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0 Introduction

Since the 1980s, the subject of 4-d ional ifold topology has experienced d i
growth. Accompanying this growth has been a number of surprising, even shocking, re-
sults which d rich and i ionships between different categories of
manifold, relationships which are unique to dimension four.

An n-dimensional munfold is an object which locally bl di jonal Euclid
space. Different of folds can be idered simply by requiring different sorts
of maps to perform these local identifications: A manifold may be smooth (if the maps are
required to be infinitely differentiable), or complez (if n is even and the maps are required to

be holomorphic), or topological (if the maps are merely required to be continuous), or many
things in between.

Prior 1o 1980, smooth 4-manifold theory consisted largely of describing examples of
complex manifolds as handlebodies, and trying to manipulate these handlebodies using the
so-called Kirdy colculus in order to construct interesting new examples, or to show that
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276 Lefschetz Fibrations

known were diffe phic. In short, 4 ifold topology was the province of
geometric topologists. It was conjectured, based on little evidence other than the lack of
examples to the contrary, that every simply i smooth 4 ifold could be exp

as a connected sum of complex 4-manifolds, where the complex summands were allowed
to have either one of its orientations. (The sphere S¢ known to be not complex, was
excluded from this conjecture.) In 1980, however, came a revolution in the subject, as Simon
Donaldson introduced powerful ldeas from gauge theory and mathematical physics into the
field, which ded in i many ifi negative results, often showing that
smooth 4-manifolds with prescribed properties could not exist, or that two known examples
were not diffeomorphic. Donaldson theory, a major mathematical industry in the 80s and
early 90s, was instrumental in establishing the following theorem of Robert Gompf and Tom
Mrowka, which showed that complex manifolds alone were not sufficient building blocks for
all smooth 4-manifolds. We say that a 4-manifold is irreducible if it is not a connected sum

of nontrivial pieces.
Theorem. ([GM]) There exist infinite families of simply connected irreducible smooth 4-
manifolds which are not complex.

Another category of ifold, originating in h ical physics, is a symplectic man-
ifold. (A definition is given below.) Defined only in even dimensions, a symplectic manifold
is a smooth manifold with admits a closed nondegenerate 2-form of the sort found natively on
a large class of complex manifolds (including all simply connected ones). Hence symplectic
4-manifolds can be thought of as a smooth lization of complex 4 1d:

The mid-1990s saw a number of developments which made symplectic 4-manifolds nat-
ural candidates to be the building blocks of all smooth 4-manifolds. Gompf showed that a
basic cut-and-paste operation, a symplectic normal sum, could be performed on symplectic
manifolds, with the result being symplectic [G1]. Cliff Taubes showed that the newly dis-
covered Seiberg-Witten theory-an extension of Donaldson theory- could be used to produce
invariants for symplectic 4-manifolds T}, a necessary step for showing examples to be irre-
ducible. Combining these breakthroughs, Zoltan Szabo proved that the symplectic category

AT o

was not a sufficient source of ir
Theorem. ([Sz]) There eist simply connected irreducible smooth 4-manifolds which are not

symplectic.
Szabo's example was soon generalized by Ron Fintushel and Ron Stern, who showed
that one can find infinite families of simply connected irreducible non-symplectic smooth

4-manifolds [FS1).
We thus have a nesting of categories

{Complex} C {Symplectic} € {Smooth}

(T
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hmmtmﬂm.wmhnwuhm bundance of irreducibl les show-
_hmhm In an effort to sort out the poorly understood relationship between
these categories, & patural question arises: Is there a purely topological description of sym-
M“-.M‘l An answer was provided with jon th of Donaldson and
Gompf: roughly speaking, symplectic 4-manifolds are those that (after perhaps blowing
up) admit the structure of a Lefschetz fibration. A Lefschetz fibration is a fibering of a
t-manifold by surfaces, with a finite number of the fibers permitted to have singularities of
o prescribed type. These fibrations were first discovered on complex surfaces by Lefschetz,
who used them as a tool in the study of their topology. Thus symplectic 4-manifolds may
be viewed top lly as those admitting a fibration structure bling that found on
complex surfaces.

In this article, we survey some recent results on symplectic Lefschetz fibrations. We
gote at the outset that a definitive introduction to modern smooth 4-manifold theory from
» topologieal viewpoint, Gompf and Andras Stipsicz's “4-Manifolds and Kirby Calculus”
(GS], has recently been written. Their textbook includes sections on many aspects of 4-
manifold topology, and features a detailed chapter on Lefschetz fibrations. This article is
meant as & kind of appendix to Chapter 8 of (GS], providing elaboration on some of the
rovilts mentioned in their book, and giving an update on some more recent results.

