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0 Introduction

The purpese of this survey article is to expose a semi-classical approach (o soveral inter-
eating probiiess ag the bel of the resolvent of the Laplace-Bojtrami operator
on Riemanaie sasifolds without boundary as well as the energy decay proherties of the
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310 Semi-Classical P ion of Singul on R Manifolds ...

1o the cor ling wave In many this h provides
probably the most economical proof. My goal, however, will not be to give a self-contained
exposition (and proof) of the results I am going to discuss. Nevertheless, 1 give the main
wdeas and proofs of the key rulnnonallips In Section 1 1 recall some well known basic facts
about the semi-classical lodiff (dh ding on a big A1)
on compact manifolds without boundary or on R", n > 2. Here 1 follow essentially the ex-
position in the Appendix of (6], For a more complete and detailod exposition on this subject
the reader is refered to Dimassi-Sjdstrand book 4], In Section 2 1 discuss some results (s
Propositon 2.1 and Theorem 2.3) on p of inequall along the b
flow of solutions to the equation (&, + A*)u = v, where A 3 1, and A, denotes the (nega-
tive) Laplace-Beltrami operator on a Riemannian manifold without boundary. Theso results
admit a very simple proof, but have highly nontrivial consequences some of which will be
discussed in the next sections. This approach also allows to get a semi-classical analogue
(sev P i 2.2) of y ion of 1! of sol to the wave equation on
manifolds without boundary (see Theorem 2329 of [6]). Among other things, this kind
of results turn out to be very useful in the study of the (semi-classical) wavefront set of
quasimodes (e.g. see (12]).

The first application of the inequalities from Section 2 concerns the so called damped
wave equation (which is, roughly speaking, the wave equation plus a lower order dissipative
term) on a compnct manifold without boundary and is presented in Section 3. Under some
kind of a nontrapping condition (see (3.4)) it is shown that there exists a constant a > 0
such that in |[Re|z < a there could be at most a finite number of cigenvalues, and as &
consequence we have o uniform exponential energy decay of the solutions. This result was
first proved by Rauch-Taylor (10] by using quite different methods. Later on Lebeau [7]
extended their result to manifolds with boundary (and Dirichlet boundary conditions) using
methods different from those in [10] or these presented here. He also gave an explicit formula
for the optimal value of the constant a. This has been recently extended by Sjostrand (11}
who obtained quite precise and complete results on the distribution of the eigenvalues in
this context.

In Section 4 I consider a Riemannian metric, g, on R", which is a long-range perturba-
tion of the Euclidean one (see (4.1)) and nontrapping (shich roughly speaking means that
every geodesic leaves any compact in a finite time - see (4.2) for a more precise definition).
Under these Pt a high-frequency esti of the norm of the resolvent of the
Laplace-Beltrami operator on weighted L?-spaces is obtained (soe Theorem 4.1). The proof
combines the inequalities from Section 2 (Theorem 2.3) together with an a priori estimate
in weighted L?-spaces of solutions to (&, + A*)u = v outside a sufficently big compact (see
Proposition 4.2) which has been recently obtained in [3. Note that an analogue of Theorem
4.1 on asymptotically Euclidean spaces and in a semi-classical sotting has boen proved by




o

Vasy-Zworshi [14] by using & different approach.

I Section 8 1 consider & nontrapping Riemannian metric, g, on R", which coincides
with the Buchdens one outside & compact. In this case it is well known that the cutoff
smsolvent extends meromorphically (e.g. see [15]) with poles called resonances. Theorem
41 18 wed o show that there is a strip free of resonances (see Proposition 5.2), and as
» comequence uniform estimates for the decay of the local energy of the solutions to the
wine equation are proved (see Theorem 5.4). Moreover, using Vainberg's method (see [13))
1 s shown that for nontrapping metrics o better free of resonances region of the form
{2} € Nlog |zl 2] 2 Cn), YN > 1, exists (see Theorem 5.5)

I Seetion 6 1 consider a Riemannian metric, g, on R®, which is a Jong-range pertur-
bation of the Euclidean one. In this section some recent results on the behaviour of the
olvent of the Laplace-Beltrami operator on weighted L-spaces are reviewed. Since the
sontrapping condition & no longer assumed, the inequalities from Section 2 no longer work
i this case Dsstend, we have Carleman type inequalities (see Proposition 6.2). The Carle-
wan neqalities o manifolds without boundary are due to Hormander (see Theorem 28.2.3
of [8]). while i case of non-empty boundary (and Dirichlet or Robin boundary conditions)
they ate due to Leboan-Robl (8], [9]. Ps ion 6.5 and Theorem 6.6 are due to Burq
(o [1]) 0 well s & weakeer version of Corollary 6.4 (see [2)). Theorem 6.1 in this generality
s e to Caediono- Vodev [3].
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I Semi-Classical Pseudo-Differential Operators on Man-
ifolds without Boundary

