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ABSTRACT. A Fano variety is 11 smooth, geometrically connected variety ovcr a field , 

for whicb the dualizing sheaf is anti-ample. For exampte the project ive space, more 

generally fl.ag varieties are Fano varietiei, as well as hypersurfaces of degree d ::::; nin P". 

\\'e dllt\dS the existence and numbor of rational points over a fi nite fie\d, t he Hodge 

\yptO\"tt the complex numbers, and the motivlc conjectures which are controlling those 

invar1&.11u:. We prese.nt a geometric version of it. 

Congruence for the Number of Rational Points for a 

Variety Over a Finite Field 

Let X be almOOlh projective variety over a field k. Ir J.: = Fq is finite, it will be rarely the 
cw lht.t X has a taliona\ point. Yet, if the va.riety is very negatiue in the sense of differential 
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geometry, then X will have sorne, or even maoy rationa.1 points. The simplest example is the 
projective space IP". Since one description of the k-rational points ln>"(k)I is the quotient of 
the punctured vector space k"+1 \ {O} by t he diagonal action of the homotheties P., one 

sees that 

(11) 

One way to measure IX(F9 )1 for a smooth projective variety X C IP" is to consider the 
congruence 

IX(F,)1 = IP"(F,)1 mod q", (1.2) 

or equivalently 

11/(F,)1 =O mod q" , (1.3) 

where U = IP'" \ X , for sorne natural number K. Of course if,.., = O, then (I.2) says nothing, 
but if there is a K 2: 1 which satisfies (1.2), then first of ali, X has a. rational poiut , and 

secondly the larger K, the more rational points. One codes IU(Fq• )/ for ali fi nite cxtcnsions 

Fq e Fq• in t he zeta function defined by its logarithmic derivative 

(1.4) 

Thus the existence of a"' E N \{O} as in (1.3) for all finite eA-tensions of Fq is equivalent 

to ((U, t), as a power expansion in t , be in Z[lq~t]]. On the other hand, the fundamental 

theorem of Dwork /12] asserts that ((U, t) is a rational function over the rational numbers 

One concludes that writing 

((U,t) EQ(t) . 

((U,t) = 11:-1(1 - 0 ,t) ' 
11;.,( J - ,8, t) 

(1.5) 

(1.6) 

t he reciproca] roots a; and poles /3¡ of the ((U, t) are divisible by q~ as algebraic integers, 
i.e. in Z e Q. On the other hand , the Grothendieck-Lefschetz fixed point trace fo rmula (19} 
asserts 

2 d im(U) 

((U,t) = II det( J - F;t)Hl'" (J.7) 

•=º 
where F, is the arithmetic Frobenius acting on the compactly supported t'-adic cohomology 

H~(Ü , Qt), which is isomorphic to the primit ive cohomology H~;;~ (X ,Ot) = H '- 1(X ,Q,)/ 
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11'- l(P",Qi) oí X for (i- 1) $ 2 dim(X), and = Hi(Jlir>,Q1) for i;:::: 2dim(X). By the Weil 

coitjccture!I pf'O\'tn by ~-e11igne [9J, the eigenvalues oí F; in any complex embedding Qt e C 
hlwt! abeolute \-alues q1!.:¡!l. Thus in (1.7) there can't be any cancellation between odd and 
l'vtn i't Our condition (1.3) translates then exactly into the condition that the eigenvalues 

oí F, be all divisible by q" as algebraic integers. 

On the other hand, the cohomology H"'(.,Y, Q1) carries a coniveau filtration ... C 
N•ff"'(X,Q1) e NG-1H"'(X,Q1) e ... , where Nª is the subgroup of classes which die 

af1er rt11tncuon out.side of a codimension a subschcme. One checks by a dévissage as in 

(17], Lemma '! 1, that the eigenvalues of the Frobenius acting on NG ff"'(X ,Q,) are divisible 

hy 1f 118 algl'braic integers. Thus if N"1-1;:1m(.X,Q1) = u;:1m(.X ,Q1), the congruence (1.3) 

hold~ ThP Tl!.te ronjecturc predicts thc converse: if t he eigenvalues of Frobenius acting 
on u;:,.(X,Q1) are all divisible as algebraic integers by q" , then the primitive cohomol­

ogy ~hould bt supported in codimension "'• that is in concrete terms, there should exist a 
cod1mens1on /t tubschemc Z C X such that the restriction map 

(1 8) 

2 Hodge Type 

The lfodgt. type of a projective variety X C I?" over a field k of characteristic O is defined 

to bt tbe larges1 natural number,.. such that the Hodge filtration .. . e FG H'Bn,prirn(X ) C 
F- 111DR.l" .. (X) e .. fulfil\s 

(2.1) 

for ali m (Onl' .,"Ould define similarly the Hodgc type of HIJR,prlm{X ) for a given degrce 
rn). lf X 15 pro~i\'e smoot.h, then Hodge type = K means 

}/ll(X,íl~) = {º for q 'f:. p < K 

kforq =p<K. 