1 Definitions

We begin with an official definition of a manifold.

Defl A SASRT SR 1

| space X isa ! I n-di ional man-
Wfold or topelogical n-manifold if for every point p € X there is an open neighborhood U of
pin X and & bomeomorphism ¢ : U — R". The pair (U, ¢) is called a chart. The space
X ls, in addition, a smooth n-manifold if given any two charts with open sets U, and Up
and homeomorphisms ¢, : U, — R" and ¢4 : Us — R", respectively, then the transition
functions
#80¢5" : ga(Ua NUp) = $5(Ua N Up)

between open subsets of R are infinitely differentiable. If X is a smooth 2n-manifold, then
we may identify R* with C" in the usual way, in which case X is complez if the transition
functions ¢y © 9" are holomorphic.

There may be many incompatible ways to assign charts to a topological space making
it into & smooth or complex fold. Any p \f ! of charts (up to a natural
equivalence) s called & smooth or complex structure. One may also consider smooth man-
Volds with bowndary by allowing the homeomorphisms in the charts to have range either
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R" or R} = {(21,...,%n) : @n > 0}. The analogous notion of a complex manifold “with
boundary” is called a Stein manifold, which we discuss in Section 7. We will use the phrase
“complex surface” to refer to a complex manifold with two complex dimensions, which will
be a real 4-manifold. The unadorned phrase “surface” with refer to a real 2-manifold.

In this article, we will be primarily concerned with 4-manifolds which are simply con-
nected (i.e. those with a trivial fundamental group). Simply connected complex surfaces
fall into the well-studied class of Kahler surfaces, which are known to admit a closed non-
degenerate 2-form. Generalizing this property to the smooth category gives the following
Definiti A smooth 4. ifold X is lectic if it admits a closed nondegenerate 2-form
w € Q*(X,R).

2 Lefschetz Fibrations and Symplectic 4-manifolds

We now give a definition for the central topic of this paper.

Definition. Let X be a compact, connected, oriented, smooth 4-manifold. A Lefschets
fibration on X is a map f : X — C, where C is a compact, oriented, smooth 2-manifold,
such that each critical point of f has an orientation-preserving chart on which f: C* — €
is given by f(w, z) = wz.

1t is a consequence of Sard’s Theorem that pre-images f~(x) are diffeomorphic to a
compact 2-manifold 3, of a fixed genus g, as long as z is not one of the finitely many critical
values of f. We may assume that each of the critical points of f lies in a different fiber
of f. Since f(w,z) = wz in a neighborhood of a critical point, we see that the singular
fiber (corresponding to f~!(0) locally) is an immersed surface with a single transverse self-
intersection. For intuition, therefore, a Lefschetz fibration should be pictured as a smooth
fibration of X by surfaces I, with finitely many singular fibers, each of which has a single
transverse self-intersection. We will often refer to a Lefschetz fibration, according to its
fiber genus, as a genus g Lefschetz fibration. If a Lefschetz fibration has the property that
no singular fiber contains an embedded sphere of self- intersection ~1, it is termed a relatively
minimal Lefschetz fibration. Since any sphere of this sort can be blown down in a way which
preserves the fibration, this condition can always be arranged, and some authors incorporate
it into their definition of a Lefschetz fibration. Except where stated otherwise, we will assume
all Lefschetz fibrations are relatively minimal.

If X is a Kahler complex surface, then X is known to admit a holomorphic Lef-
schetz pencil of curves, which can be blown up to yield a holomorphic Lefschetz fibration
X#nCP? — CP!. (This construction is described in detail from a topological perspective
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Figure 1: Lefschetz fibration

I Section 8.1 of [GS].) Our definition of a Lefschetz fibration is therefore a generalization of
this construction to the smooth category. In this generalization, we allow bases other than
OP' = 5% In addition, our definition allows manifolds with boundary, with the singular
fibers necessarily in the interior of X. The total space X will be simply connected only
when € = 8% or € = D?, and we will primarily consider those cases here.

The fact that Lefschet fit I ize symplectic 4
theorems of Donaldson and Gompf.

ifolds follows from deep

Theorems. (a.) (/D)) For any symplectic 4-manifold X, there ezists a nonnegative in-
teger n wuch that the n-fold blowup X#nCF‘5 of X admits a Lefschetz fibration f :
X#nCP* — 5.

(b,) ([GS)) If & 4-manifold X admits a genus g Lefschetz fibration f : X — C with g > 2,
then it has a symplectic structure,

Thus Lefschets fibrations provide a topological way to study symplectic 4-manifolds.
The restrietion that g > 2 in (b.) is mild, and rules out only a collection of well-understood
examples (eertain torus-bundles over tori and their blowups are not symplectic, yet admit
genus | Gbestions).