Thevughont this weetion X will denote cither a n-di | compact fold without
boundary or the Exclidean space R", where n > 2. Denote by T°X = UpexT; X the
eotangential brascie of X, with a fiber ot z € X, T2 X ~ (R")*. Denote 7*X = T* X UT"S,
where T*5 w Upe x T35 is the cotangent sphere bundle, T3S ~ {€ € (R")* : [¢] = 1}. The
polnts from T*X will be called finite, while those from 7S will be called infinite. Fix a
A> | and gvem m k € R, p,§ 20, p+ 8 < 1, introduce the class of symbols S;,",;"(X)
which connints of fusctions a(x, €; A) € O (T* X) satisfying .

k{-u.(:l)l S CapaAttoilitdlol() 4 e )m-B1 vz e K, VE€TIX, (1.1)

for evary aundti.imdieces @ and A and every compact K ¢ X. The semi-classical quantization,
WDy Al of a symbol a(z,€; A) i defined as follows

(2, Dy; \)u im (%) /e"“‘"’n(x.{; AJa(€)de

R




312 Semi-Classical P of Si on Manifolds ...
- (2_";) /’ / eNe-vDq(z, £ Nuly)ddy, u € CF(X), (12)

where D, := (iA)~8;, 1 is the \- Fourier transform of u, and the integrals with respect to
£ must be understood as oscilatory ones. The operator A = alz, Dy ) : CF(X) — C*(X)
will be called a A-pseudodifferential operator (or simply a A = W DO) with symbol a(z, £ A)
(which will be also denoted by a(A)). Denote by L7 .(X) the set of all A — ¥DO's with
symbols belonging to S"""(X) In what follows, given a, € S'"‘"J‘ '(X) J=0,1,.., the
notation a ~ 372 aj will mean that a is a symbol satisfying a - 2 o 0y € S"'"'v"' *x)
for every integer N > 1. Introduce the space ST (X) © S‘a (X) of symbols a(x ) of the

form -
a(z, &) ~ Y Aa,(x,8), (13

=0

where a; € C*(T*X) do not depend on A and satisfy

0267 0;(,6)| € Copgx(V+1E)™?"W, Vze K \VEETIX, (14

for every multi-indeces o and 4 and every compact K € X. The function ag(z,£) will be
called principal symbol of the operator A = a(x, D,; A) and will be denoted by o,,(A). Denote
by LZ(X) the set of all A = WDO's with symbols belonging to SJ(X). The A = ¥DO's
admit a calenlus very similar to that of the classical psendo-differential operators. The most
important properties are given in the following
Proposition 1.1 Let A; € L"I'}‘.‘ (X), 7 =1,2. Then the composition
Az e Lypmhthx)
with symbol
(12)~le!
v(,\.,l,)~zn:To;nu.)o:u(A,) (15)

Moreover, the formally adjoint, A*, of a A\ = WDO, A € L:}‘(,\'). belongs also to L:;"(.\')
and s symbol is given by

o4y~ 3 A oty s

This proposition can be proved by using the stationary phase method in the same way
as in the classical cose. As an i we have the foll

Corollary 1.2 Let Aj € L7(X), j = 1,2, Then the commutator A = iA[Ay, A3| belongs
to L7~ (X) with principal symbol given by

ap(A) = {op(As), p(As)), (n

/'_\A
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where (., ) are the Poisson brockets defined by
(8L 80 _ 01 0
(ho) =3, (o)
As operatior A € L:,"(X) will be called elliptic at a finite point (z°,£°) € T* X if
lo(A)(z.&N)| = CAY, C>0,
o & neighbonshond of (5%, €%), and it will be called elliptic at an infinite point (z°,€°) € T*S

]

le(A)(x,&N)] 2 CA (1 + €)™, € >0,
s & conle neighbourhood of (°,€9). Cleatly, an operator A € L7 (X) is elliptic at a finite
point (2" (M e T XU

lop(A) (2, &N 2C, € >0,

i & neighbonhood of (%, €9), and it is elliptic at an infinite point (°,£%) € TS if

lop(A) (2, & A) 2 C(L+ €)™, € >0,
0 & conle neightourbood of (2°,€9). The semi-classical wave front, WF(u) c T*X, of a
dutribution w € D'(X) s defined as follows: (2°,€°) ¢ WF(u) iff there exists an operator
Ad l:h-‘) elptic st (2°,£9) so that Au € C§°(X) and |Aullzs(x) = O(A%). It is not
Bard to e that o (2°,€°) is a finite point, (z°,€°) ¢ WE(u) iff there exists a function
L8 CFX) y = 1 in s neighbourhiood of 2° so that [Tu(&:A)l = O(A=) for all € in
& meighouthood of €8 1f (2, €°) is an infinite point, (z°,€°) ¢ WF(u) iff there exists a
fanetion y € CF(X). y = 1 in a neighbourhood of 2° so that |Fu(€; A)| = O((A(1+[€]) =)
for all £ in & conse seigbourhood of €0

