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Anstract. In the following paper, we present a brief survey of the manner in which
topological methods (such as fixed point theory) are utilized to prove existence of
variows outeomes for certain classes of NTU cooperative games.

1 Introduction

Game theory has been defined [10] as “the study of mathematical models of conflict and
cooperation between intelligent rational decision makers”. In the theory of cooperative
gumes it is assumed that the participants (players) may form groups (coalitions) who can
achieve various outcomes, and that the players may reach binding agreements about how
to share the spoils. Thus, in a free market, a seller and a buyer reach an agreement about
the price and quantity of goods lied; in a multi-party parli y system, one may
regard each political party as a player. In the former case we are faced with a two players
(0r two- person) game, whereas in the second case we have n players (n equals to the number
of parties) and the number of possible coalitions may be large.

A natural requirement from a theory is that the predicted outcome(s) are sufficiently
stable 5o that once such an outcome has been reached, no individual and no coalition could
fain more by going their own ways. A moment’s reflection show that if according to the
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rules of a three-person game any coalition of two or more players may get the entire cake,
then no agreement can be stable: if z;,z2,z3 denote the fraction of cake promised to the
individual players, then the inequalities z; +z2 > 1, z;+z3 > 1,z2+ 3 > 1 (no two-person
coalition may improve) are i ible with the i )y + T2 + 3 < 1 (the cake
is too small). The notion that no non-empty coalition can improve is formalized by the
concept of “core” — see Section 2.

In most cases, the particip I i the same — one person’s
satisfaction with a piece of cake of size a is in general a function of a, peculiar to that person.
The power of a government is hardly a scalar, and while one political party may have security
and foreign affairs high on its agenda, another may be mostly interested in socio-economic
issues. Situations like these are best modeled by associating with each coalition S a set
V/(S) of vectors whose components represent the payoffs available to members of S. In the
3-person case mentioned earlier we may associate with each coalition S C {1,2,3}, with §
containing at least two players, the set V(S) = {z € R*: 3, g a; < 1}. (We have inequality
rather than equality because players may throw away freely some of the cake.) The general
case, where the sets V(S) are not half-spaces, is called NTU (non transferable utility)
(Sometimes such a game is called an n-person game without side payments.) Topological
methods are required to study the NTU case — linear programming and related methods
do not suffice.

Another natural property of a solution concept is that it admits no “asymmetric depen-
dencies”. A solution displays an asymmetric dependency if one player needs the presence of
a second player to realize his payoff (in the solution), but the second player does not need the
presence of the first. In such a case the first player's position is vulnerable. Consider a two-
persons divide the cake game. Any division giving the entire cake to one player displays an
asymmetric dependency; the player receiving the cake is dependent on the player receiving
nothing, whereas the player receiving nothing does not have to join the two-person coalition
in order to receive her part of the payoff. On the other hand it is impossible to achieve a
division giving a positive amount to each player unless both of them join the coalition —
there is no asymmetric dependence and the players are partnered. If a solution payoff is not
partnered, there is an opportunity for one player to demand a larger share of the cake from
the other player; a payoff that is not partnered exhibits a potential for instability.

A combinatorial concept of partnership will be made precise in Section 2, where the
concept of partnered payoffs will be defined as well.

The main purpose of this survey is to present a result about existence of outcomes that
cannot be improved upon and admit no asymmetric dependency (i.e., that the partnered
core is non-empty). This result, due to Reny and Wooders [11], will be stated precisely and
proved in Section 5, besides some more refined results. We will derive game-theoretic results
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from theorems about closed ings of simpl Those th have a long history.
The famous Knlna-Kurmwakthurkmw:cz (KKM) Theorem, which states that under
certaln conditions a family of subsets of the simplex has a non-empty intersection, has a
aumber of applications in Game Theory (see (2]). The first proof of the non-emptiness of
the core (under suitable assumptions; in general the core may be empty, as in the 3-person
game exhibited above) of NTU games was given by Scarf in [13]. The topological nature
of the proof is evident and was further elucidated in [14], see also [4] and [15]. In fact,
» generalization (KKMS theorem) by Scarf [13] and Shapley [14] of the KKM Theorem is

| in proving i of the core of NTU games. A further extension by
Reny and Wooders [12] looms in the background of their study of partnered cores. Our
method involves further extensions of the KKMS theorem (Kannai and Wooders [5]). The
relations between the Brouwer fixed point theorem, Sperner’s lemma and the KKM and
KKMS theorems are well established (2], [4], and iness of the partnered core seems
1o be related to topological degree theory [5).

Game theoretic concepts are introduced formally in Section 2. Closed coverings and
their relations to multi-valued functions (cor d ) are di: d in Section 3. We
describe in Section 4 the simplest degree theory, namely the mod 2 degree theory. (I barely
resisted the temptation to call this paper “A crash course in degree theory”.) It turns
out that this suffices to re-derive all the main results on generalized KKMS theorems and
(refined) partnered cores. The topological theorems are proved and applied to game theory
in Section 5. Here we follow mainly (5]. Further applications are mentioned briefly in Section
6.

2 Cooperative Games

Let N = {1,2,--- n} be the set of all players. A subset of N is called a coalition. An
outcome of the game (a payoff vector) is simply an n-dimensional vector x = (2, +,ap);
the intuitive meaning is that the i-th player “receives” z,.

