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ABSTRACT. A Fano variety is a smooth, geometrically connected variety over a field,
for which the dualizing sheaf is anti-ample. For example the projective space, more
generally flag varieties are Fano varieties, as well as hypersurfaces of degree d < n in P".
We discuss the existence and number of rational points over a finite field, the Hodge
type over the complex numbers, and the motivic conjectures which are controlling those
invariants. We present a geometric version of it.

1 Congruence for the Number of Rational Points for a
Variety Over a Finite Field

Let X be & smooth projective variety over a field k. If k = F, is finite, it will be rarely the
case that X has a rational point. Yet, if the variety is very negative in the sense of differential
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geometry, then X will have some, or even many rational points. The simplest example is the
projective space P". Since one description of the k-rational points [P™ (k)| is the quotient of
the punctured vector space k"+!\ {0} by the diagonal action of the homotheties k*, one
sees that

™ -1
\P"(!Fq)|=q_—1=1+q+...+q". (1.1)
One way to measure |X(F,)| for a smooth projective variety X C P" is to consider the
congruence
| X (Fy)| = |P"(Fy)| mod ¢~ (1.2)
or equivalently
|U(F,)| = 0 mod ¢, (1.3)

where U = P" \ X, for some natural number . Of course if & = 0, then (1.2) says nothing,
but if there is a k£ > 1 which satisfies (1.2), then first of all, X has a rational point, and
secondly the larger «, the more rational points. One codes |U(E,. )| for all finite extensions
F, C Fg in the zeta function defined by its logarithmic derivative

o - S W )
Thus the existence of a x € N'\ {0} as in (1.3) for all finite extensions of F, is equivalent

to ¢(U,t), as a power expansion in ¢, be in Z[[¢g"t]]. On the other hand, the fundamental
theorem of Dwork [12] asserts that ((U,t) is a rational function over the rational numbers

¢(U,t) € Q(t)- (1.5)
One concludes that writing
U t) = i, (1 —ait) (1.6)

G=1(1-50)"
the reciprocal roots ; and poles 3; of the ((U,t) are divisible by ¢* as algebraic integers,
i.e. in Z C Q. On the other hand, the Grothendieck-Lefschetz fixed point trace formula [19]

asserts

2 dim(U) \
(W)= T det(1—E" (.7

=0

where F} is the arithmetic Frobenius acting on the compactly supported £-adic cohomology
H(U,Qe), which is isomorphic to the primitive cohomology H;;,‘,,(X.Ql) = H'"Y(X,Q0)/.
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J-1 (P, Qu) of X for (i ~1) < 2 dim(X), and = H'(P", Q) for i > 2dim(X). By the Weil
conjectures proven by Deligne [9), the eigenvalues of F; in any complex embedding Q¢ C C
have absolute values qu'!"“. Thus in (1.7) there can’t be any cancellation between odd and
oven {'s. Our condition (1.3) translates then exactly into the condition that the eigenvalues
of F, be all divisible by ¢* as algebraic integers.

On the other hand, the cohomology H™(X,Q¢) carries a coniveau filtration ... C
NH™(X,Qe) C© N®"'H™(X,Q¢) C ..., where N is the subgroup of classes which die
after iction outside of a codi ion a subsch One checks by a dévissage as in
17], Lemma 2.1, that the eigenvalues of the Frobenius acting on N®H™(X,Q;) are divisible
by ¢* as algebraic integers. Thus if NXH.(X,Qe) = Hp¥ (X, Qe), the congruence (1.3)
holds. The Tate conj predicts the if the ei lues of Frobenius acting
on H",':m(t\".Q,) are all divisible as algebraic integers by ¢~, then the primitive cohomol-
oy should be supported in codimension &, that is in concrete terms, there should exist a
codimension x subscheme Z C X such that the restriction map

Hiim(X,Qe) = H™(X\ Z,Qe)/H™ (B, Q2) (1.8)

dies

2 Hodge Type

The Hodge type of a projective variety X C P™ over a field k of characteristic 0 is defined
10 be the largest natural number  such that the Hodge filtration ... C FHE, . (X) ©
F=UHpp (X)) C ... fulfills