We alio hwe thee following (soe Proposition A.1.6 of [5])
Propesition 1.3 The operators in L::g(x) are bounded from L. (X) to Lf, (X) with

sorm O1). Maorvener, f X i compact and if A € L)'§(X) such that |o(A)| < M on T*X,
Hen A i baundied om L3(X) with norm < M + Ox(AN), ¥N > 1

2 Semi-Classical Propagation of Singularities on Rie-
mannian Manifolds without Boundary
Theoughout this wection we will equipe the manifold X with a Riemannian metric

A
9= 3 gy@)rdz;, gy(x) € C=(X)
L=l

P
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Denote by A, the corresponding (negative) Laplace-Beltrami operator, o,
Ay = (dug.,r'"z:‘,l 8, ((det ) g (@0, )
where (g) denotes the inverse matrix of (g,,). The principal symbol of ~A, is given by
6= 3 (e 2 O, €50

=t

Fix a A 3 1. Then the operator P := ~A=2A; — 1 can be considered as a A = ¥00 (o
more precisely o A-differentinl operator) of class L% (X) with principal symbol r(x,£) = 1

The bicharactersitic flow ®(t) : T*°X — T°X, ¢ € R, associated to the Hamiltonias
r(z.£) is defined by O(t)(x?, €°) := (2(t), £(1)), where the pair (x(1), £(1)) solves the Hamiltos
equation

%&Q-”'—;i).o%"--”%.:(o)-x".un)-c“ @1
It is well known that the solutions to (2.1) exist for all 1 and depend smoothly on £ and
(=7.£%). The projection of the bich itics on the 2-space X are just the geodesics

associated to the Riemannian metric g. Fix (7 = (2°.¢%) € 7°X %o that (2 (%) = |
Choose a real-valued function p(z,§) € CEE(T"X), 0 € p < 1, such that p = | in &
neighbourhood of ¢Y and p = 0 outside a biger neighbourhood. Given a ¢ € R, define the
function py(x,€) € CF°(T°X) by pi(x,§) = p(®(~t)(x.£)). Throughout this section, § - |
and (-,-) will denote the norm and the scalar product of the Hilbert space L2(X, dVol,),
where dVol, = (det g,;)'/*dz. Also, given any domain ¥’ C X, the Sobolev space H'(Y)
will be equipped with the norm

Nullsyy = > WDulluary):
oslaist

More generally, given any real k the semi-classical norm of the Sobolev space H*(Y) &
defined by
Hull g gry 2= B = A28 a3y

Proposition 2.1 For every u € Il,",,,,,,(,\’) and ¥T > 0 the following estimate holds

lIp(x, De)ull € llpez, DeYull + 2TAJPull + CA lull  for ST A2 N, (22
with constants C = C(T) > 0, Ao = M(T) > 0 indegendent of A, t and u.
Proof. 1t follows from (2.1) that

G+ (rom) =0 23)
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Therefore, it follows from (1.7) that
Q. = ABipy(x, Ds) + NP pu (2. Ds)] € LEY(X).

sl hemee by Propesition 1.3,
Qi = O4(1) ¢ Loy (X) — LA(X). (2.4)

;%h(,.n.)un’ = Re (Ohpn(z, D Ju, pr(2, D))
= Mim ([P, pu(2, D) u, pu(, D)) + A~"Re Qe e (2, D )u)
= < Alm (py (2, Dy) Pu, (@, De)u) + A~ Re (Qeu, pr (2. Dy )u). (2.5)
Hence, i view of Proposition 1.3, we get

[gp e Dabul] < 230wl + 001, 20)

which implies
ot Dulull = (e, Dajul - [ ooz, Db
< I, Du)ull + 20 Pul + OOl

(w]

Note that 4 & possible to improve (2.2) replacing CA™' by O(A~™) and py(x,€) by o
symbal ~ 58 A~761"(z, ), with o) (z,€) = pi(=,£), and g}’ (2.€), j = 1,2,..., solving
tranaport equations of the form

8al + ) =, o =0,

where 7" i & femetion detormined by qu ..... q?"" (e see Lemma 4.1 of (12]). This
enahlis b gon & sesalt on the propogation of the semi-classical singularities which can be

Sonidiad e sen amalogue of the classical propagation of singularities. Namely, we have the
fallowing

Proposition 2.3 Let u € 112, (X) and suppose that U Lo®(r)(2°.€%) ¢ WF(Pu). Then,

(2. 8%) ¢ WF(u) = &(r)(z°, &%) ¢ WF(u) for 0<7<t.