(2.2) 

w1th tbf. amt ckfimt10n of the coniveau filtration for de Rham cohomology as for €-adic 

coho~. lhen one easily computes via the Gysin sequencc that the Hodge type of t he 
)lflm•h~ cohomok>gy i.s ~ K . The Hodge coajecture predicts the converse: if t he Hodge 

typt 11 ~. lbni l~ primitive cohomology is supported in codimension K. 



25'1 Fano varieties 

3 H odge Cohomology and Slopes 

In this section, X is still assumed to be a smooth projective variety overa finite field F9 , 

where q = pd for a prime number p. We are interested in conditions which force the reciproca! 

zeros a , and poles f)i of the zeta function ( I.6) to be divisible by q"- as algebraic integers. 

Write W(Fq) for the ring of Witt vectors over f 9 . It is a complete discrete valuation ring 
with residue fi ekl Fq. For example, W(Fp) = Zp, the p-adic integers. Let K be the quotient 

field of W(Fq)· Frobenius on Fq induces automorphisms u of W(F9 ) and K satisfying 

ud = identity. The crystalline cohomology [3/ H;rya{X/W(Fq)) ® K is a finite dimensional 
K-vector space with an endomorphism f (Frobenius) satisfying 

f(wx) ~ u(w)f(x); w E K , x E Jr 

In particular, f'' is K-linear, and the ha.sic theorem [3] is that 

((X/F,,T) ~ det(I - f'TJHT', 

(3. 1) 

(3.2) 

where of course the determinant of the right is taken in the graded sense, i.e. charactcristic 
polynomials coming from Hºdd appenr in the numerator of (. 

In arder to estimate divisibility for the eigenvalues, we can calculate crystall inc ooho­

motogy using the de Rliam-Witt complex [20]. This is a complex of pro-shciwes for thc 
Zariski topology on X 

w.rr := {w.o .!!..+ w . 111 .!!..+ w.11 1 - ... .!!..+ w.ndirnx}. (3.3) 

In other words, ea.ch w.n• is a projective system of Zariski sheaves on X 

(3.4J 

where !1X is the sheaf of Kii.hler i-forms on X. Ea.ch Wn!1' has a finite filtration with groded 
pieces coherent, so the cohomology groups Hi(X, Wn!1i) have finite len&rth . For i = O, W,,O 
is the sheaf of Witt vectors of length n over the structure sheaf O x. 

lt is not true in general t hat the Hi(X, W. 11'") := lim Hi (X , Wn!l;) a.re finitely gen· 

erated W(Fq)-modules (even for i =O, [31)~. However , ~~oups HJ°(X, W.!1;)/(torsion) 

are finitely generated. In particular, the H 1 (X, W.O' ) ® K are finite K-vector spaces. Thc 

differentials in (3.3) come from differentials Wn!l' .!!... wnn• +1, and we defi ne 

ll ' (X, W, n') o= \!!EH ' (X, IV"n'). (3.5) 

The de Rham-Witt complex plays the role of a. sort of de Rham complex calcu lating 
crystalline cohomology. Namely, there is a canonical , functorial isomorphism 

H;,,,(X/IV(F,)) "'H' (X, w,n') . (3.6) 
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Crucial for our purposcs is that the frobenius f has a nice description on the de Rham-Witt 
eohomology. Namely, one has endomorphisms 

(3.7) 

whkh sstisfy J (•)tJ(o) = v(1l J(i) =p. The endomorphism v(i) is topologically nilpotent in the 

aense o( thc inverse system (3.4). One has do J(i) = p¡ Ci+I) od, so in particular the p; ¡ <i) on 

w.n; lnduce a map of complcxcs on w.n·. The resulting map on H" (X , w.n•) coincides 

w!th the Ftobenius f on crystalline cohomology under the isomorphism (3.6). 

As a consequcnce of these facts, one deduces that the spectral sequence 

(3.8) 

dtgcnernlcs at E1 (14]), and that the eigenvalues of the K -linear endomorphism q" ¡ (a)d : 

/l' {X, W,0") - H"(X , W. O") coincide with the eigenvalues a; and {JJ appearing in ((X/ 
1",, T) which are divisible by q" but not by q"+1. (This is because qªv(o)d j (<1)d = qºpd = q0 +1, 

and ula) is topologically nilpotent.) 