The assump of P ving charts in the of Lefschetz pencils
and fibeations i & subtle but crucial point. If the definitions are relaxed to allow orientation-
roversing charts as well, X can no longer be shown to be symplectic. These broader con-
Atructions aze known as achiral Lefschetz pencils and fibrations; lacking a connection to
symplectic structures, we will not consider them here.

o —Y
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3 The Topology of Lefschetz Fibrations

We begin by describing the topology of a Lefschetz fibration locally, in the neighborhood
of one singular fiber. Let f : X — D? denote a Lefschetz fibration with only one singular
fiber, say Fy = f~!(1), in the interior of D?. Additionally, let Fy = f~*(zg) be a nearby
regular (i.e. nonsingular) fiber in the interior of D? and assume that we have made an
explicit identification of the fiber Fy with a standard genus g surface ¥, as in Figure 2. We
can visualize the singular fiber F} as being obtained by taking a simple closed curve 5 in £y
and gradually shrinking it to a point as we approach Fj. The curve 7 which describes the

-
Fy F

Figure 2: The vanishing cycle o

singular fiber is called the vanishing cycle for that fiber. Furthermore, X can be described
concretely as a handlebody obtained by adding a 2-handle to B, x D? with attaching circle
7. Intuitively, this handlebody description makes sense: In the absence of any singular
fibers, X is just ¥, x D?. Attaching a 2-handle along v provides the necessary disk (the
core of the handle) to shrink v to a point. To preserve the fibering, a delicate framing
condition must be satisfied: The 2-handle must be attached with framing —1 relative to the
product framing on 8(2, x D?) = £, x §'. The Morse theoretic arguments justifying this
handlebody description and the framing can be found in [Ka.

The vanishing cycle o completely determines the topology of a neighborhood of a sin-
gular fiber, up to diffeomorphism. Indeed, it is not hard to see that the neighborhoods of
singular fibers given by any two nonseparating curves will be diffeomorphic. This follows
from the fact that given any two nonseparating simple closed curves representing vanishing
cycles, there is a diffeomorphism of I, taking one to the other, hence one can easily map
the handlebody descriptions of the cor ding Lefschetz fibrati to one another. A
similar statement is true for separating curves, as long as they separate ¥, into surfaces of
the same genus. Hence neighborhoods of singular fibers in genus g Lefschetz fibrations can
be classified, up to diffeomorphism: There are 1+ [£] of them, one given by those with &
nonseparating vanishing cycle, and the others given by those with a separating vanishing
cycle which separates off a surface of genus h, with 1 < A < [g]2

2The reader may wonder about nullhomotopic vanishing cyces, which separate £, into surfaces of genus

u



Terry Fuller 281

nonseparating vanishing cycle separating vanishing cycle
Figure 3:

The vanishing cycles also play a crucial role in understanding the boundary of a neigh-
borhood of & singular fiber. Since we assumed the singular fiber of f to be in the interior of
X, all of the fibers lying above the boundary circle S of the base are nonsingular. In other
words, the boundary X is a ¥g-bundle over ', As a result we can describe it as

ST

~ (@(@),0)~ (1)

where ¢ © 3, — ¥, is a homeomorphism. The map ¢ is called the monodromy of the
sngular fiber, as with the vanishing cycle, it depends on our choice of an identification of
a regular fiber Ky with a genus g surface 3,. Intuitively, the monodromy documents how
u fiber changes if we traverse the boundary once along its S* factor. In this case, where
the ¥, -bundle over S* arises as the boundary of a neighborhood of a singular fiber in a
Lefschets fibeation, this monodromy has a useful description: It is given by a right-handed
Dehn twist about the vanishing cycle vy for that fiber. A Dehn twist D, : ¥, — Y is the
h phism given by ing a cylindrical neighborhood of 4 on ¥, and regluing
It after giving & full 360° twist about one end, as in Figure 4. Since we may twist in

z

Figure 4: The Dehn twist D.,

X

cither direction, both right- and left-handed Dehn twists make sense. The fact that only
right-handed Dehin twists arise as monodromies of Lefschetz fibrations is a consequence of
fequiring oelentation- preserving charts in the definition of a Lefschetz fibration; considering
achiral Lefsehets fibrations would allow both kinds of Dehn twists

Oand g In this come, the resulting singular fiber will have a spherical component of square —1, hence the
fmlting Lafichets Stration will not be relatively minimal
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Since the local topology of ench amgulnr fiber in a Lefschetz fibration is understood, the
challenge in studying Lefschetz fibrati knowing how these local models can fit
together when there are many singular fibers. Assume now that f : X — D? is a Lefschetz
fibration with singular fibers Fy = f~'(z1),..., F, = f~(z,,) in the interior of X. If we