F*HE R pri (X) = HBR priea (X) (2.1)
for all m. (One would define similarly the Hodge type of HPR prim(X) for a given degree
m). 1f X is projective smooth, then Hodge type = x means

0 for <
HO(X, %) = 2G5St
k for g=p <.
1f
N*HPBR prim(X) = HBR prim(X), (2:2)

with the same definition of the coniveau filtration for de Rham cohomology as for f-adic
cohomology, then one easily computes via the Gysin sequence that the Hodge type of the
primitive cobomology is > k. The Hodge conjecture predicts the converse: if the Hodge
1ype is &, then the primitive cohomology is supported in codimension .
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3 Hodge Cohomology and Slopes

In this section, X is still assumed to be a smooth projective variety over a finite field F,,
where g = p¢ for a prime number p. We are interested in conditions which force the reciprocal
zeros ; and poles 3; of the zeta function (1.6) to be divisible by ¢~ as algebraic integers,
Write W (FF,) for the ring of Witt vectors over Fy. It is a complete discrete valuation ring
with residue field F,. For example, W (F,) = Zy, the p-adic integers. Let K be the quotient
field of W(F,). Frobenius on F, induces automorphisms o of W(F;) and K satisfying
o? = identity. The crystalline cohomology [3] Herys(X/W (F,)) ® K is a finite dimensional
K-vector space with an endomorphism f (Frobenius) satisfying
fwz) =o(w)f(z); wekK, zeH". (3.1)
In particular, f¢ is K-linear, and the basic theorem [3] is that
C(X/F,,T) = det(1 — 4T|H*)™, 32)
where of course the determinant of the right is taken in the graded sense, i.e. characteristic
polynomials coming from H°% appear in the numerator of ¢.

In order to divisibility for the ei 1 we can calculate crystalline coho-
mology using the de Rham-Witt complex [20]. This is a complex of pro-sheaves for the
Zariski topology on X

Well* i= (W0 4 Wat! & Wa! — - & W Qdim X}, (3.3)
In other words, each W, is a projective system of Zariski sheaves on X

oo W o Wil @ L W = O (3.4)

where QY is the sheaf of Kahler i-forms on X. Each W,,Q" has a finite filtration with graded
pieces coherent, so the cohomology groups H7 (X, W, Q') have finite length. For i = 0, W, 0
is the sheaf of Witt vectors of length n over the structure sheaf Oy.

It is not true in general that the H’(X, W,Q') := lim | H (X, WoQ') are finitely gen-
erated W (F,)-modules (even for i = 0, [31]). However, the groups H7(X, W.Q‘)/(torsion]
are finitely generated. In particular, the H7(X, W,Q') ® K are finite K-vector spaces. The
differentials in (3.3) come from differentials W, Q' 4 W, Q2+, and we define

H* (X, Wa*) := im H* (X, W, Q"). (3.5)

The de Rham-Witt complex plays the role of a sort of de Rham complex calculating
crystalline cohomology. Namely, there is a canonical, functorial isomorphism

Heryo(X/W(Fy)) = H* (X, W Q). (36)

(T
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Crucial for our purposes is that the frobenius f has a nice description on the de Rham-Witt
cohomology. Namely, one has endomorphisms

19,

which satisfy f®v® = v®) f6) = p. The end hism v() is topologically nil, in the
sense of the inverse system (3.4). One has do f() = pf(+1) od, so in particular the p* f() on
W' induce a map of complexes on W,Q*. The resulting map on H*(X, W,Q*) coincides

with the Frobenius f on crystalline cohomology under the isomorphism (3.6).

D W0 - W (3.7)

As a consequence of these facts, one deduces that the spectral sequence
E{ = HY(X,W.0%) ® K = H** (X, W.Q") ® K (3.8)

degenerates at B ([4]), and that the eigenvalues of the K-linear endomorphism g°f(®)4 :
HE (X, W,0°%) — H*(X,W,Q°) coincide with the eigenvalues o; and §; appearing in ((X/
F,,T) which are divisible by ¢ but not by q2*1. (This is because gv(?)4 f(9)d = gapd = gat+1,
and v®) is topologically nilpotent.)