In the simplest case (transferable utility) the players may transfer “payments” among

oach other, and the game is given by means of a characteristic function (or a worth function),
which s simply & real-valued function v defined on the coalitions, such that

v(0) =0. (1)
Usually one requires that a payoff vector satisfies (at least) the following conditions:
n
Z z; = v(N) (2)
i=1

e
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(individual rationalit, The dition (2) incorporates both the requirement that the
members of the grand coalition N can actually achieve the outcome z (E]L,z; < u(N) -
feasibility) and cannot achieve more (Sf.,z; > v(N) - Pareto-optimality). The condition
(3) means that no individual can achieve more than the amount allocated to him as a pay-off.
Note that individual rationality and feasibility are not necessarily compatible; clearly

> u({ih) < (V) )
i=1
is needed.

We are interested in the more general case, in which payoffs cannot be transfered freely
between different players (even if they are members of the same coalition). Hence we have
always to specify all components of a vector z = (zy,-++,z,) € R¥(= R"). We denote by
RS the subspace of RV defined by z; = 0 for i # S. A coalition S controls the projection
25 of z on RS given by the restriction of z to the coordinates indexed by the elements of 5

Formally, it is convenient to define a non-transferable utility n-person game (NTU
game) as a set-valued function V defined on the coalitions, such that:

V@) =0 (5
for all S #@,V(S) is a non — empty closed subset of R" (6)
if € V(S) and y; < z; forall i€ S, then ye€ V(S). (7)

The meaning of (7) is that V(S) is a “cylinder”, that is, the Cartesian product of a subset
of RS with R¥\S (this is done only for technical convenience), and that a coalition S can
achieve, along with every vector, all vectors paying less to every member of S (this is &
more substantive assumption). A transferable utility game v can be transformed into a
non-transferable utility game V' by setting

V(S)={zeRN:) =z <u(9)} (8)

€S

for all non-empty coalitions S. This example suggests the following condition, which we
will always assume:

There exists a closed set /' C RN such that

V(N)={z€ R :3yeF with z, <y forall i€ N} (9)

(T,
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In the NTU case, an outcome of the game (a payoff vector) is once again an n-
dimensional vector z = (-, zn). Thus, a payoff vector is feasible if

z € V(N) (10)

|6, the members of the grand coalition N can actually achieve the outcome z. By (9), a
payofl z is feasible if there exists y € F' with z; < y; for all i € N. The payoff vector  is
individually rational if

for no i € N there exists y € V({i}) such that z; < y;. (11)

|6, no individual can achieve, acting alone, more than the amount allocated to him as a
payoff. To simplify matters, we will assume that

V({i}) = {z € RN : z; < 0} (12)

Hence feasible, individually rational payoff vectors exist only if F contains at least some
vectors with non-negative components. We will assume that

Fn{zeRY:z,>0 forall i € N} isanon—empty compact set . (13)

The members of the coalition S can improve their payoffs by their own efforts if there
exiats & vector y € V(S) with z; < y; for all i € S. By (7) the members of S can improve
upon z ff x € mt V(S). Hence the core of the game V, defined as the set of all feasible
payolf vectors that cannot be improved upon by any coalition, (i.e., no individual and no
group can improve) coincides with V(N)\ Ugcn int V(S). (In the transferable utility case,
the members of a coalition S can improve upon z if E;esz; < v(S), and the core coincides
with the set of all feasible payoff such that for all S C N,

Ym2u(s)) (14)
€S
It is clear that the set V(N) has to be sufficiently large for the core to be non-empty.
(In the transferable utility case v(N) has to be a sufficiently large number.) Analysis
of transferable utility games leads, via the theory of linear inequalities, to study certain
collections of coalitions, called balanced collections (see (4] for a brief survey).

The collection B of subsets of N is called balanced if there exist nonnegative weights
(A"} 5¢n such that for every i € N,
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Every partition of NV is a balanced collection, with weights equal to 1. Note that it is
possible to write the balancedness condition as
DI = (15)
SeB
where e° denote the vector in R whose i coordinate is 1 if i € S and 0 otherwise. (In
other words, e5 denotes the indicator function of S.)
It is easy to see that if the core of a transferable utility game is non empty then
> Xu(S) < u(N). (16)
seB

A game satisfying the condition (16) is called balanced. It follows from duality theory of
linear inequalities that a TU game has a non-empty core if and only if the game is balanced
(Shapley and Bondareva; see (4]). Motivated by the case of transferable utility, Scarf [13]
defined a balanced game to be a game V' in which the relation

NsesV(S) C V(N) (17)
holds for every balanced collection B of subsets of N, and proved the following

Theorem 2.1 Bvery balanced game has a nonempty core.

We wish to consider a subset of the core consisting of payoff vectors which are also
partnered. Let P be a collection of subsets of N. For each i in N let

Pi={SeP:i€ S}

We say that P is partnered if for each i in IV the set P; is nonempty and for every i and j
in N the following requirement is satisfied:

if P; CP; then P; C Py

i.e. if all subsets in P that contain i also contain j then all subsets containing j also contain
i. Let P[i] denote the set of those j € N such that P, = P;. We say that P is minimally
partnered if it is partnered and for each i € N, P[i] = {i}.

Let (N,V) be a game and let = € RY be a payoff for (N, V). A coalition S is said
to support the payoff « if © € V(S). Let S(z) denote the set of coalitions supporting the
payoff z. The payoff @ is called a partnered payoff if the collection S(z) has the partnership
property. The payoff & is minimally partnered if it is partnered and if the set of supporting
coalitions is minimally partnered. Note that partnered payoffs need not be feasible.

(T
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Let P(N, V) denote the set of all partnered payoffs for the game (N, V). The partnered
core Is denoted by C*(N, V) and is defined by

C*(N,V) =P(N,V)[C(N,V)

where C(N, V) denotes the core of the game (N, V).