D

Figure 5:

pick a collection of small disjoint disks Vi, ..., V,, with each z, € V;, then f restricted to each
F(V;) is a Lefschetz fibration over D? with only one singular fiber, and so its topology (i.e.
monodromy, diffeomorphism type) is encoded by a vanishing cycle 7, in a nearby nonsingular
fiber, as described above. We can relate the descriptions of these different singular fibers as
follows. Let Fy = f~'(wo) denote a fixed nonsingular fiber, and select a collection of arcs
Byyes s, going from o to each z;, respectively. We may assume that the arcs s,,...,s,
are indexed so that they appear in order as we move counterclockwise about zo. Each
f~'(s:) gives a trivial Zy-bundle over I along which we can transport the identification of
the common reference fiber Fy with £, to the nearby nonsingular fiber in V; carrying the
vanishing cycle. Each singular fiber F; can then be described by a vanishing cycle 4, with
respect to a common identification with ¥,. If we let

u
Do =V | (neighborhood(s,) U V;)
i=1
(see Figure 5), then since Dy is a large disk containing all of the singular values of f,
f~'(Dy) C X is diffeomorphic to X (their difference is a trivial collar neighborhood of 8X).
This allows us to describe X as £, x D?|Ji_, H., where each H, is a 2-handle attached
along the vanishing cycle 7, subject to the same framing condition mentioned above, with
the handles attached in order in distinct X, fibers. This argument also shows that the
monodromy about AD? is given by the composition of Dehn twists Dy, Dy, -+ D,,. (We

e
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will write compositions of Dehn twists in monodromies as words, from left-to-right.) This
composition is called the global monodromy of f. Let M, denote the mapping class group
of £, the group of self-homeomorphisms of ¥,, modulo isotopy. The global monodromy of
1 s typically regarded as an element of M, given by the composition of right-handed Dehn
twists about the vanishing cycles of f.

Thus the topology of a Lefschetz fibration over D? seems completely determined by the
ordered collection (73, .. -, %) of vanishing cycles. This is not quite true: The list of curves
depends implicitly on choices made during the above description, and other choices yield
squivalent Lefschetz fibrations. For one thing, we may cyclically permute the list (v1,..., )
and arrive at the same fibration. Note, too, that we may use a different identification of the
contral ber B, with £, which will have the effect of conjugating all of the Dehn twists D, in
the global monodromy by a fixed element 1 € M,. (Since Yo D, 0¥~ = Dy,,), the result
will still be & Dehn twist, just about a different vanishing cycle.) Furthermore, different
cholees of azes s, will give a different description of the vanishing cycles, and therefore of
the Dehs twists comprising the monodromy. For instance, changing the arcs as in Figure 6
will change the vanishing cycles from (-++ %, %is1,°++) t0 (== 3s1, Dy (3),+++); this
move and similar ones are known as el 1

y transfor Although 'y
‘l\/ i Q

Figure 6: Elementary transformations
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transformations alter the description of the monodromy about individual singular fibers,
the global monodromy is unaffected. Two Lefschetz fibrations are equivalent if and only if

it s possible to form the 1 of one (exp 1 in terms of Dehn twists) into
the other through a ibi of el ¥ f i (and their inverses), and
conjugation by elements of M,

Consider now Lefschetz fibrations f over 2. We may split $? into two hemispheres
DU D* % that one of the D¥'s contains all of the singular values of f, in which case

Y1t In pemaibie 10 condense the monodromy about different singular fibers into a single monodromy rep-
tementation wy (D% ~ (24,...,2,),20) — My. The collection of arcs s, describe loops in D? — {x1,...,2,}
Based ut 24 grvem by following , 10 V;, traversing 8V once counterclockwise, and returning to zo along a;.
Thewe loopn form & basis of 1 (D? = (2),..., 24}, o). and the elementary transformations enure that this
fepresntation i mdependent of a choice of basis

—
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the global monodromy over that hemisphere can be expressed in terms of a collection of
vanishing cycles as D,, D, -+ D,,. However, this fibration on the boundary must be the
trivial product £, x §' 1 in order to extend over the other hemisphere as the trivial fibration
¥, x D?. This means that D, D, - D, must be isotopic to the identity. Conversely,
a composition Dy, Dy, -+ Dy, of Dehn twists determines a Lefschetz fibration over D?,
and if this composition is isotopic to the identity we can extend the fibration (uniquely
for g > 2) to get a Lefschetz fibration over D®. This provides a purely group theoretic
way to describe Lefschetz fibrations over S and in light of the theorems of Donaldson and
Gompf, a combinatorial classification of symplectic 4-manifolds (up to blowing up). This is
summarized in the next Proposition.