Of course, there is a lot of mathematics here, and it is not possible to give the details
in o survey such as this. Note, however, that there are two deep global results, (3.2) and
(3.6). The rest involves the definition and local structure of W,Q".

As a corollary of the above, we deduce

Corollary 3.1 Let k > 1 be a given integer. Then all the reciprocal zeroes and poles c; and
By of ((X/F,, T) are divisible by q* if and only if H*(X,W,Q°%) ® K = (0) for a < k.

We would like a criterion in terms of the Hodge groups H®(X,Q%) which will insure
the de Rham-Witt groups vanish as in corollary 3.1. The following is deduced from a purely
local calculation using the structure of the sheaves W,Q'. We use the notation “Hodge
type” as in section 2, even though the ground field is finite.

Proposition 3.2 With notation as above, if X has Hodge type x > 1, then H*(X, W,Q°) =
(0) for a < x. In particular, all the reciprocal zeroes and poles of ((X/Fq,T) are divisible
by q~.

Proof. We will use some results about the structure of W,Q* from [21]. The first point is
that /%), ') p are injective on pro-objects. Topological nilpotence for v*) means

VWQE C ker(Wa Q' — W,QY) (3.9)
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[21), (2.2.1). Further, by op, cit. (2.5.2), there is an exact sequence

1

0— W@/ 20, wai® — @i — 0. (3.10)

(For i = 0 this says W/v(® 2 Ox.) By induction on i we see that H*(X, W,2'/v®) = (0)
for i <k, so

oYX, W) & BY(X, W) = lmHY (X, Wa®) C [[HY(X,Wa2Y). (3.11)
n

By (3.9), we deduce that H*(X, W,Q) = (0) for i < k. (u]

Remarks 3.3 i) Proposition 3.2 is a special case of a more general theorem asserting
that the Newton polygon of the F-crystal H™(X/W)/(torsion) lies above the Hodge
polygon defined by slope @ with multiplicity dim H™'(X, Q) (see [25], [27]). We
have seen that only the local properties of W,Q* are relevant for Proposition §.2.

ii) It is of course very easy to compute the Hodge cohomology H? (X, Q) for smooth com-
plete intersections X C P defined by r equations of degrees dy > dy > ... > d,. I
is Kk = [—‘lli—‘—"E] Here (2] is the integral part of the rational number z. In other
words, Proposition 3.2 is an easy proof of the theorem of Az and Katz ([23]) asserting
(1.2) or equivalently (1.3) in this case.

4 From F, to C and Vice-versa

Let us think now that our smooth variety over a finite field is coming via reduction modulo p
from a variety defined in characteritic 0, over a ring of finite type over the integers. Then, via
the comparison between ¢-adic and de Rham cohomologies, the coniveau in which (primitive)
de Rham cohomology is carried is the same as the coniveau in which (primitive) f-adic is
carried. In conclusion, one sees that the coincidence of the  stemming from the ¢ function
with the x from the Hodge type is a test both for the Tate and the Hodge conjectures.

We have two tests at disposal. First smooth complete intersections. Let X C P™ be a
smooth lete i ion defined by r ions of degree dy > dy... > d,. We define
K= {;"3————‘] as in Remark 3.3. Then, as already mentioned, the theorem of Ax and
Katz [23] asserts (1.3) while Deligne’s theorem [8] asserts (2.1). Moreover, this bound is
sharp both on the ¢ and on the Hodge sides.