Of course, there is a lot of mathematics here, and it is not possible to give the details 

ln 8 aurvey such 8S this. Note, however, that t here are two deep global resu!ts, (3.2) aud 

(3 O). 'The rest 1m-olves the definition and local structure of w.n· 
As a corollary oí thc a.hove, we deduce 

Corollnry 3. 1 Let K ~ l be a given intcger. Thcn all the recip roca{ zeroes and pales a; and 

{J1 of((XjFq, T) are divUible by q"' if and only if H" (X, W. 11º) ® K =(O) for a< K. 

We would like a crit.erion in terms of the Hodge groups Hb(X, f2):) which will insure 

the de Rham-Witt groups vanish as in corollary 3.1. The following is deduced from a purely 

local catculat10n using thc structurc of the sheaves WnOi . We use t he notation "Hodge 

type~ ss in sect ion 'l, even though thc ground field is finite. 

PropOllitlon 3.2 W1th notation as above, if X haJ Hodgc type K 2: l , thcn H•(x, W. 11º) = 
(O) /ora <" In particular, all the rnciprocal zeroes an.d polcs of ((X/Fq, T) are divisible 

1,q'. 

Proa/. We will use sorne results about the structure of w.n- from [21]. The first point is 
th11t / f1l, ul1l, p are injcctive on pro-objects. Topological nilpotence for v(i) means 

(3.9) 
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(21 1, (2.2. l). F\irther, by op. cit . (2.5.2) , there is an exact sequence 

o- w.o;-1¡¡<;- 1> ~ w.r2·¡v(•) -nx -o. (3.10) 

(For i =O this says W/vCO) e! Ox.) By induction on i we see that H" (X, w.n;/él) =(O) 
for i < k, so 

v"l•, H' (X, Wfl')" W(X, Wfl ') = ~H'(X , w.n' ) e ITJ/ '(X,W"fl'). (3.11 ) 

By (3.9), we deduce that H"(X, W.O' ) =(O) fo r i < k. o 

Remarks 3.3 i) Proposition 3.2 is a special case of a more general thcorem aJ"Strting 

that the Newton polygon o/ the F-crystal Hm (X/ W)/(torsion ) líes above t.Jie llodgt 

polygon defined by slope i with multiplicity dim Hm - i(X, OX) (see {f!Sj, {27/). IVt 

hove seen that only the local properties of w.n· are relevant for Proposition 3.2. 

ii} It is o/ course very easy to compute the Hodge cohomology Hi(X,0') far smooth com­

plete intersections X e P" defined by T equations of degrees d¡ ?: d2 ?: . .. ?: d~. lt 
is K = ["-d·;;; ·· -d J. Here (z] is the integral parto/ the rational m1m ber :. In othcr 

words, Proposition 3.2 is an easy proof o/ the theorem o/ Ax and Katz {/23}) asscrtm9 

( i.2) or equivalently (1.3) in this case. 

4 From 1Fq to IC and Vice-versa 

Let us think now that our smooth variety overa finite field is coming via reduction modulo p 

from a variety defined in characteritic O, overa ring oí finite type over the integers. Then , vi8 
the comparison between t-adic and de Rham cohomologies, the coniveau in which (primitive) 
de Rham cohomology is carried is the same a.s the coniveau in which (primitive) t-adic is 
carried. In conclusion , one sees that the coincidence of the K stemming from the ( function 
with the K from the Hodge type is a test both for the Tate a.nd thc Hodge conjecturcs. 

We ha.ve two tests at disposal. First smooth complete interscctiom. Let X e P" be 8 
smooth complete intcrsection defi ned by r equations of degree d1 ~ d2 ... ~ dr· We define 
,.. = {"- dªd; .. -d.] as in Remark 3.3. Then, as already mentioned , the thcorem of Ax and 

Katz [23] asserts (1.3) while Deligne's thcorem [8J asserts (2.1). Moreover, this bound is 
sharp both on the ( and on the Hodge sides. 

T he smooth complete intersections just discussed with K ~ 1 are specie.l Fano varict1es 
We consider now our sccond example: Fano uarietic..9 which are e.bstractly dcfined . In chnrac· 
teristic O, Kodaire. vanishing npplied to t he ample invertible sheaf w- 1 yield s /J q(X , Ox) ~ O 

.J 
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for ali q > O. Thus the Rodge theo~itic K is at least L Over a finite field, [17], C0r0Ua.ry 1.3 

M8(1TU! tlml IX(F.,)I = 1 mod q. Thus the K. of the ( function is at least 1 as well. This is 0ur 

aucond test. However, we obser:ve bhat the test is not complete. lt might well be t hat the 

lfodgc typc of X is ~ 2. Yet the proof given in [17) does not give a better the cong:ruence 

for ~he numbcr of mt ional points over a finite field, unless we know t he Chow groups of X. 