Proposition. For any fived g > 2, there is a one-to-one correspondence between genus
9 Lefschetz fibrations over S% and relations of the form Day, Do, Dy, in My, modulo
elementary transformations and the action of M, by conjugation.

Given two Lefschetz fibrations of the same fiber genus, we can combine them into
another Lefschetz fibration.

Definition. Let X; — C) and X — €, be two genus g Lefschetz fibrations, and let
Fy, ¢ X, and F; € X; be two regular fibers. We identify neighborhoods of each £, with
F, x D?, and select a diffeomorphism h : Fy — Fy. The fiber sum X, # X3 is defined as the
manifold (X; — Fy x D?) Uy (X2 — Fy x D?), where v : 8(Fy x D?) — 0(F; x D?) is given
by h x (complex conjugation) : Fy x S* — Fy x S'.

The fiber sum construction yields a Lefschetz fibration X #rXy — C\#C;. This
fibration and the diffeomorphism type of X, # X, depend on the choice of the identification
h of regular fibers.

4 Examples

The monodromy classification gives a way to list examples of Lefschetz fibrations, in &
way that is complete for genus g = 1, and partly so for g = 2. Unfortunately, known
presentations of mapping class groups for g > 3 tend to have relations which feature both
left- and right-handed Dehn twists, and as a result they provide less direct information about
monodromies of symplectic Lefschetz fibrations. The examples we give below are standard,
and are discussed in [GS]. In Section 6, we elaborate on these examples, describing them
more fully from a branched covering perspective

Elliptic (g = 1) ezamples. Let a) and ay be the curves on the torus £, pictured in
Figure 7, and let ¢; and a; denote Dehn twists about a; and ag, respectively. The mapping
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Figure 7: £,

class group Ay is well-known to have a presentation with generators a; and ag, and relation
(ay03)" = 1. This relation defines an elliptic fibration over D?, which can be extended
1o an elliptic fibration E(1) — S** We can then form the n-fold fiber sum (using the
\dentity homeomorphism on regular fibers) B(n) = #p(nE(1)), resulting in an example
with global monodromy (aya,)®". It was proven by Moishezon that the global monodromy
of any elliptic Lefschetz fibration is equivalent to this relation [Mo], hence the family of
E(n)'s are & complete classification of genus 1 Lefschetz fibrations with at least one singular
fiber. Each E(n) is complex.

Higher genus examples. Let ay, ag, ..., 2441 be the curves indicated on Figure 8, and
lot o, denote & right-handed Dehn twist D, about a;. Then the following equations hold

Figure 8: ¥,
In M,
(0109 ++a3p4y ++ - a201)% = 1 (1)
(@102 -+ agy) 230+ = (2)
(0182 2940) %7+ = 1. (3)

‘Whan § = 1. possible extensions are not unique, and must be chosen with care. The boundary of
Ahe tatal spuce of the fibration over D? i diffeomorphic to 72 x S = §* x S x 51, which admits many
nankivial ESemorphisms which can be used to attach 72 x D? and produce a closed 4-manifold fibered
by tarl. Hewsser, only those attachod by maps of the form & x id will produce Lefuchotz fibrations; other
holem of snsching mags will produce non-Lefschetz fibrations with more complicated singular fibors known
o multigle fdwes.
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This gives rise to Lefschetz fibrations given by equations (1)-(3), with total spaces X (1), X(2),
and X (3), respectively. These examples are complex, and for g = 2 it was shown by Kenneth
Chakiris that any holomorphic Lefschetz with only hing cycles
is a fiber sum of one of these three [Ch]. (A simpler proof has been discovered by Ivan Smith
[Sm2].)

We also give a useful example of a Lefschetz fibration with some of the vanishing cycles
given by separating curves. This ple was di 1 by Yukio M for genus
g = 2 [Ma), and has been extended to arbitrary genus by Carlos Cadavid (Ca). (See also
[Ko].) Let B,/ /3,P4 be the curves on ¥ indicated in Figure 9, and let b, denote »

right-handed Dehn twist Dg, . Then the equation

(bababsbs)* = 1 0
holds in M,. Let X(4) denote the Lefschetz fibration over §? obtained from the relation

PR
=

Figure 9: £,

(4). This fibration is complex, although as we will see below, it can be usefully exploited to
construct noncomplex fibrations.