S
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For our purposes, however, the weaker bound (2.2) will be sufficient. Fix & compact K ¢ X
and suppose that

there exist an open bounded domain U ¢ K and a 7 > 0 o0 that ¥2° ¢ K \U
and every geodesic y(r) with (0) = 2%, we have 7{t) € U forsome 0 <t <7 (27)
Using Proposition 2.1 we will prove the following
Theorem 2.3 Under the assumption (2.7), for every u € H2(X) with suppu C K the
Jollownng estimate holds
llullsrexy S Cllullesy + CAIPull for A2 X, (28)
wath constants C, \g > 0 independent of A and u.
Proof. Fix o (% = (29,€°) € T°X such that r{z.£%) = 1 and 2% € K. By (27) there
exists an open neighbourhood V(¢®) of ¢ and 0 < ¢ € 7 50 that ®(t)(V((%)) € U Let

PECEVC), 0<p <1, p=1ina smaller neighbourhood of (°. If py is as above, we
choarly have supp,p € U. Therefore, by (2.2) we have

[Ip(z, De)ull € Clulleawy + Or(AiPul + O )ul (29)

Fix now a (0 = (2°,£%) € T*X such that r(z°.£%) # 1 and z° € K. Lot us first suppose
that r(z %) > 1. Then, there exists an open neighbourhood (conic for [€] 3 1) W((%) of
¢® such that r > 1 on W((%). Let p; € C=(W(C®)), suppp; € W(C®), 0 py S L py =1
in a smaller neighbourhood of ¢°, ps = 1 on suppp;. Then, pa(z, D, )P € LE(X) is elliptic
at (o, and by Proposition 1.1 it is easy to see that py(2,D,) = A, P + A~'A; with some
operators A; € L:,’(X), J=1,2. Hence, in view of Proposition 1.3,

lIps(z, De)ull < O()Pu) + O ull. (2.10)

Clearly, the case of r(z%, £%) < 1 can be treated similazly. So, by a partition of the unity oa
T* K one can get from (2.9) and (2.10),

lullagry < O()Hulzawy + O Pull + O )iull.
As suppu C K, this estimate implies
lull < O(M)ulzae) + OA)|Pull. (211
On the other hand, we have
A= Opull® = Jull® + (Pu.u) < 2jul® + |Pul® (212)
Clearly, (2.8) follows from (2.11) and (2.12)

—
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3 Applications to the Damped Wave Equation on a
Compact Riemannian Manifold without Boundary:
Distribution of Eigenvalues and Energy Decay

Theoughonst thas section (X, g) will be a compact Riemannian manifold without boundary.
We will be terested in the behaviour of the energy of the solutions to the damped wave

.y (87 - Ay +a(x)d)u(t,z) =0 in R* x X, @)
u(0,2) = fi(x), du(0,z) = fa(z), E
whete #le) € C™(X) s a non-identically zero real-valued function, a(x) > 0, Vo € X. The
energy of u(f,2) is given by
E() = ; / (19¢u(t, )P + | Vqut, 2)]) dVol,.
&

We have

‘% -— / a(x)|Beu(t, z)[dVol, < 0, (32)

X

provided w s ot & constant, 5o the energy decays as ¢ — +oc. Denote H = L*(X, dVol,)
aned let 1y b the chosure of C™(X) with respect to the norm UV, ully. Consider in the
HMilbert spuce ¥ = H @ H, the operator

a=( o, aisy)

with domaim D(A) = {u € M : Au € H). It is well known that A is a generator of a
sembgroup, ", and the solutions of (8:1) are given by

u(t, ) w( h

( Byu(t, x) ) S
Sinew the sescivest of A is compact, the spectrum of A is discrete, contained in the strip
WPy @2} € Rez € 0. Moroover, the only eigenvalue of A on Rez = 0 is z = 0 with

& corvenponidg esgenfunction (l] ) It is casy to see that i\ € spec A iff the following
Fvation hae & sostrivial solution:

(A + N ~ida)u=0 in X (3.3)
We tiake 1 following assumption
78 > 0 w0 that for every geodesic y(r)with 4(0) € X we have
NOEYy:m (2 € X :a(x) > 8) for some 0 <t < T (3.4)

