with mN Ex - F(x) + mN or :t E F(x). • 

\'{, obtaht u specilll Cl\SCS the Rxod point theorems of Kakutani {i f F is convex valued) 

Alltl of Brouwa (lf F is ainglc-valucd). 

Tht folOnn.g fonnulation of thc Brouwcr fixed point theorem is useful for many appli~ 

eailona 

'l'htorcun 4.4 k1 K be a l.opological space l1omeomorphic to a simplet A C R", and let f 
k 1 coni111~ (•tllfk:·oolucd) mapping o/ K into itself. Then there exist.s a point x E K 

.. til , • / (<). 

Proor. ~ lt ~ - K be tho homeomorphism map, i.e., h is one-one onto and h- 1 is 

('Onllnucna. Dtfine j : l!i. - 6 by j(x) = 11 - 1(!(/i (:t))). Then i is a conlinuous (single­

.,,hi«I) mAPPQ& of ll into it9olf. A8 su ch, ~hore exists a point y E 6 su ch that y = i(y) or 

~ . h" 1(/(l(J)J). """" h(>) = /(h(y)) . 

ln pltl1CÜW , e\'tt)' continuous solf~map of a compact conve.x subset of R" has a fixed 

poln' 
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5 Main Results 

We begin by refining the ooncept of balancedness. We say that the collection 8 of subsets 
of Nis strictly balanced if ali weights ),,5 in (15) can be chosen to be positive. lt is easy to 

show that a strictly balanced collection of sets is partnered. 

Proposition 5. Let B be a strictly bala.nced family of subsets of N. Then Bis partnered. 

Proof. Suppose that 8 is strictly balanced but not partnered. Then there exists i,j EN 

su ch that for ali S E 8 with i E S it holds that j E S, but there exists T E 8 with 

j ET, i í T. Let {ws: SE B} denote a setof strictly positive bala.ncing weights for B. Since 

the weightsws on ali the sets in 8 are strictly positive, Es: ;esWs < Es:;esWS =l. This 
is a contradiction. 

Note that there exist partnered collections (even minimally partnered) which are bal· 

anced , but not strictly balanced ([5]). 

We can now formulate a strengthening of Theorem 2.2. 

Theorem 5.1 Let (N, V) be a balanced game satisfying (18). Then there is a pvint y in 

the core whose collection o/ supporting coalitions S(y) = {S C N : y E V(S)} is strictly 

balanced. 

Theorem 5.1 follows in turn form the following strengthening of Theorem 3.3a: 

Theorem 5.2 Let {C5 : S e N} be a family o/ closed subsets o/ t::.. such that (20) i.f 

satisfied. Then there exists x Et::.. such that the supporting collection S(x) = {S : x e C5 } 

is strictly balanced. 

Proof of Theorem 5.1. Set e;= - nMe; for i EN, and define the simplex ¿s to be the 

convex hull of {e;};eS· The linear function h(x) = Lx;e; maps t::.. 5 homeomorphically onto 

6.5 . Set 
(31) 

By (7) and (18) the supremum in (3 1) is finite and is actually a maximum, and defines 
a continuous function oí x E RN. Set now 

(32) 

The sets Cs a.re closed by continuity of t and (6) . We want to show that (20) is satisfied (for 

CT=h-1(6T)). Letxe65 n6.T. WewillshowthatSCT. (Fora.ll xEÓTthcreexists 

• 
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Al least one Se N such that x E cs. Hence (20) follows.) If T = N there is nothing to 
provc; we may assume therefore that T #- N . Since x E f:. T we have x; 5 - nM /IT I < - M 
for at least one JE S. Tuking S = {j} in (31) we obtain 

t(x) > M (33) 

Combining (33) with (18), we find that x; < O for ali i E S. On the other hand, x E f:.T 

itllplies X;= o for i t T. Hence se T . 

lt follO'i\'8 from T heorem 5.2 thnt there exists a point x E D.N such that the supporting 

oollection S(x) = {S : x E es} is strictly balanced. However S(x) = {S : h(x) E Cs}. 
ll follOY.'8 that the point y= h(x) + t(h(x))(l , ·· ·,l) belongs to nsesV(S), but not to 

UscNint V(S). By {17), y E V(N ). Hence y is in the core, and the collection supporting 

v isstrictly baJa.nced. 

Note that Scarf's theorem (Theorem 2.1) about t he non-empt iness of t he core without 

the boundedness assumpt ion (18) follows from the existence statements of Theorems 5.1 or 

2 2 by a snnple limiting nrgument utilizing (13), see for example [4]. 

To complete the proof of Theorem 5.1, we have to prove T heorern 5.2. The latter 

Theorem follows from the following variant of Theorem 3.4: 

Thcorem 5.3 Let F(x) be a correspondence from D. into the closed convex subsets o/ D. 

'uch that F 3atufie3 (21) and (22) . Assume in additiou that F satisfies (25). Tlien there 
en.tU .z E ó mch that mN E rel int(F(x )) . 

{1h u..!uai, rei mt(K) means the interior o/ K in the affine submanifold spanned by K .) 