Reny and Wooders [11] proved the following strengthening of Scarf’s Theorem, assuming
in addition to the assumptions made above that there exists a constant M such that for
each § C N and x € V(S) the estimate

7 <M forall ieS (18)
holds.

Theorem 2.2 Every balanced game has a nonempty partnered core.

Reny and Wooders proved also that under certain conditions there exist payoffs in
C*(N, V) such that S(z) is minimally partnered.

3 Closed Coverings and Correspondences

The relation between closed coverings of the simplex and fixed point theorems goes way
back. To fix the notation, let A denote the unit simplex in R¥. For every S € N define

AS = conv{e':i€ S}, and
&5
mg = —,
e
where “cony” denotes the convex hull and || denotes the number of elements in the set §.
The point my is called the barycenter of AS.
The following result (the Knaster, Kuratowski and Mazurkiewicz Theorem) is a proto-
type of the theory.
Theorem 3.1 (KKM Theorem): Let C',1 < i < n be a family of closed subsets of A such
that for every T C N,
UjerC? 5 AT, (19)

Then N, C* # 0.

e
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(Note that the condition (19) implies in particular that the family C*,1 < i < n forms a
covering of A — choose T'= N. A related result states that if A c UL, C" and for every i,
AN} € CF) then ML, G # 0.) The KKM Theorem is closely related to the Brouwer fixed
point Thereom and to many existence results in Game Theory. The following generalization
(4], [14] is essential for dealing with cores of NTU games.

Theorem 3.2 (KKMS Theorem): Let {CS} be a family of closed subsets of A indezed by
the non-empty coalitions such that for every T C N,

UscrCS > AT. (20)
Then there ezists a balanced collection B such that N§czCS # 0.
In analogy to the terminology used for payoffs, we say that a coalition S supports the

point z € A if z € CS, and we denote by S(z) the set of coalitions supporting z. Reny and
Wooders [12] obtained the following ions of the KKMS Theorem:

Theorem 8.3 8) Let {C°} be a family of closed subsets of A indezed by the non-empty
coalitions such that the condition (20) is satisfied. Then there ezists * € A such that the
supporting collection for z*, S(z*) = {S € N : z* € CS}, is balanced and partnered.
b) If the set

{a* € A:8(z") is balanced and partnered}

is at most countable, then at least one z* € A renders the supporting collection S(z*)
balanced and minimally partnered.

The study of intersection properties of closed coverings motivates the study of certain
correspondences (set-valued functions). The geometric idea is very simple: Let {CS} be a
covering of A. We may label every z € A by the collection of coalitions L(z) = (S : z €
C%} and associate with & the convex set F(z) = conv{ms : S € L(z)}. Due to certain
technicalities concerning boundary behavior we will have to modify this construction a bit
(see Proposition 1).

Let F be a correspondence from X to Y, i.e., for every z € X, the “value” F(z) is a
subset of Y. If X and Y are topological spaces, we say that F is upper-hemicontinuous is
the graph G(F) of F (i.e., the set of pairs (z,y) such that y € F(x)) is closed in the product
topology of X x Y. If X and Y are metric spaces then F is upper-hemicontinuous if and
only if for every sequence {z,,yn} such that y, € F(z,) and z, — Z, y, — g, we have
7 € F(z). In this paper we will consider only the case where X and Y are subsets of a
Euclidean space RM, and in most applications X =¥ = A.

e )

e



- —

Yakar Kannai 237

The following is essentially well known (stronger results will be stated and proved in
Section B).

Theorem 3.4 Let F(z) be a correspondence from A into the closed convez subsets of A
such that
F is upper — hemicontinuous; (21)
and
For all T C N,if z € AT then F(z) c AT. (22)

Then there exists = € A such that my € F(z).

Example: The one-dimensional simplex A C R? may be parametrized as {(1 —z,7): 2 €
[0.1]}. The barycenter my = (0.5,0.5) corresponds to z = 0.5. Set F(z) = elifx e
[0,05], F(05) = &, F(z) = e? if z € (0.5,1]. Then the assumptions of Theorem 3.4 are
wtisfied, and my € F(0.5). If, however, we modify F by setting F(0.5) = {0,1}, then F is
1o longer convex valued (it still satisfies conditions (21) and (22)), but my is not contained
in any set F(x)

The condition (22) restricts the behavior of F on the boundary dA of A. (We denote
here and in the sequel the boundary of a set A by dA.) The annoying technical details are
taken care of by the following Proposition.

Proposition 1. Let {C% : § C N} be a family of closed subsets of A satisfying (20). Then
there exist & simplex A’ contained in the interior of A, a homeomorphism ¢ of A onto A’
and & correspondence F from A into the closed convex subsets of A satisfying (21), and

(22), and such that
for all y € &', F(y) = conv{mgs : ¢~ (y) € C5}, (23)
and
if my € F(z) then z € A" (24)
Moreover,
F assumes a finite number of distinct values. (25)

Proof. Set f' = I;EF, i=1,..,n, A" = conv{f' :i € N}. Then the simplex A’ is
contained in the interior of A. Every z € A may be written is the form z = 3_7_| z;e' where
Lhiai=1, 2> 0foralli€N. Set p(z) = Yoiwy z:f*. Then ¢ is a homeomorphism of
AMA'.MMW(:)-H[MMHGN. Let : A — A be defined by

max ((n+ 1)y —1,0)

e\ DD o all i€ N.
Ten max ((n+1)y; - 1,0) 5

nly) =

e R
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Then the continuous function 7 coincides with ¢~ on A’ and n(A\A’) € 9A. We define a
labeling function

L(y) = {S :n(y) € C° and (n+ 1)y > 1 for all i € S}, (26)

and a correspondence
F(y) = conv{ms : S € L(y)}.