"lﬂ'lbm

P
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Theorem 3.1 Under the assumption (3.4), there exsts o constant o > 0 so that spec A |
{0} C {z € C: Roz < —a), and the resolvent of A satisfies the bound

(A = 2) " lley S Comst  for Rez2 -a, [s] 2 1. (33)
Proof. Lev A 3 1 be real. In view of (3.4) we can use Theorem 2.3 to obtain
Nullsxy € Cllullzagy + CA~ (A, + A )ullacx). (38)
On the other hand, we have
(A -+ A? = iAa)ulld; = (A, + A)ulf, + JAaull} + ARe (A, alu,u),, .
hence
108 + A)ulliacxy € WA, + A = da)ullzsx) + OM)lull i) (th))
By (3.6) and (3.7),
llullz ) € Cllullzsoy + CAT RS, + A¥ = ida)ull s x) a8
Using (3.8) we obtain
AU (A, + AT = iAa)u, u)yr = Re (au, u)y
2 dllull v 2 Cilluligscxy = CaA™70(A, + A% = iAa)ullis x),
with some constants €y, Cy > 0, which easily implies

llulleacx) € AT N(A, + A = Aa)ullacx), (39)
with some constant C' > 0. This § lity is equivalent to the following one
II(A = i0) g < Conat, (3.10)
for venl A > 1. If \ is complex, we have
(A=A (14 ImA(A = iReA)™") = (A = iR A)~", @
50 by (3.10), A — i) is invertible provided |Im Al < C; and Re) > C; for some constants
C,Cy >0 <}

As an immedinte consequence of this theorem we have the following

Corollary 3.2 Under the assumption (3.4),
le* Sl S e Wf M. €21, ¥) €W = HE Ker A, (312)

which wm turn implics

E(t) S e E(0) (313
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Witherst the sssumption (3.4) we have the following weaker analogues of the above
resnlts which are due 10 Lebeau (7).

Ml‘”MmdamﬂanllC.B>0mlllnllpecA\(0| C {z € C:Rez <
Cem M), und the resolvent of A satisfies the bound

(A=2)"lcan S O™ Jor Rez2 -Ce~™, |z > 1. (8.14)
Cleasly, in tlsis case the estimate (3.8) s no longer true, but we have the following analogue
which fullisws from the Carleman catimates (see (7]):

lallwsexy S Cjeo (“““L'(\’.) +[I(Ag + A — idajullaxy) (3.15)

for tenl & 3 1. with sommo constants €y, Cy > 0 independent of A In the same way as above,

(3.18) inuplies s
(A = N lepg < Cae™ (3.16)

for rend ¥ > 1, with some tants Cy, Cy > 0 ind dent of A, which in turn implies the
foee of ligemabans tegion as well a8 (3.14) in view of the resolvent identity (3.11).

Tis s eae we also have the following analogue of (3.12).
Corollazy 34 For cvery integer m 2 0, 3Cy, > 0 so that
"4 lix € Con(log )™/ lIpa=), ¢ 22, ¥ € D(A™)OH, (8.17)
where [|/llogas) = U + 1A™ fl5e.

4 Applications to the Scattering Theory for Long-Range
Nonotrapping Riemannian Metrics on RY: Uniform
Limiting Absorption Principle and Decay of the Lo-
cal Energy

Thronighons thes section the space R", n > 2, will be equipped with a C*®-smooth Rieman-

Bl muteie g = 3 g, (o)drdz; satisfying

102 (9i5(2) = 6i4)l S Calz)~*"1l, Va, (4.1)

Whete (o) o= (14 2P) 7, ¢ > 0, and 8y, is the Kronecker's symbol. In other words,
the mutrie g & lomgrango porturbation of the Euclidean metric gy = 3o dxi. Then the
(nwgueive) Lagiiace. Bedtrami operator A, has a self-adjoint realization (which will be again

[
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denoted by A;) on the Hilbert space H = L*(R™;dVol,) with continuous spectrum, only
The metric g will be called nontrappang i

for every Ry > Ry 3 | there exists T = TR, Ry) > 0 o that for overy geodesic 9(7)
with %(0) € {z € R™ : [z] € R;)} we have
7(t) € (x € R": |z > R;) for some 0 St < T. “n
Using Theorem 2.3 we will prove the following
Thoeorem 4.1 Under the assumptions (4.1) and ({.2), for ¥a > 1/2, A > Xy the lmat
Jm (2)=4(8, + X £ie) (=)~ H = H
emats and satisfies the estimates
[I(=)=*A(Ay + A2 £10)"M=)~* . ,,, < C. (43)
wnth constants C, Ay > 0 independent of A.