Proor oí Theorem 5.2. Let F be the map whose existence is stated in Proposition l. In 

¡m.rticular F satisfies the conditiorn1 (21) , (22), and (25). By T heorem 5.3 there exists y E D. 

1uch thM m,o¡ e re/ int(F(y)), and by (23) a:nd (24) there exists x E D. (x = ~- 1 (y)) such 

that 

mN E rel int[conv{ms: X E C5 }j. (34) 

Clearly, I: = {S : X E es} is balanced. Moreover, it is strictly balanced. In foct, !et 

SE I:, S f:. N (without \oss of generality, E # {N}) and Jet ls denote the line joining mN 

and m5 . Then mN is contained in the inter ior of the interval f.s n conv{ ms} se E· Hencc 

thcre exisb an as E con v{ms}seE and positive numbers as ,/35 such that as+ f3s = 1 
and mN = osms + /Jsas. We may average these equntions with positive weights over 

S E E. ;. N and obtain mN as a convcx combinntion of the points ms, S E E, with 

11011it1\-e "-etght.s for each S 1:- N. • 
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Proof of Theorem 5.3. Note first that if y is not in the relative interior of a convex set K, 
t hen removing an open ball B(y, ó) of radius ó centered at y from K results in a nonempty 

closed contractible set as long asó > O is sufficiently small. It follows from (21 ) aud (25) 
that if mN E rel int(F(x)) forno x E .O.. , then there exists a ó > O such that F(x)\B(mN ,ó) 
is nonempty and contractible for ali x E 6. . Moreover t he openness of B(mN,ó) implics that 

the correspondence x--+ G(x) = F(x)\B(mN,Ó) is upper-hemicontinuous. For any t E [O, 1/ 
and x E ó., set C1(x) = tx + (1 - t)G(x). If x E 8ó. t hen x E ó.T where T is a propcr 

subset of N and G(x) C F (x) e ó.T. Hence mN t. Gr(x) if x E {)t:J., and G1(x) satisfics the 
conditions of Theorem 4.2(11) , so that d(mN ,G1, int(A)) is independent of t. But Theorem 

4.2(1) implies that d(mN,G1 ,int(A)) = d(mN,l,int(A)) =l. By Theorem 4.2(V) there 

exists a point x E int(A) such that mN E G(x) = F(x)\B(mN,<5) , a contradiction. 

Remark: Theorem 3.4 may be proved by a simi lar (actually a direct) degrce argumcnt, 

establishing that d(mN, F, int{A)) = l. In fact , the same method proves that Theorem 3.4 

continues to hold if we assume only that the values of F(x) are contractible, rather than 

For minimal partnership we have the following family ofresults. The topological concept 
of zero dimension is useful here. Recall that a topological space X has dimensiart zero if for 

every p E X there is an arbltrarily small open set with empty boundaries contain ing p. lt 

is well known {cf. [3], p. 147) that among compact spaces the zero-dimensional spaces and 
the totally disconnected spaces are identicaL 

Tbeorem 5 .4 Let F(x) be a correspondence from A into the closed convex subsets o/ 6 
satisfying (21), (22), and (25). Assume also that: 

The closure of the set {x: mN E rel int(F(x))} is zcro- dimensional. (35) 

Then there exists x E A such that F(x) haJ non-empty (n -1) -dime1isional interior and 

mN E int(F(x)). 

( By 'fot" we mean the "interior in the topology on the hyperplane H ".) 

Proof. Denote by X the closure of the set {x : mN E rel int(F(x))}. By a.s.sumption , X 
is zero-dimensional. This means that for every é > O, the set X may be covered by a finite 
number of disjoint open sets whose diameter is less than e. Let (D;,..,}f,;1 denote Juch a 

collection of sets with diam (D;,m) < ;!¡ , X~ u;,,.¡D, ,m and D, ,.,. n Dj,rn = 0 fo r i :f. J · 

Then D;.,,, n X is both open and closed in X, so that 8D,,m n X = 0. 

With J as in the proof of Theorem 5.3, set J (x) = min[dist(x, X), J], and define an 
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upper-hemioontinuous correspondence G by 

G(x) = F(x)\B(mN,ó(x)). (36) 

Then m,v ~ G(x) if x f. X. A similar aq,rument to the one used in the proof oí Theorem 5.3 

enables us to infer frorn (22) that 

d(G,int(t.),mN) =l. (37) 

By «>Mtruction, lllN '/.. G(y) for ali y E 8Di,m. l :::; i :::; Pm. Note also that by Proposit ion 

I, C(x), defines over any open subset of int(.ó.), is admissible. Hence d(G, D;,,,.,mN) is well 

dcfined and 
P, 

Ld(G,D,,.,.,mN) = d(G,int(t.),m.N)· (38) 
i :::t 

ll follows from (38) and (37) that there exists i0 io(m) such t hat 

d(G, D19¡m).rn• fflN) #- O. By compactness there exists X E X and a sequence D ;o(m),m 

of neighborhoods (with D io(m),1r1 n X compact) such that X = n:"= 1 D;0 (m ),m· For each 

m, d(G, D .. ¡,,,),m• fllN) #-O imp!ies the existence of an (n-1)-dimensional ball Bm, centered 

Rt "'N, such that 

(39) 

Set .!l, =e' - nlN, l S i S n. Fix for a moment !!; for a.i1 index l S j :::; n. By (25) 
there exi!Jts a positive number Ój such that i f mN + 'ª-i E F(y) for a certain y E .ó. and a 

poe:itl\-e.c(nomatter how small) t then rnN +Ój .!!j E F (y). By (39) t here exists a sequence xm 

convtrging to i anda sequence of positive real numbers Em such that ffiN + Ójf!j E F (x"') . 

