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ABSTRAGT. We recall the most important properties and applications of the Bell poly-
nomials, and in particular the ibility to rej t symmetric functions of a count-
able set of numbers. The derivation of the so called Robert formulas for the reduction
of the orthogonal invariants of a positive compact operator is also included.

1 Introduction

h

The Bell polynomials first appear as a
of & composite function.

| tool for rep: ing the nth derivative

Being related to partitions, the Bell polynomials often appear in Combinatorial Analysis
[17). They have been also applied in many different situations, such as the Blissard problem
(see (17), p. 46), the repi jon of Lucas poly ials of the first and second kind

AMS CLASSIFICATION: 05A10 ~ 26A06 - 46120 ~ 47B10.
KEY WORDS: D of composite functions. ic functions. Bell polynomials. Or-
thogonal Invaziasts.

R



) W

264 Bell Polynomials and Some of Their Applications

[6], [8), the construction of recurrence relations for a class of Freud-type polynomials (5],
etc., however, in our opinion, the most important of their applications is connected with
the possibility to represent, by using such a powerful tool, the symmetric functions of &
countable set of numbers. As a matter of fact, by using Bell polynomials, it is possible
to deduce the relations which generalize the classical algebraic Newton-Girard formulas.
Consequently, as it was recently shown [7], it is possible to find reduction formulas for the
orthogonal invariants of a strictly Positive Compact Operator (shortly PCO), deriving in a
simple way the so called Robert formulas [18].

In this article, after recalling the most important formulas related to Bell polynomials,

we will show this last application, which can be used as a trace to follow in every problem

involving sy ic functions of a table set of

b

2 Recalling the Bell Polynomials

The problem of finding an explicit expression for the the nth derivative of a composite
function was first solved by F. Faa di Bruno [9]. The relevant problem of finding an
efficient computational method was solved by E.T. Bell, by means of the introduction of his
polynomials [4], which can be computed recursively, whereas the Faa di Bruno formula is
based on the partitions of the integer n, a set whose cardinality increases in an extremely
fast way.

Consider ®(t) := f(g(t)), i.e. the composition of functions z = g(t) and y = f(z),
defined in suitable intervals of the real axis, and suppose that g(t) and f(x) are n times
differentiable with respect to the independent variables so that ®(t) can be differentiated n
times with respect to t, by using the diffe iation rule of functi

We use the following notations:
Oy i= DPR(H),  fiu = DEf(@)lemgry 9k = Dg(t).
Then the n-th derivative can be represented by
O = Ya(f1,915 f2, 923 frir 9n)s
where the Y, are, by definition, the Bell polynomials.
For example one has:

Yi(f1,¢1) = fign (2.1)
Ya(f1,915 f2,92) = f192 + fag}
Ya(f1,91; f2,92i f3,95) = f19s + f2(30291) + fag?.
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Further examples can be found in (17], p. 49.

Inductively, we can write:
Yal£1,903 £2,923 3 fuy 9n) = D Anik(91,92, -1 9n) fis (2:2)
k=1

where the coefficient Apx, for all k = 1,...,n, is & polynomial in g1, g2, .-, gn, homo-
goneous of degree k and isobaric of weight n (i.e. it is a linear combination of monomials
o}'gy? -+ gk whose weight is constantly given by ki + 2k; + ... + nk, = n).

Since the coefficients A, x are independent of f, their construction can be performed
by choosing

Ni=le5%)

where a is an arbitrary constant.

In this case

fio=akesO = gkets, (9= g(t),

50 that eq. (2.2) becomes:

n
D= aFePAn k(91,921 9n)s

k=1
ho.
n
e 99D = E a* An k(91,92: -+, Gn)- (2.3)
k=1
The last equation ch ize Ay as the coefficient of a* in the pol ial

of e~ Dpe"s.

For example:

~forn=1: e %D =ag), sothat: A1 =g1.

-forn=2: e=*D}e" = agy + a?g?, sothat: Apy =g, Azo=g?,
and so on.