The fact that the limit above exists is known as lmiting absorption principle and holds
without the nssumption (4.2). The idea of the proof of (4.3) is to use the fact that, becasse
of (4.1), there exists n global smooth change of variables, (p,0) = (p(x),8(x)), for |2 > I,
where p € [pg,400), po 3 1,0 € S = {y € R" : [y] = 1), which transforms the metric g is
the form
g=dp® + 77 Y hyylp, 0)8,d0,,
-

where hy; € C™ satisfy the inequalities
|63 (hus(o.0) ~ ,(@)| < Coie=, a8, )
where 37, b (0)d0,d0; s the metric on S induced by the Euclidean one. Denote By =
{z € R" : p(z) € R} for R > py, and choose & function y € CF*(Bray), x = 1 on By
Clearly, (4.2) implies (2.7) with K = Bp,, and U = By, \ By Therefore, given any
w & H?(R™), applying Theorem 2.3 to yu leads to the estimato
llullsr oy € OMNulis (0. \0a) + OANPul sy, ) (45)

On the other hand, we have the following

Proposition 4.2 Let Ry > py and let u € H*(R™ \ Bg,) be such that p*(P + ie)u €
L3(R™\ By, ) for 1/2 < 8 € (1 4¢0)/2, 0 < ¢ = O(A"%). Then, under the assumption (§.4).

—
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16 ¢ § € | thers exist constants Cy,Ca, \o > 0 (depending on § but ind dent of A and
&) a0 that for A > g we have

™5l ey, o) S COP (P +iENulEsne i,y

+80 3, o1\ Dy) = CaA ' I (O 4) 208, ) (4.6)

For o proef of (4.6) we refer to [3) (P jon 2.4). Now, ibi (4.5) with (4.6) used
with R; = R~ 2, we gel
Helliyscmay S O™ ullis a0y + OADIR* (P + ie)ulliaqnny
SO ulllaqsy € O (1" (P + ie)ulEcmmy + Slullips
+OA ™" ullf s mny = CaA~"1m (B, u) £3(ama, ) (4.7)
O the ey s, by Green's formula we have

) (0,-;n)uum,“, = Al (Pu,u) sy, ) < Am (P + lf}u,u),,a(n"‘)
< O4(NI(P +ie)ullia oy, ) +Shulican,)- (4.8)
By (4 7) s (£8), saking § > 0 small enough one arrives at the estimate
Tl € QD)1 (P + ie)ulld oy + ON)p™"ullEs e (4.9)
Combinisg (49) with (4.6) and (4.8) londs to the estimate
e~ " ullir ey € CAllp* (P + i)ull 2 mny (4.10)

with & constiaes © = 0 indepondent of A\, ¢ and u, which in turn easily implies Theorem 4.1,
18 s werth moticing that (4.8) implios estimates for the resolvent on the Soboley spaces
HM(R") sl espuiged with the somi-clnssical norms introduced in Section 2. Indeed, using
Hhe elligtiviny of the operator A, and (4.3) one can show, under the assumptions of Theorem
N
1ad=*Na, 42 20)7 @) | papuy ey SC A2, 0Sk<2  (411)
fn what Solliows we will derive from the above theorem the following

Covllaey 4.3 Usder the assumptions (4.1) and (4.2), ¥f € L*(R"), Y5 > 1/2 the follow-
0 i heid:

[_ Joor=* con (t=E5) 1o o < CUMRy, (112)

LR~
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2
R0 sin (t\/=A,)
(It AR e L dt < C|Ifl122mny, (4.13)
/_w VB, iy i

with a constant C > 0 independent of f.

Proof. Let V(t) € L},.(R*;L(H)) be a familly of bounded operators such that ||V (t)| =
O(t"), t > 1, for some N > 0. Then the Fourier-Laplace transform

FenV(t) = / eV (t)dt
0
is well defined as a bounded operator for Im A < 0. The following formulae hold:
; 4 sin (t/=A i
Fircos (t,/-Ag) =iX(Bg +22)7Y, ﬁ_xﬁ = (A, +N)"L,
Choose a function ¢(t) € C®(R), ¢(t) =0 for t < 1, ¢(t) = 1 for t > 2. We have
(2 - Ay) ((p(t) cos (t‘/—Ag)) = ¢(t) cos (: —A,) — 24/ (t)\/~By sin (z 5,),
and hence, taking the Fourier-Laplace transform of this identity, for Im A < 0, we get
T (ga(t) cos (e —Ay)) = —iMAy + )71 Fy (np'(t)cos (t\/—Ag))
~VEE (B + W) Fs (¢ (0)sin (0/75,) ) - (4.14)