The smooth lete i ions just di: d with x > 1 are special Fano varieties.
We consider now our second example: Fano varieties which are abstractly defined. In charac-
teristic 0, Kodaira vanishing applied to the ample invertible sheaf w™! yields H9(X, Ox) =

e @ W
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for all g > 0. Thus the Hodge theoritic & is at least 1. Over a finite field, [17], Corollary 1.3
assorts that | X (E,)| = 1 mod g. Thus the k of the ¢ function is at least 1 as well. This is our
second test. However, we observe that the test is not complete. It might well be that the
Hodge type of X is > 2. Yet the proof given in [17] does not give a better the congruence
for the number of rational points over a finite field, unless we know the Chow groups of X.
This is the subject of the next section.

5 Motivic Conjectures

The Beilinson-Bloch conjectures ([5], (1], (2]) predict that the Chow groups of a smooth
projective variety defined over the complex numbers should be controlled by its Hodge
theory. More precisely, it predicts that if the Hodge type of the primitive cohomelogy of a
smooth complex projective variety X of dimension d is x, that is (2.1) holds true, then one
hns

CH{(X)® Q= H*“~)(X,,Q) for 0 < i < (5= 1). (5.1)

Applying the splitting of the diagonal as initiated in (5], Appendix to Lecture 1, and then
rofined as in [22], (29, [15), one sees that (5.1) is equivalent to saying that there is a nontrivial
notural number N, there are dimension ¢ and codimension i cycles o; and f' € X, a
codimension x cycle Z C X, a codimension d cycle I' € X x Z with

NA=agx X +ay x4 ...+ ey x B 4T (5.2)

where = means the equivalence in CH*(X x X), and A is the diagonal. It is easily seen that
such a decomposition (5.2) of the diagonal, up to torsion, implies (2.2). Over the complex
numbers, it implies a fortiori (2.1) while over a finite field, it implies (1.3), by showing again
that the eigenvalues of the Frobenius are divisible by ¢* as algebraic numbers.

In other words, the Beilinson-Bloch conjectures on the Chow groups imply here the
Hodge conjecture. Thus we expect that our Fano varieties with Hodge type x will fulfill
(8:1) and (1.3) as well.

Let us look at our two classes of examples. The smooth complete intersections as in
seotion 3 with & > 1 fulfill CHo(X) = Z by a theorem of Roitman [30]. However, we do not
know in general whether CH;(X) ® @ = Q for i < k. We have very few simple examples
where the bound is achieved ([32], (28]), and the general results we have yield bad bounds
([16]). We observe nevertheless that Roitman’s theorem (loc. cit.) yields a whole class of
examples for which the Beilinson-Bloch conjecture is true and sharp. Let ¥ C P*=! x P*



G "

258 Fano varieties

be a smooth complete intersection of bidegree (1,d). Then one easily computes that
HY(Y, Q%) =0 for g #p,p < (k1) (53)
and HI(Y,QP) # 0 for some p>k,p#q
if and only if xd <n.

Let us write 1 f1+. . .4y« fx for the equation of Y, where y; are the homogeneous coordinates
in P*~! and f; are homogeneous polynomials of degree d. Then Y is smooth if and only if the
codimension & subvariety X C P" defined by f; = ... = fx = 0 is smooth. Moreover, Y is
the blow-up of X in P". Consequently, one has CH;(Y) = CH;—y41(X) @& CH™5=2-1(pn),
Thus CH;(Y) ® @ = Q for i < (k — 2) and CHy(X) = Z implies CHx—1(Y)®Q=Q&Q.

Roitman’s theorem is a special case of a deeper theorem for abstractly defined Fano
varieties, due to Campana, and Kollar-Miyaoka-Mori ([24]). It is ing from geometry.
If X is a Fano variety, then it is rationally connected, that is any two closed points are
linked by a chain of rational curves. This implies CHo(X) = Z, but is stronger than
this. For example, in characteristic 0, surfaces with H™(X,0x) = 0,7 = 1,2, but with
nonnegative Kodaira dimension < 1 have CHy(X) = Z ([6]), and certainly they are not
rationally connected. As recalled in the abstract, Fano means that u}’( is ample. Thus this
strong negativity condition on the top differential forms implies rational connectivity. On
the other hand, strong negativity on the 1-forms implies rationality: by the fundamental
theorem of Mori ([26)), (%)Y ample is equivalent to X being isomorphic to the projective
space. Thus in this case CHo(X) =...=CHy(X)=Z and k = (d + 1).