'llhls is thc subject of thc next scction. 

5 Motivic Conjectures 

!J'hc BolHnson·Bloch conjectures (t[5], [l], [·2]) predict that the Chow groups of a smooth 

projcc~ivc varioty defined over the complex numbers should be controlled by its Hodge 

~hoory. More preciscly, it predicts that if tlhe Hodge type 0f the primitive cohomology of. a 

s111ooth complex projectivc vtWiety X of itlimension d is t<., that is (2.1) holds t rue, then one 

lu111 

(5.1) 

Ap¡,lying thc splitt ing of the diagonal as initiated in [5), Appendix to Lecture 1, ancl then 

roíluctl ns in {22J, l29J, \15], one sees that (5.1) is equivalent to saying that there is a nontriviat' 

nn~urnl number N , thcre are dimension i ami codimension i cyclcs a; a.nd {Ji e X, a 

codlmonslon ,.. cycle Z e X, a codimensic:m d cycle re X x Z with 

NA =ao xX+a1 x/31 + ... +o:,._1 X w-1 + r (5.2) 

whcrc = means the equivalence in CHd(X x X), and A is the diagonal. lt is easily seen that 

sunh n decomposit ion (5.2) of tlhe diag011al, up to torsion , implies (2.2). Over the complex 

n11111bcrs, it implies a fortiori (2.1) whi!e over a finite field, it imp\ies (1.3) , by showing again 

~hnt thc cigenvalues of thc Frobcnius are divis ible by q" as a\gebraic numbers. 

in other words, tlie Beilinson-Bloch conjectures on the Chow groups imply here the 

lfotlgc conjccture. T hus wc expect that our Fano var ieties with Hodge type ,.,, will fuUill 

(5.1) nnd {l.3) as v.'Cll. 

Lct us took at our two c!asses of examples. The smooth complete intersections as in 

Ma~lon 3 with,.. ~ l fulfill CH0(X) = Z by a theorem of Roitman [30]. However, we do not 

know in general wbether CH; (X) ® Q = Q for i < K . We have very few simple cxamples 

whorc the bound is achicved (!32j, [28\), and the general results we have yield l:iad bounds 

( (101). We observe nc\'Crtheless tlhat Roitman's theorem (loe. cit .) yields a whole class of 

c:rnmples for which thc Bcilinson·Bloch conjecture is t rue a:ad sharp. Let Y e !P'"- 1 x p n 
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be a smooth complete intersection ofbidegree (l,d). Then one easily computes that 

(5.3) 

if and only if Kd ~ n. 

Let us write Y1Í1 + .. . +yl(f"' for the equation of Y , whcrey, are the homogeneous coordina.tes 

in r"- 1 and f; are homogeneous polynomials of degree d. Then Y is smooth if a.nd only ií thc 

codimension x, subvariety X e l?Tl defined by / 1 = ... = ji( =O is smooth. Moreover, Y is 
the blow-up of X in IP'". Consequently, one has C H;(Y ) = CH;-"+1(X) @CH"+...:- 2-i(P" ). 
Thus CH;(Y) ®Q = Q fo< i S (< - 2) and CH0 (X) = Z ;mpHes CH,_,(Y) ®Q = Qe Q. 

Roitman's theorem is a spedal case of a deeper theorem for abstractly defined Fano 
varieties, due to Campana, and Kollár-Miyaoka-Mori ([24]). lt is stemming from geomctry 

If X is a Fano variety, then it is rationally conne<:ted, that is any two closc<l points are 
linked by a cha.in of rational curves. Thls implies C Ho(X) = Z, but is stronger than 

this. For example , in characteristic O, surfaces with Hm(.,'< , Ox) = O,m = 1,2, but with 

nonnegative Kodaira dimension :5 l have C H0 (X) = Z (f6]), and certainly they are not 

rationally connected. As recalled in the abstract, Fano means that w:f is ample. Thus this 
strong negativity condi tlon on the top differential forms implies rational conncctivity. On 

the other hand , strong negativity on the 1-forms implies rationality: by the li.mdamcnt&I 
theorem of Mari ([26)), {Ok ¡v ample is equivalent to X being isomorphic to the projccti~-e 

space. Thus in this case CHo(X) = ... = CHd(X) = Z and "= (d + l ). 