Taking the limit InA — 0~ in view of Theorem 4.1, we get, for real A, with some 1/2 <
sy < min{1,s},

Fica (lt) (@) cos (1/=5,) (2)™*) £
= —(@) A&, + 2 = i0) (@) Fi (¢ (0)(0)" cos (/755 ) (2)*) £
()7 VB (B + X i) e) = Fucn (P (0(a)" s (1/=B5) @) £ (419)

Using Plancherel’s identity, (4.3), (4.11) and (6.4) below, one can easily derive from (4.15)
the following estimate

I Jetrer cos(o=5) 1

2
dt
L2(R")

< [ o2 (| cos (1w7Es) @71 + 017 sn (1) a1

2

) .
(4.16)

On the other hand, we have

(08 - 8,) (420 cos (1/=85) (2)7*) £ = =18, (@)"] o (3/=E5,) (@)1,
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50 by Duhamel’s formula we obtain

()™ cos (t\/-_Ag) (@)=*f = cos (t _Af) (@)™=f

G (W=
X /n ﬂ‘—((‘—\/%—- Vy Ba) iy, )"t cos (rv/=55) (@) far. (17

(1+ VoE,) 180, 7] = O (0977,

Since

by (4.17) we get
@) cos (/=B ) (@) fl oy < Ifllzaceen

40 [ (e~ cos (ry/=87) (0 lismordr < L+ OOz, (41)

and similarly for sin. It is easy to see that (4.12) follows from (4.16) and (4.18). The estimate
(4:13) can be proved in the same way.

5 Distribution of Resonances and Decay of the Local
Energy for Compactly Supported Nontrapping Rie-
mannian Metrics on RY

Throughout this section the space R™, n > 2, will be equipped with a C*°-smooth Rieman-
nian metric g which coincides with the Buclidean metric go outside some compact, say for
[e| > po > 1. By A, and Ag we will denote the corresponding Laplace-Beltrami opera-
tors as well as their self-adjoint realizations on the Hilbert spaces H = L*(R™,dVol,) and
Hy = L*(R"), respectively. Let x € C&(R™), x(2) = 1 for || < po + 1. We have the
following

Proposition 5.1 The cutoff free resolvent
X(Ag+ A1y Hy = Ho, ImA <0,

extends to an entire function on C if n > 3 is odd, and on the Riemann surface of log A,
A= {~co < arg\ < 400}, if n > 2 is even. Moreover, modulo an entire function,

AX(Bo + )Ly = A(N)A"Llog A, (5.1)

where A(A) is a finite rank (0 if n is odd and 1 if n is even) operator depending analytically
on \, and log\ takes its principal branch on —iR. The same is true for the operator
X0y (B0 + A7)~y

e
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The cutoff resolvent
x(Bg+X)"'x:H—H, ImA<0,
extends to a meromorphic function on C if n > 3 is odd, and on A if n > 2 is even.
Moreover, modulo a polynomial function (of order n —2),
AX(Ag+A%) "Iy = BA" og A+ O(A"}), A—0, (5.2)
where B is a finite rank (0 if n is odd and 1 if n is even) operator independent of \. The

same is true for the operator X0z, (Ag + A%) " x.

These properties are more or less well known (e.g. see [15], [16]). In particular, those
concerning the free resolvent follow from the fact that its kernel can be expressed in terms
of the Hankel functions and the properties ot these functions. The properties concerning the
cutoff resolvent of the perturbed operator can be obtained by using the Fredholm theory in
the following way. Fix a Ao € C with ImAg < 0 and let x; € C§°(R™), j =1,2, xa =1 on
|z| < po, x2 =1 on supp x1, X = 1 on supp x2. For Im A < 0, we have

(Bg+ M) = x1)(A0 + X) 7' = 1= x1 — [Ag, x1)(A0 +A?) 7",

and hence

(Bg+X)7H 1= x1) = (1= x1)(Bo + X2) ™+ (80 + A2) XA, xa) (B0 + A1)~ (53)
Similarly,

(1= x2)(Bg + A7 = (Ao + A%) 711 = X2) + (Ao + A2~ (B0, x2)(Ag + M) (54)
Since 1 — x2 = (1 — x1)(1 — X2), using (5.3) and (5.4) one can write

X(Bg +22) 7 = X(Bg + X)X = (A2 = R)x(Ay + A1) (Ag +20) "X
= (A2 = A)x(Ay + X)) xa(Bg + )T x + (1= xa + X(Bg + A?) " x[B0, xa])
(x(B0 + )% = X(B0 + A8)7'x) (1 = x2 + [Ao, xa]x(Ag + A) ~'X) -