5 Complex versus Symplectic Lefschetz Fibrations

As mentioned in the Introduction, there are now many known examples of noncomplex sym-
plectic 4 ifolds. Donaldson’s theorem that they admit a Lefschetz fibration
(after perhaps being blown up), but is non-constructive. Explicit constructions of noncom-
plex symplectic Lefschetz fibrations have been given by several authors, all of whom form
fiber sums of known complex fibrations using a nontrivial diffeomorphism of a regular fiber
Non-simply connected examples were given by independently by Smith [Sm1], and by Burak
Ozbagcei and Stipsicz (OS], while simply connected examples were discovered by Fintushel
and Stern [FS2] (although they did not explicitly determine the vanishing cycle structure of
their examples). We discuss the examples of Ozbagei and Stipsicz (Smith’s are similar)

Theorem. (/0S]) There are infinitely many (pairwise nonhomeomorphic) 4-manifolds which
admit genus 2 Lefschetz fibrations but which are not complex (unth either orientation)

o
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Their construction i to form the fiber'sum B, of two copies of the example X (4) above,
\ing the diffeomorphism A", where A is a Dehn twist about the curve as in Figure 8 (with
g = 2). They establish their theorem by calculating 7y (B,,) = Z&Z,, (thereby distinguishing
B, far different values of n), and by Iting the Kodaira of complex surfaces
10 show that the n-fold cover M, of B, cannot be complex.

Thus, noncomplex Lefschetz fibrations can be formed by taking fiber sums of complex
ones, ralsing the question of whether every Lefschetz fibration was at the very least a fiber
sum of complex ones. A negative answer was given independently by Smith and Stipsicz.

Theorem. (/Smd); [St1]) There exist infinitely many simply connected non-complex Lef-
sehetz fibrations which do not decompose as non-trivial fiber sums.

Hoth Smith and Stipsicz give a nonconstructive proof based on a Lemma asserting that
If o Lofschetz fibration f : X — S? admits a section g : S* — X with f o g = identity and
image & sphere of self-intersection number —1, then it cannot decompose as a fiber sum.
(Smith ghves & clever elementary proof of this Lemma using hyperbolic geometry; Stipsicz
proves it using results from Seiberg-Witten theory.) Since any Lefschetz fibration obtained
by blowing up » Lefschetz pencil has such sections, examples are plentiful.

In addition, the first explicit example of an indecomposable (into fiber sums) noncom-

plex Lofschetz fibration has recently been given by Smith [Smd]. In the mapping class group
My, the relation

de ag(ayaz03a4a506)'° = 1 (5)

holds, whese d = Dy e = D,, and a; = Dy, for the curves pictured in Figure 10. (This

Figure 10:

relation was first dorived by the author.) Using calculations of intersection numbers between
i collection of associated spheres in the maduli space of curves and certain natural divisors,
Smith shows that the total space of the Lefschetz fibration given by (5) cannot be complex.

R —
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6 Lefschetz Fibrations and Branched Covers

One way that Lefschetz fibrati have been ly studied is through their close
relationship to the construction of a branched cover.

Definition. A smooth map w : M™ — N™ between ifolds of the same di ion is

called an n-fold branched cover with branch set B C N if x|M — 7='(B) : M — #~'(B) —
N — B is an n-fold covering space, and if for each b € B there are charts on which x
C x RP~? = C x R} is given by =(z,z) = (¥ ), for some positive integer k. The
branched cover is called regular if the associated (unbranched) cover | M —m =" (B) is regular.
1f 7= (b) consists of n — 1 points for all b € B, then = is called simple.

Branched covers can be used to construct fibrations, as follows. Let ¥ be either an §%
bundle over $? or the connected sum CP"‘#L‘W. so that there is a projection p: ¥ — §7
whose fibers are spheres.® Let m: X — ¥ be a branched cover with branch set B ¢ Y. If
the branch set B is suitably transverse to the fibers of p, then the composition # o p will
be a Lefschetz fibration, ene which we will say is obtained from the branched cover 7. In
particular, this means that the Lefschetz fibration restricted to each fiber is a branched cover

of surfaces; this is true even for the singular fibers.

Proposition. Bach of the ezamples of Lefschetz fibrations X (1), X (2), and X (3) in Section
4 can be obtained as a 2-fold branched cover 7 of an S*-bundle over S*, branched over an
embedded surface.