For every y set 7' = {i : (n+ 1)y: > 1}. Then 5(y) € AT. By (20) there exists a coalition
S C T such that n(y) € C¥, and S C T implies that L(y) is not empty. The upper-
hemicontinuity of # follows from the continuity of  and the closedness of each C'¥. F may
assume at most 22" distinct values. If y € AT then {i: (n+ 1)y > 1} C T so that S ¢ T
whenever S € L(y). Hence mg € AT and thus F(y) € A7, If y A then (n + 1)y < 1 for
at least one index i. Hence i g S if S C L(y), and my £ F(y). "

Observe that the collection B is balanced if and only if my € conv{mg : S € B}. The
KKMS Theorem follows immediately from this observation, Theorem 3.4, and Proposition
1. In fact, let my € F(y) and consider the collection B = L(y). Then 75(y) € Nscpc® and
my € conv{mg : S € B}.

Stronger results about coverings (such as Theorem 3.3) will follow from topological
theorems on closed coverings that are refinements of Theorem 3.4. The conclusions (24) and
(25) will be used as well.

4 Topological Methods

Let Q2 be a bounded open subset of R™ (while the theory may be extended to unbounded sets,
we need only the bounded case) and let f be a continuous function mapping € (the closure
of Q) into R™. We say that f is a piecewise linear mapping if there exists a finite family
{Pyi}xex of hyperplanes such that for every z € Q \ Uxe i Py there exists a neighborhood &
of z, a matrix A and a point b € R™ with f(y) = Ay + b for all y € Y. The hyperplanes Py
di pose {2 to open 1 subd ins Qy,...,0;. (Observe that A and b are constant
on every ©;.) Let p be a point which is contained neither in the image of the boundary of 2,
nor of any m-1-dimensional set QN Py: p Z f(89) Ukex f(20 Py). (Note that p # 96 for
all 1 <1 < j, and if the matrix A representing f is singular in ), then p # f(€y.) Denote
by n(p, f,92) the number of sets f(£2;) containing p.

Proposition 2. Let p,q € R™, p,q Z [(89) Usex f(2N Py), such that p and g may be
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Jolned by & polygonal line not intersecting f(89). Then
n(p, £,9) = n(g, £,Q) mod 2. (27)

Proof.  We may assume, without loss of generality, that the sets f(£,) are open for all
| €< J (ie, the matrices representing f on €, are all regular). In fact, given p and
¢ there exists & plecewise linear function f* mapping Q to R™ such that (1) the matrices
representing f on £ are all regular ; (2) for every i, p € f'(Q;) if and only if p € f(€%), and
€ /'(0) if and only ¢ € (). Then n(p, f,Q) = n(p, f/,Q) and n(q, £,Q) = n(q, /', ),
s that it suffices to prove (27) for f'.

It follows that we may join p and g by a polygonal line [ such that / intersects every m-1-
dimensional set f(PNR) in a finite number of points and if k # k' then INf(PNPpN) = 0.
In lar, no point of I is ined in the image of more than one hyperplane Px. The
value of the integer n(z, f,2) may change, as x moves along ! form p to g, only if z crosses an
mel-dimensional set f(S) where § C 89 for some i. Observe that by assumption § 7 09.
Hence S is the common boundary of precisely two m dimensional domains €; and Q. If
JU) 0 f(83) = 0 then n(z, £,9) is unchanged when z crosses f(S). If f(4) N f(r) # 0
then n(z, /,{1) changes by 2. In either case, the parity of n(z, f,Q) remains fixed. [ ]

If p # f(002) then p is in the closure of the set of points g for which n(g, f,€) is well
defined, and the residue class mod 2 (the parity) of n(g, f, ) is constant near p. We denote
this residue class by d(p, £,Q), and call it the degree (mod 2) of f at p relative to Q. We
will denote the residue class of the even integers by 0, and the class of odd integers by 1.

We now asalyse the behavior of the degree when f is deformed.

Proposition 3. Let f,(x) be a continuous map of 2 x [0,1] into R™. Let {Pi}kex be a
fnite family of hyperplanes such that f,(z) is a piecewise linear mapping with respect to
thisfamily for each ¢ € [0,1]. 1f p # Ure(o,/1(00), then d(p, fo) = d(p. fy)-

Proof. Consider first an arbitrary piecewise linear map g of Q and a point ¢ € R™ such
that g ¢ 200 U glusex PN Q). 1f g € g(), then g € g(f) where €, one of the open
connected sub-domains in the decomposition of 2 by the planes Py. Let g(z) = Az + b for
# €0l where A s & regular matrix and b € R™. If ¢’ is another piecewise linear mapping
d“"‘“’rﬁﬂmﬂz) = Az + b for z near # = g~'(q) N, where A’ is regular and
¥ € R™, then

() Mg =) = AN (g =) +[(4) " — A7')(g - b) + A (b - ¥) = (28)
4 [(A) =AY (g- V) + AT (b - b).

-
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If maxzenlg(z) — ¢'(2)| is sufficiently small, then both [|(A’)~* — A~"|| and [b — ¥/ are
small, so that (A’)~2(q — V) is sufficiently close to Z. Hence n(g, 9, Q) = n(q,¢', Q).