It is easy to prove the following result:

P ition 2.1 The Bell polynomials satisfy the recurrence relation:

Yo:=fi;
Y1 (f1,915- 3 fny Gni frt1s Gn) =

(2.4)
= é (:) Yo-k(f2,915 f3, 023

Fr—kt1) Gn—k)Gk+1-

il a—
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Proof. First note that the above recursion, for n = 0 reduces to ¥; = Yyg), so that, by
comparison with eq. (2.1), we must assume Y := fj.
For proving the above recursion in the general case, note that by using Leibniz’ rule we
can write:
Bpp1 = Yor1(f1, 9155+ - -5 fns Gni fak1s Gnsr) =
N .
= Dppia = D7 (fan) = 3 (}) ik =

k=0

= Z": (:)D{""f,g,,“ =

k=0
= Yo-k(f2, 915 f3, 923 - s famk+1: On—k)Gk+1-

As we recalled before, an explicit expression for the nth derivative of a composite
function, i.e. for the Bell polynomials, is given by the Faa di Bruno formula:
n! Qm[92]™ | [gn]™
. = Ya(f1,01 f2, 925 -5 frrgn) = E)mfr ['1-,] -27] F] , (26)

w(n
where the sum runs over all partitions 7(n) of the integer n, r; denotes the number of parts
of size i, and 7 = ry + 73 -+ ... + 7, denotes the number of parts of the considered partition

A simple proof of the Faa di Bruno formula can be found in the Riordan book [17).
Another proof, based on the so called umbral calculus, can be found in a paper by S. Roman
[19]. The umbral calculus is a classical tool tracing back to the operational calculus of O.
Heaviside, but recovered, in modern form, by E.T. Bell and more recently by G.C. Rota (see
[20] and the references therein).

Before ending this section, we recall that a generalization of the Bell polynomials suit-
able for the differentiation of multivariable composite functions can be found in [16].

3 Generalization of the Newton-Girard Formulas

We want to present now the most important application of the Bell polynomials, i.e. the
generalization of the algebraic Newton-Girard formulas (see e.g. [2], [14]).

Consider the (finite or infinite) sequence of real or complex numbers sy, pa, ga, . . ., and

denote by

=ty 2= Bl ey k= D Huphiscccbiy e (8)
:

i<y < <<y

(T e
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the relevant elementary symmetric functions, and by
a=Y i, a= 4 .., a=du .., (3.2)
. i i

the symmetric functions power sums.

Of course, in case of infinite sets of indices, if we are interested to non-formal results,
we must assume that all the above considered expansions are convergent.

We premit a lemma, which is frequently used in Statistics [13].

Lemma 3.1 The following expansion holds true:

(1= mz)(1 = paz)(1 - pgz) - =1 =gz + 032 — ... = (3.3)
i g
=up(—alz—azf—sx? —-...),
and, in equivalent form:
log (1 = p1@)(1 = paz)(1 — paz) -+ (3.4)
=log(1- oz +092® —..) =
o z°
=-az-ag - ..
Proof. The above egs. (3.3)-(3.4) are both equivalent to the eq. below
1 z il
SR =0 exp (slz +ag tagt.. ) ? (3.5)

This lnst equation can be easily proved by transfinite induction with respect to the cardinality
of the set of indices. In fact, the result is certainly true if this cardinality is n = 1, so that:
o - gy, .;” e ‘:” = uf,.... Then eq. (3.5) becomes:

T = o (- a1 - ) =

2 3 3
-!I'P(u x+(mz) @-}-,..):exp(s(”z-i»sm; a&‘)%+...).

Suppose that eq. (3.5) is valid for the above cardinality equal to n — 1, then, noting
that

(n=1)

liste=" REIRINEC,, o m of Ml (4

! = -

+in 8
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we can write:

1 1 1
0= m0) [~ @A — pn2) A= pz) - (U pnas) (= pin2)

2 2
= exp (sg"_l):u + sg"_l)% + ) exp (;1,.1 e ) =

2
(n) (Oka
=exp(s, z+a{'7+...),

so that eq. (3.5) holds true for cardinality equal to n.

The general result, relevant to infinite many indices, can consequently be obtained by a
limit process, taking into account the hypothesis about the convergence of all the considered
expansions.