By the upper-he.micontinuity mN + Ój.!!j E F(i). The convexity of F(X) a.nd the spa.nning 

property oí g1, ···•º-n imply that mN is au interior point of F(X). 

Theorem 5.4 implies the following rcsu\t about closed covering. 

Theorem 5.S Let {es : S C N} be a family of closed subsets of .ó. such that {20) is 
sat1Jfitd . .A.uumt that tht closure o/ the set 

{x: {S : x E es } is strictly balanced} 

.., zero-dzmen.nonal. Then there exists x E .ó. such that the collection {S : x E es} is 

m1mmally portntred and stricUy balanced. 

Proo(. Let Fbe. the map whose existence isstated in Proposition l . Note in particular that 

F' SAtl!fies (22}, and the assumptions imply that (35) is satisfied as wel\. Hence there exists 

(by Theort:m S.4) x E 6 such that mN E int(D(x)) [where D(x) = conv(ms : x E e 5)] . If 
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E= {S: x E C 5} is not minimally partnered, then there exists a pair i,j such that for every 
SE E either i and j both belong to S, or neither belongs. Hence for ali y E D(x), y¡= y1 . 

Thus int(D(x)) is em pty, a contradiction. 

Comparing the assumptions of Theorem 5.5 with those of Reny and Wooders (1998) 
(Theorem 3.3b above), it appears that neither is stronger than the other. On the one hand a 

countable set (as assumed in Theorem 3.3b) may be dense and hence ha ve el os u re of positive 
di mension; on the other hand , a set of dimension zero (as assumed in Theorem 5.5) may 

be uncountable (for example, a Cantor set on a line). Examples are provided in [5/. The 

following is a generalization of Theorem 3.3b. 

Theorem 5.6 Let { C 5 : S e N } be a famiiy of closed subsets o/ !J. such that (20) i& 

satisfied. !/ the set {x º E !J. : S (x º ) is balanced and partn ered} is zero dimensional, then 

at least one xº E !J. renders S(xº) sfrictly balanced and minimally partnered. Moreovtr, 

mN E int [conv{ms}ses(:r•¡]. 

The proof of Theorem 5.6 involves ideas found in the previous proofs as well os essential 
refinements (see [5)) , and will not be reproduced here. 

Theorems 5.5 and 5.6 induce theorems on the set of minimally partnered core outcomes 

of games, in the same manner as Theorem 5. 1 was derived from Theorem 5.2. In particular, 
the results of [11] may be re-derived and refined. That sorne care is needed may be seen by 
an example (constructed in [5]) of a 12 players game (a ma.rriage and adoption game) whose 

partnered core is homeomorphic to the Cantor set. 

6 Other Applications 

\Ve mention briefiy severa] applications of the theory and the methods outlined in previous 

sections. 

1) Cooperative gamc theory infiuenced , and was influenced by, the theory of market 

equilibrium. A distribution of resources is in the con: of an economy if no individ ual (and no 
group) may achieve, acting on her (their) own, preferable results for herself (its members). 

Sometimes acore distribution is associated with a price system. Existence can be established 
using fixed point methods sim ilar to those expounded hcre [9J . 

2) As explained in the introduction, a natural requi rement from a theory is that the 

predicted outcome(s) are suffi cicntly stable so that once such an outcome has been reached , 
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110 Individual could gain more by making a different choice. This applies to nou-cooperative 

game5 ss well, &nd lcads to the celebrated conccpt of Nash equilibrium point- a concept 
that has become very popular recent!y [l]. Here ear.h participant 's stro.tegy is the "best 
rl'!lpon!e" to the others' choices of strategies. Existence of Nn.sh equilibrio. is obtuined from 
ihr Brouwer fixed point theorem, or, more transparently, from the Kakutani fixed point 

theorem l2J, [9j. 

J) lf d(p, J, O) = 1 (as is the ca.se in ali applications discussed here and in the rest of the 
prMCnt paper), than it seems plausible that for "typical" f and p, the number of solutions 

of 1he equation j (:r.) =pin íl is odd. Th\s intuition leads to genericity results. 

•I) One of the few instances in which integer valued degree (ro.ther than mod 2) is 

rtquircd, is in the proof of the fundamental theorem of algebra [3J. 

5) F'1xed pomt theory and degree t heory mu.y be extended to certain families of functions 
drli.ned on mfinite dimensional spaces. The theory provides existence theorems for ordinary 
and part1al differential equations \6] , [7] . Degree theory enables "counting" the nurnber of 

110lutions 111 many cases. 
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