In consequence, it is tempting to think that the condition (5.1) might result from
a strong negativity condition on d,(d — 1),...,(d — s + 1) differential forms. We have
at disposal Demailly’s positivity notion [11]. A vector bundle E' on a smooth projective
complex variety is s-positive if its hermitian curvature form, seen on Ty ® B, is positive on
all tensors of length < s. Demailly’s vanishing theorem says that if £ is s positive, then
HI(X,wx ® F) =0 for ¢ > d — s+ 1. In particular, let us assume that

(Q"~?)V is (n — p) — positive for 0 < p < (k —1). (5.4)

Then HI(X,92%) = 0 for ¢ > p,0 < p < (x —1). But by Hodge duality, this implies
HI(X,Q%) =0 for ¢ < p,0 < p < (x—1) as well. Thus under the assumption (5.4), the
Beilinson-Bloch conjectures predict (5.1). One may hope that this geometric formulation
yields more information, as we discussed for p = 0 and p = (d — 1) above. It is further
to be remarked that, while applied to smooth complete intersections, Demailly’s positivity
is stronger than what would be needed to prove exactly (5.1), which is coming from the
Hodge type. It is then likely that a positivity notion, a bit weaker than Demailly’s one,

T,
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will force Demailly’s vanishing, and would be such that while applied to smooth complete
{ntersections, it would yield, via the Beilinson-Bloch conjectures, exactly the right predicted
statement on Chow groups.

6 Singular Projective Varieties

In this section, X C P" is still projective, but no longer necessarily smooth.

Let us assume first that X is defined over a finite field F,. We still have that the

bility of the ei lues of Frobenius acting on H:(U, Q) implies the divisibility of the
reciprocal roots and poles of the ¢ function via (1.6) and (1.7). But the converse is not a
prior clear. The problem is that the absolute values of the eigenvalues of F; are no longer
determined by i, there might be some cancellation in (1.7).

Next we think of HX(U, Q) as being no longer a isi Galois ion, and
ider its iated graded semisimple Galois rep ion. We apply the mechanism
explained in the smooth case to predict that the Hodge type of X in characteric 0 should be
the same as the x such that ¢* divides the eigenvalues of the Frobenius acting on H:(U, Qe).
Now we have only one class of examples: projective varieties X defined by r equations of
degrees dy > dy > ... > d,. We don’t require smoothness, not even that the dimension of
X be (n 7). If 2=425-=dx > 0 we define & as in (2). Then the theorem of Ax and Katz
([23]) nsserts that (1.3) is true, while [10], [13], [14] show that the Hodge type of X is k.
Those bounds are sharp. In particular, we see that the coincidence of the x coming from
the ¢ function and the one coming from Hodge theory in this mixed case predicts that the
eigenvalues of Frobenius will be divisible by ¢*, which we don’t know so far.

In the same range of ideas, if we require now that X be a (nonsmooth) complete inter-
section, by [33) one has higher divisibility of the reciprocal poles of ¢ (suitably normalized),
while by (18] one has a better Hodge type for all the primitive cohomology beyond the mid-
dle dimension. Here one would also expect that the better divisibility is not only for the
reciprocal poles of the ¢ function, but also for the eigenvalues of Frobenius acting on the
corresponding cohomology HA(U,Q;) for all i modulo 2 corresponding to the poles. But in
addition, in light of the Hodge type computation, one would expect the better divisibility
beyond the middle dimension.

The Beilinson-Bloch conjectures are not formulated for projective nonsmooth varieties.
It Is tempting to think that motivic cohomology in some good sense will control both the
Hodge type and the congruence (in particular the existence) of rational points over a finite
field. However, in absence of a clear view of what would correspond to the easy implica-
tion in the smooth case (trivial Chow groups implies congruence for points and nontrivial
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Hodge type), it is hard to forsee a good formulation of what would be the Beilinson-Bloch
conjectures in the projective singular case.
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