Proposition 3.2 For any integer k the following representation formulas hold true:

(=1*
o = TY,,(1,—5,;1,—32;1,—2!33;.. i1, —(k — 1)lsy) (3.6)
sk = —ﬁn (1, —ou; =1, 2lon;. .5 (=1) 1k — 1!, (=1)*klo) (3.7)

Proof. For proving eq. (3.6), we start from eq. (3.3) of Lemma 3.1. By using Taylor's
expansion we can write, for any k > 0:

YV sy = (38)
ok =Dz |exp ( —s1 — 825 —sa- = " f
2=
= Yi(f1, 915 f2,92) -5 fi k),
where, putting f(g(z)) = /@, y = g(z) = —s;z — sz‘T’ - 53§ — ..., and observing that

& = 0 corresponds to y = 0, we have to assume, for every h=1,2,.
h h
= [DyFW)],mg = (D)) g =1,
and

an = [D}o(@)],o = (=) = =(h = Dls,

so that eq. (3.6) holds true.
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For proving eq. (3.7), we start from eq. (3.4) of Lemma 3.1. By using Taylor’s expansion
we can write, for any k > 1:

_T‘,__ph[log(1+(—a,z+nz s e ) |
- ﬁof [log (1 + Q(@))) g »
w0 that

8= —

(E= 1)|Yk(Fan>Fz,Qm -+ F, Qk),

where, putting F(Q(z)) = log(1 + Q(z)), ¥ = Q&) = —o1z + 022% — 032® + ..., and
observing that z = 0 corresponds to y = 0, we have to assume, for every h =1,2,...,k:

By = [DjF()],.o = [D}log(1 +)],_y = ()"} (h - 1)L,
and
Qn = [DIQ(2)], = (=1)"hlon,

s that eq. (3.7) holds true.

Note that the above formulas (3.6)-(3.7) constitute a generalization of the well known
Newton-Girard formulas and their inverse, since we have, in particular:
01 =81
a3 = §(st - 82)
03 = §(s7 — 3818 + 283)

8 =0
aq—a, 209
83 = 01 ~ 30102 + 303

Hefore ending this section we want explicitly remark that the Gauss' theorem on sym-
metrie fanetions can be stated also in the more general framework of symmetric functions
of infinite many variables.

In fact, the following statement can be easily proved:
Proposition 3.3 Every symmetric polynomial function (or absolutely convergent series ex-

pansion) of the varvables yiy, g, i3, ..., can be written as a polynomial (or absolutely con-
vergent series expansion) of the variables ay,03,03, . . ..

P
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Note that, by using Bell polynomials and eq. (3.6), the expansion derived from the
above Proposition 3.3 can be transformed into a polynomial (or series expansion) of the
variables power sums.

Proof. The proof is obtained in the same way of the classical proof of Gauss' theorem
(see e.g. [2] , pp. 210-217), by d posing the given sy ic function into symmetric
multiple sums (also called ¥ sums, (3] , p. 44), and then proceeding by induction with
respect to the height (i.e the difference between the degree and the number of variables
appearing) of such multiple sum. Convergence, in case of infinite expansions, is guaranteed
by the hypothesis of absolute convergence of the starting function.

4 Representation of Orthogonal Invariants for a PCO

It is well known that the eigenvalues py of a positive compact operator 7' in a complex
Hilbert space H can be ordered in a sequence

0<...<pg <<, (4.1)

s.t. when infinite many eigenvalues exist, they have the zero as an accumulation point.

A classical example of eigenvalue problem for such an operator (which is strictly posi-
tive) is given by

To =Ko = [ Kan)owdy = ), (12)

where the kernel X (@,y) of the second kind Fredholm operator K belongs to L*(A x A),
and is such that K(z,y) = K(1,2), (Ké,8) > 0 if ¢ # 0 € L*(A) (see S.G. Mikhlin [15]).

‘The numerical computation of the eigenvalues of T is usually performed by using the
Rayleigh-Ritz method [15] for obtaining lower bounds, and the orthogonal invariants method
(see G. Fichera [10] - [11] - [12]) for upper bounds. A short description of such methods was
given in [7]. In a recent paper (1], an iterative method for computing the above mentioned

eigenvalues has been shown.
The orthogonal invariants are, by definition, symmetric functions of the eigenvalues of
2

M= Y essml (4.3)

ki<ka<..<k,

so that it is natural to expect that (as in the algebraic case) connections with Z}(T) (s =
1,2,...,n), or I}(T) (n = 1,2,...,s) hold true.
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5 Robert’s Formulas

In the above cited article (18], D. Robert has found the following formulas

BT =1 3 () E T ) (51)
q=1
-y S D @) T(T)
(M) = (-1) ?__“1 o T e (65:2)

Dt A=
1<qiss

which allow to reduce the orthogonal invariant Z7(T') to ZP(T) (Vh = 1,2,...,ns).