It follows from the continuity of f; that if ¢ € R™ is not contained in f,, (0) U
feo (Ukex PxNY) then there exists a positive e such that n(g, fr, ) is well defined if [t—tg| < ¢,
and n(g, fr, ) = n(qg, fio, ) for those values of t. Let to € [0,1] be arbitrary. Then
d(p, fro, Q) = d(q, fto, ) = n(q, ft, ) mod 2 for all g near p for which g is not contained in
fio (B U fro (Ure e PcNK). Tt follows from Proposition 2 that for each ¢ such that [t=to| < ¢,
d(q, ft, Q) is independent of g. Hence d(p, f¢, Q) = d(p, fo, Q) if [t—to| < ¢. The compactness
of [0, 1] implies that d(p, fo, ) = d(p, f1,9Q). [

We can now define the mod 2 degree for a general continuous function f :  — R™

and a point p Z f(69): let g be a piecewise linear mapping of 2 such that [g(z) ~ f(z)| <
dist(p, f(89)) for all z € . If g and g, are two such mappings, then Proposition 3 implies
that d(p, g1,9) = d(p, g2,). Hence d(p, g,9) is the same for all such mappings g, and we
set d(p, f, Q) to be this common value.
Example: Consider the function f(z) = z* with @ = (=1,2). Then f(89) = {1,4).
Clearly, d(p, f,§) vanishes if p < 1 as p & () if p < 0, and there are two solutions to the
equation f(z) = p for p € (0,1). The degree is not defined for p = 1, and d(p, f,9) = 1
if p € (1,4), reflecting the unique solvability there. If p > 4 there is no solution in 2 and
d(p, f,9) = 0. The reader may wish to illustrate the proof of Proposition 2 by considering
the (geometrically similar) piecewise linear map f defined on Q2 by f(z) = ~z for z € [~1,0]
and f(z) = 2z for z € (0,2].

The basic properties of the degree are summarized in the following theorem:

Theorem 4.1 Let §2 be a bounded open subset of R™, f a continuous function mapping !
into R™. Then
(1) d(p,1,92) =1 if I is the identity map of Q and p € Q.
(1) If fu(x) is a continuous map of Q x [0,1] into R™ and p & Utelo) fe(00) 0 <t <1),
then d(p, fi, Q) is independent of t € [0,1).
(1) If {u Y., are pairwise disjoint open subset of Q such that f(z) # p whenever z €
Q\nk, %, then

k

d(p, /) = ) dlp, £,9). (29)

i=1
(IV) If p and q may be joined by a polygonal line not wntersecting f(0R), then d(p, f,0) =
d(q, f,9).

T
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(V) Ifdip, £,0) =1 then p € S().

Proof. The statements (1), (11), (I1I), and (IV) follow at once from the definitions and the
peeceding Propositions if f (or f;) are piecewise linear, and in the general case by a simple
spproximation argument. To prove (V), note that d(p, f, Q) is defined only if p # f(69).
1f tn addition p # f(92), then dist(p, f(2) > 0. If f" is a sufficiently close piecewise linear

of f on Q, then dist(p, f/(?1) > 0 as well. Thus n(p, f,Q) = 0 so that
dip, /') = 0. Hence d(p, f,R) = 0, contradicting the assumption. [ ]

Remark: It is possible to construct, with a little more effort, an integer valued degree.
The mod 2 degree suffices for our purposes.

The theory developed so far is sufficiently strong for many applications, including e.g.
Theotem 3 1. Extensions for convex valued correspondences are well known. In fact, they are
treated extensively in the book 7). Degree theory for convex valued correspondences suffice
for proving results such as Theorems 2.1, 3.2, and 3.4. It appears that a natural context for
studying lssues involving partnered collections is degree theory for certain classes of non-
convex valued correspondences. Such theories were constructed long ago and are well known
to the initiated, but they never became very popular with the masses.

We are now going to describe how to extend degree theory to a simple class of non-
convex valued pond namely to corr d whose values are compact and
contractible. Recall that a subset A of R™ is contractible if for every point a € A there exists
A continuous map fi(x) of A x [0,1] into A such that fo(z) = a and fi(z) = z. (Clearly, all
convex set are contractible; more generally, star-shaped sets are contractible.) The crucial
technical step in the construction of degree is a lemma (Proposition 4 below) which enables
Approximating the graph of a correspondence by the graph of a single valued continuous
function.

Let ) be & bounded open subset of R™. A correspondence F defined on ﬂ whose values
Are compact contractible subsets of R™ is admissible if 1) F is upper-h and
2) for every « > 0 there exists a continuous single-valued function f, : 2 — R™ such that
for every 2 € () there exist z, € 0 and y € F(z,) with [« — 2,/ + | f(z) - y|? < €. In other
words, G(f) € B,(G(F)) where for every Y C R* we set B,(Y) = Uyey{z : |z — y| < ¢}.

Lot F be admissible, and set F(0) = UzeonF(z). Note that 89 is compact. The
\pper-hemicontinuity of F implies that F(892) is closed (actually compact). If p ¢ F(0Q)
then diat(p, F(60)) = p > 0. Let f be a single valued continuous function from © into
™ wuch that G(f) € B,/3(G(F)). We set d(p, Fif2) = d(p, ,0). 1t follows from Theorem
AU that dip. ,02) is well defined for admi cor , the basic
Properties of the degree carry over.

h
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Theorem 4.2 Let Q be a bounded open subset of R™, F an admissible correspondence
defined on Q whose values are compact contractible subsets of R™. Then

(1) d(p,1,92) =1 if I is the identity map of Q and p € Q.

(H) If Fy(z) is a upper-hemicontinuous map of  x [0,1) whose values are compact con-
tractible subsets of R™ such that for each t € [0,1] Fy is admissible, and p Uselo,1) F2(00)
(0 <t <1), then d(p, F, ) is independent of t € [0,1].