The proof of this proposition appears essentially in [F1], where the examples X (1) and
X (2) are discussed in detail for g = 2. The argument generalizes in a straightforward way
to cover all g (see the diagrams in (GS]) and also to X(8). The method of proof is to use
the algorithm given by Selman Akbulut and Rob Kirby in [AK] for drawing Kirby calculus
1i of 4 ifolds given as b hed covers, and to demonstrate that the branched

covers match handlebody descriptions of the corresponding Lefschetz fibration.®
If we compare the g-fold fiber sum ##(gX (1)) with X(2), we have two genus g fibra-
tions with the same number 4¢(2g + 1) of singular fibers. While the fibrations can easily be

seen to be inequivalent-their monodromy representations have different images in M,-the
ifolds could ivably be diffe phic for g = 1 or 2 mod 4

underlying smooth 4-

“In the case ¥ = CP?#kCP?, some of these fibers are immersed spheres with a transverse self-
intersection. In fact, these projections comprise cxactly the collection of all (necessarily non-rolatively

minimal) genus 0 Lefschetz fibrations.
SThe Lefschetz fibration on X(4) is also obtained as a branched cover, of 7% x §7. Indeed, this example

was discovered by Matsumoto by beginning with a branched cover, and using a computer calculation o

show that the monodromy of the resulting Lefschets fibration was given by equation (4).

e @ A
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e question of whether they are was first posed by Matsumoto (for g = 2 [Ki]; the general-
\aation to arbitrary g was posed by Hisaaki Endo [E]), and answered in the negative for g = 2
by the author in [F1). (The argument extends easily to all g.) They can be distinguished
smoathly by using the b hed cover d p of the Propesition, from which it follows
that #p(gX(1)) is irreducible, whereas X (2) = Y#W , for a 4-manifold Y.

Each of the previous examples has the special property that the vanishing cycles appear

1 & symmetric fashion on ¥, which is necessary for the fibration to restrict to the singular
fibers aa & branched cover. This motivates the following definition.

Definitions. The hyperelliptic mapping class group H, is the subgroup of M, of classes
which commute with the class of the involution ¢ : ¥, — £, given by the 180° rotation
pletured in Figure 11, A genus g Lefschetz fibration is hyperelliptic if the monodromy about

P VN
(: NG =N 180°

Figure 11: hyperelliptic involution ¢

oach of s singular points (with respect to a system of arcs s;) is contained in Hj,.

1t Is mot hasd to see that a Lefschetz fibration is hyperelliptic if and only if each of
the vanisbing cycles 71,..., 7, can be isotoped so that ¢(y) = 4. In particular, each of
the examples X (1), ..., X(4) is hyperelliptic. Being hyperelliptic means that each individ-
ual fiber i obtained s a 2-fold branched cover of S?, and the following theorem, proven
independently by the author and by Bernd Siebert and Gang Tian shows that this local
symmetry extends to the global Lefschetz fibration.

Theorem. ([F2); [ST])If [ : X — S? is a relatively minimal hyperelliptic Lefschetz fibration
all of whese wamashing cycles are nonseparating curves, the X is obtained as a 2-fold branched
cover of am 8% bundle over S, If f includes s separating curves among its vanishing cycles,
then X & oMmmed (ofter blowing doum all exceptional spheres found in fibers) as a 2-fold
branched cower of CP*%(25 4 1)CP?, branched over an embedded surface.

In addition, as every genus 2 Lefschetz fibration is hyperelliptic, a corollary of the above
theorems is that every genus 2 Lefschetz fibration is obtained as a branched cover.

The two proofs of this Theorem are very different. In [F2], the branched covers are
conatiueted by hand, using the handlebody description of X given in Section 3 to show that
models of the beanched cover for each fiber can be patched together to achieve the global
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fibration as a branched cover; in [ST], a detailed analysis of the branch sets together with
patching arguments borrowed from complex algebraic geometry are used. The approach
of Siebert and Tian has the advantage that it can be used to show that the branch sets

producing the Lefschetz fib are sy bedded. In [ST], they conjecture
that in fact every hyperelliptic Lefschetz fibration with only ing hing cycles
is complex.” Thus the exi of curves as ish cycles can be viewed as an

obstruction to being complex-note that the example of Ozbacgi and Stipsicz is hyperelliptic
but contains separating vanishing cycles.

1t is natural to wonder to what extent an arbitrary non-hyperelliptic Lefschetz fibration
can be represented as a branched cover, since in general a vanishing cycle need not have
the symmetric appearance of those in our hy Llipti This can be
circumvented of one works with irregular simple 3-fold branched covers.® For any genus g,
there is a simple 3-fold branched cover 7 : £, — 5%, and any simple closed curve on £, can
be isotoped so that a singular fiber with it as a vanishing cycle is also a 3-fold covering of
S%. This leads to the following Theorem, which can be proven analogously to the previous
by using the handlebody description of X induced from the Lefschetz fibration. (A similar
theorem for Lefschetz fibrations whose fibers are surfaces with boundary has been proven
by Andrea Loi and Riccardo Piergallini [LP).)

Theorem. ([F3]) Any Lefschetz fibration f : X — D? all of whose vanishing cycles are
nonseparating curves can be obtained as a simple 3-fold branched cover of §* x D* branched
over an embedded surface.