Since the eigenvalues of T™ are given by u?, if 4 are the eigenvalues of T, in the
following, denoting by n the smallest integer such that Z7'(T) < oo, we will put 7 :=T", so
that I)(T) = Z}(T") = Z}(T), and the above eq. (5.1), (5.2) become:

r‘m—-):< D)TITY(T)I)_(T) (5.3)
q=1
1) = (1 30 D (D)2 (T)
() = (-1) E AT laie— T (54)

aitkgume
Remark 5.1 [t us worth to note that there exist PCO not satisfying the above mentioned

condition which requires the existence of an integer n such that I7(T) < oo [12], however
this condition s satisfied by all the PCO occurring in applications.

6 Orthogonal Invariants’ Reduction Formulas

Writing the rep jon formulas of Proposition 3.2 in terms of orthogonal invariants, we
obtain:

(1) = —y.(l ~INT) 1, ~ZA(T); 1, -2TH(T;...;1, - (k - D'ZH(T))  (6.1)

i(T) = -—I)—,Y. (1,-ZH(T); -1, 2ZH(T); ... (-1 (k = 1)), (~1)*KIZL(T)) . (6.2)

R —
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6.1 A simple proof of Robert’s formulas

Proposition 6.1 The first Robert formula is equivalent to the recurrence relation of the
Bell polynomials.

Proof. We start from the recurrence relation (2.4) written in the form:

=

1) Yaoq(f2,915 f3, 925 3 fo-gi1) 9sg)9- (6.3)

Yo(f1,915- 3 fo-119s-1i for 9s) =
1,91 1 1 qz_;(q—l

Then, by (6.1), it follows

2m) = Sl v, - B, B @, 23T 1,6 - DT =
_( 1)° < fa—1 £ :
e q_;(q_l)Y._.(l,—z.‘m.l.—z?m,..'

i1 =(8 = g = DIT;_o(T))(=(g = YHZI(T)),

and consequently:

(1) = £ (;‘1)< 1)*=4(s = q)1Z_(T)(~(g - D)ZI(T) =

g=1

I Cyeip o] s
= S0z,
=

which is the first Robert formula.

Proposition 6.2 The second Robert formula is equivalent to the Fad di Bruno representa-
tion formula for the Bell polynomials.

Proof. We start from the representation of Z}(7), s > 1, by means of the Zf(7), Vk =
1,2 +5,8

In fact, for any integer s > 1, the orthogonal invariant Z}(7), is expressed in terms
of the Z§(T),Yk=1,2,...,8 by the Faa di Bruno formula:

=3 S B [ED” [EHD, e

where 7(s) denotes the sum running on all partitions of s =ry +2r + ... + sr, and
k=ri+r+.. .47,

This formula is equivalent to the second Robert formula (5.4). In fact in eq. (5.4) the
indices g1,...,qx are not all distinct. Denoting by r; the number of times that 1 appears,

e o0
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by ry the number of times that 2 appears, ..., by r, the number of times that s appears,
then s = ry + 2ry + ... + sr,, and the second summation symbol in eq. (5.4) is extended to
all partitions of the integer s composed of k parts. Since the first summation symbol in eq.
(6.4) runs from 1 to s, this means that the sum is extended to all partitions of the integer
4, and taking into account that every term appears r.'r_:\‘_r' times, eq. (5.4) is transformed

into eq. (6.5).
In particular, from the above eq. (6.5) we find:
Z)(T) = (@) - Z}(T))
Zy(T) = §(@(T))® = BTHTTH(T) + 223(T))-

Lastly, in a similar way, by using eq. (6.2) and the Faa di Bruno formula, Z§(7), k > 1
can be represented by means of T} (T), Ve =1,2,...,k:

Proposition 6.8 For any integer k > 1, the orthogonal invariant I}(T), is expressed
interms of IT), k=1,2,...,8 by

@k D G ). @) ©9)
(k)

rylmglevimyl

where w(k) denotes the sum running on all partitions of k=ry+2ra+...+kry and
=Ty byt T

Note that the last eq. (6.6) is not included in Robert's formulas.
In particular, we have:

ZH(T) = (T(T))* - 23(T)

T(T) = (T(T))* = 8TH(T)Z3(T) + 8T3(T).
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