(I1) If {}5., are pairwise disjoint open subset of Q such that p  F(z) whenever x €
Q\ Nk, then

k
d(p, F,Q) =y d(p, F, Q). (30)
=1

(IV) If p and q may be joined by a polygonal line not intersecting F(99), then d(p, F, Q) =
d(g, F, Q).
(V) If d(p, F,Q) = 1 then there exists z € Q such that p € F(z).

Proof. The statements (I), (III), and (IV), follow at once from the definition of degree
for admissible correspondences and from the relevant parts of Theorem 4.1. For proving

(II) an additional simple argument is required as well. To prove (V),
note that if p # F(0Q) and d(p, F, Q) = 1 then there exists a sequence {f,} of continuous
single-valued functions from £ to R™ such that p £ fn(89), d(p, fn, ) = 1, and G(f) €
By/n(G(F)). By Theorem 4.1(V) there exists a sequence {z,} such that z, € 2 and
fa(zn) = p for every n. We may assume, by compactness of 2, that z, — & € {2. Morcover,
for every n there exists (z},yn) € G(F) such that |z, — z3|* + [yn — p|* < 1/n. Then
zh — &, yn — p, and p € F(Z) by upper-hemicontinuity of F. By ption p & F(99)
Hence z € Q. L]

In the rest of this papers all functions and correspondences will be defined on subsets
of the n-1-dimensional hyperplane H C R" affinely generated by A. This hyperplane is
affinely equivalent to R"~! so that the preceding theory applies (with m = n—1). We quote
now without proof the following Lemma (a special case of a more general result established
in [8]; the simpler convex case may be found in the book [7]).

Proposition 4. (Approximation Lemma): Let F be an upper-hemicontinuous correspon-
dence defined in A such that for every y € A , F(y) is a contractible and compact subset of
H. Then for every ¢ > 0 there exists a continuous single-valued function f — H such that
G(f) € B(G(F))-

Thus, if F satisfies the assumptions of Propaosition 4, then F is an admissible corre-

T\
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spandence for every 0 C int(A).

To illustrate how the preceding theory may be applied, we prove the following fixed
point theorem, a special case of the Eilenberg-Montgomery fixed point Theorem:

Theorem 4.3 Let F be an upper-hemiconti correspond defined in A such that

Jor every y € A Fly) is a contractible and compact subset of A. Then there exists a point
2 €A such that x € F(z).

Proof. We may assume that 2 ¢ F(z) for every = € dA. Set Fy(z) = z — tF(z) +tmy
for t € [0,1] (he, Fi(x) = {y: 3z € Fi(x) such that y = = — tz + tmy}). By assumption,
my £ Fi(04). Moreover, if t < 1 and # € OA then z; = 0 for some i € N and for every
¥ € F(z) we have y, > 0. Hence ; —ty; + & < ﬁ, so that z — tF(z) + tmy cannot be equal
1o my. Thus Fi(x) satisfies all assumptions of Theorem 4.2(II) so that d(my, Fy,int(A)) =
dimy, Fy, int(A)). But Fy(z) = a, and by Theorem 4.2(I) d(my, Fo,int(A)) = 1, so that
dimy, By, int(8)) = 1. Hence d(my,z — F(z) + my,int(A)) = 1, and by Theorem 4.2(V)
there exists & point = € int(A) with my € © — F(z) + my or z € F(z). (]

We obtain as special cases the fixed point theorems of Kakutani (if F is convex valued)
and of Brouwer (if F is single-valued).

The following formulation of the Brouwer fixed point theorem is useful for many appli-
cations:

Theorem 4.4 Let K be a topological space homeomorphic to a simplex A C R™, and let f
e o continuons (single-valued) mapping of K into itself. Then there exists a point © € K
with z = f(x).

Proof. Let A A — K be the homeomorphism map, i.e., h is one-one onto and h~! is
continuous. Define f : A — A by f(z) = h=Y(f(h(z))). Then f is a continuous (single-
valued) mapping of A into itself. As such, there exists a point y € A such that y = f() or
y= 0 (/(A())). Hence h(y) = f(h(y)). L}

In particnlar, every continuous self-map of a compact convex subset of R" has a fixed
point.

Wl ——
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5 Main Results

We begin by refining the concept of balancedness. We say that the collection B of subsets
of N is strictly balanced if all weights A in (15) can be chosen to be positive. It is easy to
show that a strictly balanced collection of sets is partnered.

Proposition 5. Let B be a strictly balanced family of subsets of N. Then B is partnered.

Proof. Suppose that B is strictly balanced but not partnered. Then there exists i,j € N
such that for all S € B with i € S it holds that j € S, but there exists T € B with
JET, i ZT. Let {ws : S € B} denote a set of strictly positive balancing weights for B. Since
the weights ws on all the sets in B are strictly positive, } g, ;csws < Y. jesws =1. This

is a contradiction. (]

Note that there exist partnered collections (even minimally partnered) which are bal-
anced, but not strictly balanced ([5]).

We can now formulate a strengthening of Theorem 2.2.

Theorem 5.1 Let (V,V) be a balanced game satisfying (18). Then there is a point y in
the core whose collection of supporting coalitions S(y) = {S C N : y € V(S)} is strictly
balanced.

Theorem 5.1 follows in turn form the following strengthening of Theorem 3.3a:

Theorem 5.2 Let {CS : S C N} be a family of closed subsets of A such that (20) is
satisfied. Then there exists © € A such that the supporting collection S(z) = {S:z € Cs)
is strictly balanced.