In consequence, it is tempting to think that the condition (5. 1) might result from 

a strong negativity condition on d, (d - 1), . . . , (d - K + l ) differentiat forms. Wc ha\"C 
at disposal Demailly's positivity notion [11]. A vector bundle E on a smooth projecth't 

complex variety is s-positive if its hermitian curvature form, scen on Tx ®E, is positive on 

ali tensors of length $ s. Demailly 's vanishing theorem says that if E is s positive, then 
Hq(X,wx ® E)= O for q ~ d- s + 1. ln particular, let us assume that 

{n"-P)v is (n - p) - positive for O$ p $ (" - l ). (5.4) 

Then Hq(X , O~) = O for q > p,0 $ p $ (K - 1). But by Hodge duality, this implies 

Hq (X , 0~) =O for q < p,O $ p $ (K - 1) as well. Thus under the assumption (5.4 ), the 

Beilinson-Bloch conjcctures predict (5. 1). One may hope that this geometric formulalion 
yields more information, as we discussed for p = O and p = (d - 1) above. Jt. is fu rther 
to be remarked that, while applied to smooth complete int erscctions, Demailly's positi vity 

is stronger than what would be needed to prove exactly (5. l ), which is coming from the 
Hodge type. lt is titen Jikely that a positivity notion, a bit wcakcr than Dcmai lly's one, 
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will force Demailly's vanishing, and would be such that while applied t.o smooth complete 

inteniect\ons, it would yield, via the Beilinson-Bloch conjectures, exactly the right predicted 

it&tement 011 Cbow groups. 

6 Singular P rojective Varieties 

In thla acct1on, X C pn is still projective, but no \onger necessarily smooth. 

Let us e.ssumc first that X is dcfined over a finite fie\d Fq. We still have that the 

d1vlillbihty of the eigenvnlues of F'robenius acting on Jl~(Ü, Qt) implies the divisibility of the 

reciproca\ roou and poles of the ( function via {l.6) and ( 1.7). But the converse is not a 

priori clcar The problem is that the absolute values of the eigenvalues of F; are no \onger 

dct('rmin('(I by 1, thcre might be some cancellation in (1.7). 

Ncxt 9.'e think of H;(ü, Ot) as being no \onger a semisimple Ga\ois representation, and 

wc co11s1der 1ts &SSOCiated gradcd scmisimple Calois representation. \Ve apply the mechanism 

t'Xpl11.ined 111 the smoot h case t,o predict that the Hodge type of X in characteric O should be 

theao.me as the" such that q" divides the eigenvalues of the F'robenius acting on H~{Ü,Q,). 
Now we h1wt oni}' one class of examples: projective varieties X defined by r equations of 

d<'gr d1 ~ d1 ~ ... ~ d,. . Wc don't require smoothness, not even that the dimension of 

X be (n - r ). lf n-<1·;¡1··-d ~ O we define"" as in (2). Then the theorem of Ax and Katz 

(123]) OMerU lhat (1.3) is true, while [10), [13], [14] show that the Hodge type of X is K . 

Thoec bounds are sharp. In particular, we see that the coincidence of the "" coming from 

the ( funct \On and the one coming from Hodge theory in this mixed case predicts that t he 

eigenvalues oí Ftobe.nius will be divisible by q>< , which we don't know so Í!\I". 

In the S&ll1' range of ideas, if wc require now that X be a {nonsmooth) complete inter­

aection, by l33J one hM higher divisibility oí t hc reciproca! poles of ( (suitably normalized), 

whlle by !I j one ha.s a better Hodge type for ali the primitive cohomology beyond the mid­

dle dmtl'1ulon Hl'rc one would also expect that the better divisibility is not only for the 

rrdprocal poles oí the ( function, but also for the eigenvalues of Frobenius acting 011 the 

corrrsponding cobomology H~(Ü, Qt) for all i modulo 2 corresponding to the poles. But in 

ll.ddlt1on, m light oí the Hodge type computation, one would expect the better divisibility 

hcyoud tht mKklle dimension. 

The Bcahruon-Bloch conjecturcs are not formulat.ed for projecti\'e nonsmooth varieties. 

lt L! tempc.1ng to think that motivic cohomology in sorne good sense will control both the 

llodgl' typt ftnd 1he congruencc (in particular the existence) of rational points over a finite 

fü1ld llo•,.~"tr. in ab&ence of a clear view of what would correspond to the ea.sy imp lica­

t1on in the smooth case (trivinl Chow groups implies congruence for point.s and nontrivial 
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Hodge type), it is hard to forsec a good formulation of what would be the Beilinson-Bloch 
conjectures in the projective singu lar case. 
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