Another thread of research relating Lefschetz fibrations and t hed comes
from the work of Denis Auroux.

Theorem. ([A]) If X is a symplectic 4-manifold, then there exists a simple branched cover
X — CP? branched over an immersed surface which is smooth except for a finite number
of cusp singularities.

Auroux’ theorem is obtained by i hni from complex projective geometry
to the symplectic category in order to construct a map X — CP? for any symplectic
X. A careful analysis of this map shows that it is a simple branched cover of the sort
described. Auroux and Ludmil Katzarkov have defined i i of symplectic 4 ifold
by describing the branch sets in CP? associated to this map as braids [AuK].

"Bernd Siebert recently informed the author that he and Tian have proven this conjecture.

*Simple branched covers of surfaces are in low-d topology, largely
because they are adaptable to settings without any such as the Lofachets
fibrations considered hore. See [BE) for a very readable survey

T
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7 Other Results

We conclude by briefly mentioning some other recent results about Lefschetz fibrations.

ign of Lefscl fibrati; It is a straightforward calculation using the
handlebody description of Section 3 to see that the Euler characteristic of a 4-manifold X
admitting & genus g Lefschetz fibration is given by e(X) = 2(2 — 2g) + p, where y is the
pumber of singular fibers, It is less straightforward, however, to calculate the signature
a(X) from the description of the Lefschetz fibration on X.

For hyperelliptic Lefschetz fibrations, “local signature” formulas have been established
by Matsumoto (Ma] (for g = 2) and Endo (E] (for arbitrary g). The signature of X' may
L caleulated by summing together contributions to the signature from each singular fiber,
wach of whose contribution is determined solely by its diffeomorphism type. (Their formulas
also follow from the branched cover techniques of Section 6.)

Signatures of arbitrary Lefschetz fibrations have been studied by Ozbagei, who gives an
algorithn for computing the signature of X from a list of its vanishing cycles [0].

Estimates on Numbers of Singular Fibers. Several researchers, using a variety
of idens, bave boen able to find estimates on the number of singular fibers in a Lefschetz
fibeation s terms of the fiber genus g. The best results along these lines are summarized
below,

Theorems. Let X be a genus g Lefschetz fibration over S*. Let n and s denote the num-
ber of wingudar fibers given by vanishing cycles about nonseparating and separating curves,
respectively, 2o that ji = n + 8. Then the following estimates hold.

(L) (L)) m 2 g;
(8) ((5t2)) 2 }(89 - 4).
We note that n > 0 is o consequence of (1.); in particular, no Lefschetz fibration can

have only sepasating vanishing cycles, This was first proven by Smith [ABKP).

The sswamption of base S? is quite necessary, as the following theorem of Ozbagei and
Mustafa Korkmaz shows,
Theorwm. ([KoOz)) There exists a genus g Lefschetz fibration over £, with one singular
fiber f und omly if g > 3 and h > 2.

Realizing Pund I Groups as Lefscl Fibrations. In [ABKP], a construc-
five proof is given that for any finitely presented group G, there exists a Lefschetz fibration
J+ X = 5% with 7,(X) = G. The fact that all finitely presented groups can be realized as

[ —
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the fund 1 group of a symplectic 4 ifold had earlier been established by Gompf

[G1]. As the fundamental groups of Kahler complex surfaces are known to be restricted (for
example, the rank of their abelianization must be even), these results further display the
distinction between symplectic and complex 4-manifolds.

Lefschetz Fibrations and Stein Surfaces. A Stein surface is a complex surface §
that admits a proper biholomorphic embedding into C™, for some N. These manifolds admit
Morse functions f : S — [0, 00), obtained for instance as the distance from points in S to &
fixed generic point in CN. (Stein surfaces can, in fact, be characterized by the existence of
these maps.) While a Stein surface as such can never be compact, by considering f~*([0, ¢])
for a regular value t one obtains compact Stein surfaces, which can be thought of as Stein
surfaces with boundary. The topology of compact Stein surfaces has become an increasingly
active field lately, in large part because of their relationship (via their b | ()]
to the topology of contact 3-manifolds. Particularly noteworthy has been work of Gompf
who, building on work of Eliashberg, developed a version of Kirby calculus for working with
Stein surfaces [G2]. We refer the reader to Chapter 11 of [GS] for an introduction to Stein
surfaces.

The following theorem of Loi and Piergallini relates compact Stein surfaces and Leof-
schetz fibrations.
Theorem. ([LP])If X is a compact Stein surface, then X admits a Lefschetz fibration over
D? with bounded fibers.

A different proof of this theorem has been given by Akbulut and Ozbagei, who show

moreover that a compact Stein surface X admits infinitely many nonequivalent such Lef-
schetz fibrations [AO).
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