Proof of Theorem 5.1. Set & = —nMe' for i € N, and define the simplex AS to be the
convex hull of {€;}ies. The linear function h(x) = ) z;é; maps AS homeomorphically onto
AS. Set
t(z) = sup{t: x +t(1,---,1) € UscaV(S)} . (31)
By (7) and (18) the supremum in (31) is finite and is actually a maximum, and defines
a continuous function of z € RY. Set now

={z e AN :z +t(z)(1,---,1) € V(5)} . (32)

The sets Cs are closed by continuity of t and (6). We want to show that (20) is satisfied (for
CT = h=Y(CT)). Let z € CSNAT. We will show that § € T. (For all & € AT there exists
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at least one § C N such that @ € C5. Hence (20) follows.) If T = N there is nothing to
prove; we may assume therefore that T 3 N. Since z € AT we have z; < —nM/|T| < —M
for at least one j € S. Taking S = {j} in (31) we obtain

tz)>M . (33)

Combining (33) with (18), we find that z; < 0 for alli € S. On the other hand, = € AT
implies z; = 0 for i #T. Hence SC T.

1t follows from Theorem 5.2 that there exists a point « € AV such that the supporting
collection S(z) = {S : @ € C5} is strictly balanced. However S(z) = {S : h(z) € CS}.
It follows that the point y = h(z) + t(h(z))(1,:-+,1) belongs to NsesV(S), but not to
Ugenint V(S). By (17), y € V(N). Hence y is in the core, and the collection supporting
y is strictly balanced. ]

Note that Scarf’s theorem (Theorem 2.1) about the non-emptiness of the core without
the boundedness assumption (18) follows from the existence statements of Theorems 5.1 or
2.2 by a simple limiting argument utilizing (13), see for example [4].

To complete the proof of Theorem 5.1, we have to prove Theorem 5.2. The latter
Theorem follows from the following variant of Theorem 3.4:

Theorem 5.3 Let F(z) be a correspondence from A into the closed conver subsets of A
such that F satisfies (21) and (22). Assume in addition that F satisfies (25). Then there
exists « € A such that my € rel int(F(z)).

(As usual, rel int(K) means the interior of K in the affine submanifold spanned by K.)

Proof of Theorem 5.2. Let F be the map whose existence is stated in Proposition 1. In
particular F satisfies the conditions (21), (22), and (25). By Theorem 5.3 there exists y € A
such that my € rel int(F(y)), and by (23) and (24) there exists z € A (z = ¢~!(y)) such
that

my € rel int[conv{ms : « € CS}]. (34)

Clearly, £ = {S : z € C5} is balanced. Moreover, it is strictly balanced. In fact, let
SEYX, §#N (without loss of generality, £ # {N}) and let £5 denote the line joining my
and mg. Then my is contained in the interior of the interval £s N conv{mg}sex. Hence
there exists an as € conv{ms}sex and positive numbers as, B such that as + g = 1
and my = asms + fgas. We may average these equations with positive weights over
S €%, 8# N and obtain mmy as a convex combination of the points mg, S € X, with
positive weights for each S # N. [ ]
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Proof of Theorem 5.3. Note first that if y is not in the relative interior of a convex set K,
then removing an open ball B(y, §) of radius & centered at y from K results in a nonempty
closed contractible set as long as § > 0 is sufficiently small. It follows from (21) and (25)
that if my € rel int(F(x)) for no z € A, then there exists a § > 0 such that F(z)\B(my, d)
is nonempty and contractible for all z € A. Moreover the openness of B(my, d) implies that
the correspondence z — G(z) = F(z)\B(mn, d) is upper-hemicontinuous. For any ¢ € [0, 1]
and = € A, set Gy(z) = tz + (1 — t)G(z). If z € JA then € AT where T is a proper
subset of N and G(z) C F(z) C AT. Hence my # Gi(z) if & € DA, and Gy(z) satisfies the
conditions of Theorem 4.2(II), so that d(mn, Gy, int(A)) is independent of t. But Theorem
4.2(I) implies that d(mn,G1,int(A)) = d(my, I,int(A)) = 1. By Theorem 4.2(V) there
exists a point @ € int(A) such that my € G(z) = F(z)\B(mn, 6), a contradiction. [

Remark: Theorem 3.4 may be proved by a similar (actually a direct) degree argument,
establishing that d(my, F,int(A)) = 1. In fact, the same method proves that Theorem 3.4
continues to hold if we assume only that the values of F(z) are contractible, rather than

convex.

For minimal partnership we have the following family of results. The topological concept
of zero dimension is useful here. Recall that a topological space X has dimension zero if for
every p € X there is an arbitrarily small open set with empty boundaries containing p. It
is well known (cf. [3], p. 147) that among compact spaces the zero-dimensional spaces and
the totally disconnected spaces are identical.

Theorem 5.4 Let F(z) be a correspondence from A into the closed convex subsets of A
satisfying (21), (22), and (25). Assume also that:

The closure of the set {z : my € rel int(F(z))} is zero—dimensional. (35)

Then there exists © € A such that F(z) has non-empty (n-1)-dimensional interior and
my € int(F(z)).
(By “int” we mean the “interior in the topology on the hyperplane H”.)

Proof. Denote by X the closure of the set {z : my € rel int(F(z))}. By assumption, X
is zero-dimensional. This means that for every € > 0, the set X may be covered by a finite
number of disjoint open sets whose diameter is less than €. Let {D;n}m denote duch a
collection of sets with diam (D;m) < &, X C UPn D; m and Dim N Djm = O for i # j.
Then D; ,, N X is both open and closed in X, so that 8D; , N X = 0.

With & as in the proof of Theorem 5.3, set 6(x) = min[dist(z,X),&], and define an
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pperhemicon dence G by
G(@) = F(z)\B(mn, 6(x)). (36)

Then my ¢ G(z) if « ¢ X. A similar argument to the one used in the proof of Theorem 5.3
enables us to infer from (22) that

d(G,int(A),my) = 1. (37)
By construction, my ¢ G(y) for all y € OD; ;m, 1 <i < Pr,. Note also that by Proposition

4, G(x), defines over any open subset of int(A), is admissible. Hence d(G, D; m, mn) is well
defined and

Pm
D" d(G, Dy, miv) = d(G, int(A), m). (38)
=1

It follows from (38) and (37) that there exists i = ig(m) such that

d(G, Dyy(m)m:mn) # 0. By compactness there exists € X and a sequence Dig(my,m
of neighborhoods (with Dj(m) m N X compact) such that Z = N5_; Di;(m),m- For each
m, d(G, Diy(m).m»mn) # 0 implies the exi of an (n-1)-di ional ball B,,, centered
at my, such that

Brn € | zeDigmym C@) € (JzeDigmm P (@)- (39)

Set g, = ¢' —=my, 1 <i < n. Fix for a moment a; for an index 1 < j < n. By (25)
there exists a positive number 6; such that if my + ea; € F(y) for a certain y € A and a
positive € (no matter how small), then my +6;a; € F(y). By (39) there exists a sequence 2™
converging to Z and a sequence of positive real numbers €, such that my +d;a; € F(z™).
By the upper-hemicontinuity my + d;a; € F(z). The convexity of F(z) and the spanning
property of g, ...,a, imply that my is an interior point of F(z). [ ]

Theorem 5.4 implies the following result about closed covering.

Theorem 5.5 Let {CS : § € N} be a family of closed subsets of A such that (20) is
satisfied. Assume that the closure of the set

{z:{S :x € C5} is strictly balanced)

is zero-dimensional. Then there evists ¢ € A such that the collection {S : @ € C5} is
minimally partnered and strictly balanced.

Proof. Let F be the map whose existence is stated in Proposition 1. Note in particular that
F satisfies (22), and the assumptions imply that (35) is satisfied as well. Hence there exists
(by Theorem 5.4) = € A such that my € int(D(z)) [where D(z) = conv(ms : © € C5)). If
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T = {8 : € C5} is not minimally partnered, then there exists a pair 4, j such that for every
S € T either ¢ and j both belong to S, or neither belongs. Hence for all y € D(z), ¥ = ;.
Thus int(D(x)) is empty, a contradiction. L]

Comparing the assumptions of Theorem 5.5 with those of Reny and Wooders (1998)
(Theorem 3.3b above), it appears that neither is stronger than the other. On the one hand a
countable set (as assumed in Theorem 3.3b) may be dense and hence have closure of positive
dimension; on the other hand, a set of dimension zero (as assumed in Theorem 5.5) may
be uncountable (for example, a Cantor set on a line). Examples are provided in [5]. The

following is a generalization of Theorem 3.3b.

Theorem 5.6 Let {C° : S C N} be a family of closed subsets of A such that (20) is
satisfied. If the set {z* € A : S(z*) is balanced and partnered} is zero dimensional, then
at least one a* € A renders S(z*) strictly balanced and minimally partnered. Moreover,

my € int [conv{ms}ses(z+))-

The proof of Theorem 5.6 involves ideas found in the previous proofs as well as essential
refinements (see [5]), and will not be reproduced here.

Theorems 5.5 and 5.6 induce theorems on the set of minimally partnered core outcomes
of games, in the same manner as Theorem 5.1 was derived from Theorem 5.2. In particular,
the results of [11] may be re-derived and refined. That some care is needed may be seen by
an example (constructed in [5)) of a 12 players game (a marriage and adoption game) whose

partnered core is homeomorphic to the Cantor set.

6 Other Applications

We mention briefly several applications of the theory and the methods outlined in previous
sections.

1) Cooperative game theory influenced, and was influenced by, the theory of market
equilibrium. A distribution of resources is in the core of an economy if no individual (and no
group) may achieve, acting on her (their) own, preferable results for herself (its members).
Sometimes a core distribution is associated with a price system. Existence can be established
using fixed point methods similar to those expounded here [9].

2) As explained in the introduction, a natural requirement from a theory is that the
predicted outcome(s) are sufficiently stable so that once such an outcome has been reached,

T
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10 individual could gain more by making a different choice. This applies to non-cooperative
gomes as well, and leads to the celebrated concept of Nash equilibrium point- a concept
that has become very popular recently [1]. Here each participant’s strategy is the “best
response” to the others’ choices of strategies. Existence of Nash equilibria is obtained from
the Brouwer fixed point theorem, or, more transparently, from the Kakutani fixed point
theorem (2], [9]-

3) Ifd(p, f,2) = 1 (as is the case in all applications discussed here and in the rest of the
present paper), than it seems plausible that for “typical” f and p, the number of solutions
of the equation f(z) = p in Q is odd. This intuition leads to genericity results.

4) One of the few instances in which integer valued degree (rather than mod 2) is
required, is in the proof of the fundamental theorem of algebra (3].

5) Fixed point theory and degree theory may be extended to certain families of functions
defined on infinite dimensional spaces. The theory provides existence theorems for ordinary
and partial differential equations (6], (7). Degree theory enables “counting” the number of
solutions in many cases.
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