Thus we get
X(Ay +2) I (1+ K(V) = Ky (M), (55)

where

K() = (A2 = A)xa(Bg + 23)~'x
+ ([Bo, x1)(Bo + A) 71X = [Bo, xa](A0 + A5) ~*x) (1 = x2 + [Ao, x2]x(Ag + ) ~'X)
Ki(A) = x(A; +43)'x

——
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+(1=x1) (x(B0 + A1)~ = x(Bo + M) THx) (1 = x2 + [Bo, xalx(Bg +AF) ™) -

Clearly, K(A) and K;(X) are analytic functions with values in the compact operators in H.
Therefore, since K(Ao) = 0, the meromorphic continuation of the cutoff resolvent follows
from (5.5) and the Fredholm theorem. The property (5.2) can be easily derived (e.g. see
Proposition 3.1 of (16]) from (5.1), (5.5) and (6.4) below.

The poles of the meromorphic i ion of the cutoff 1 are called
and form a discrete set with no finite points of accumulation. In what follows we will suppose
that the metric g is nontrapping, i.e. the assumption (4.2) is fulfilled. We will first show
that Theorem 4.1 implies the following

Proposition 5.2 Under the ion (4.2), the cutoff resolvent x(A, + \2)~1x extends
analytically to {A € C : ImA < Cy, |Re)| > Cp} for some constants Cy,Cy > 0, and
satisfies in this region the estimate

[IxA(ag +2%)= X”L(m C, (5.6)

for some constant C > 0.

Proof. Clearly, the identity (5.5) extends also meromorphically in Ag. So, the desired result
follows easily from (5.5) with Ao = Re A and the following

Lemma 5.3 For A€ C, Vx € C°(R"), 0< k<2, £=0,1,..., we have
[10%3(A0 + A) 1 xl| zaggny mxqrny S CelAIT'eC™, A 2 1, (5.7)
uith constants Cy,C > 0 independent of A.
By (5.7) with k = 1, £ = 1, one obtains, for [ImA| < 1,
(1K) e € Coltm M| (IAX(Ag + A3) " xllcqa) + [B0, x1)(Ag + A3) xllc) - (5:8)
Thus, by (4.3), (4.11) and (5.8) one concludes that
IEM)leery € Colm A < 1/2

provided [ImA| € C = min{1, (2C3)~"'}, [Re\| > C3 > 0. Hence, by (5.5), x(A4 + A?)~!

18 analytic in this region and satisfies (5.6) as so does the operator Kj(\). a
The most important of the above p ition is the following uniform local
energy esti to the ions of the wave

e
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Theorem 5.4 Under the assumption (4.2), fort > 1,

sin (t\/=A,) Ce™®t, if nis odd,
s (=T ol + o= | <{ G e 69

with some constants C,a > 0.

Proof. We are going to take advantage of the identity (4.14). Note that by the finite speed
of pr ion of the solutions to the wave ion we have that

(1= n@)e® (@) cos (tv/=5;) x(@), k=1,2,
are identically zero for some function 1 € C§°(R"). Therefore, we have the identity
SOV 1= Fix (w(Oxcos (tv/=55) x) 1
= x(Bg +N) ™ Fimx (00 — 200!(8)) cos (tv/=55) X) 1, (5.10)

which, in view of Pr ition 5.2, extends analytically to {0 < Im A < f3, [Re A| > €}, Ve > 0,
for some constant 4 > 0. In view of (5.6), it is easy to see that

lim [IS(R+i0)f|ln — 0
|R|—+o00

uniformly in o for o < B. Therefore, one can change the contour of integration in the

formula
- -1 AtA
plt)xcos (ty/=Bg) xf = (27) /MHe S(\)fdA
= (2m)lePt /_ Z DS+ i9)fdA + lim (7)) L s

=e P L()f + L), (5.11)

where 7(e) = {ImA < 0, |\| = e} U{ReA = —£,0 < ImA < B} U{Red =¢,0 < ImA <
BYU{ImA = B, —¢ < Re\ < ¢}. It follows from Proposition 5.1 that when n is odd, S()
is analytic at A = 0, so in this case [2(t) = 0. When n is even, by (5.2) it is easy to see that

120 f Il < CE"(|f||1- (5.12)
To estimate the norm of I, (t), set
J(t) = (0F = 8,) 1 (1),

and observe that

Frad(Of = (B + X)S(A +46)

o B
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= = (185, XJ(A + A+ 810+ (A +iB)2 = X2)x(A, + (A +i8)) 7' +x_n)
Fooa (190 = 20+ )0 () cos (3/B5) X) £-

By (5.6), one can easily obtain, for real A,

2
’ <O |[Frcn (€0 con (1v55) ) ], » 519
H k=1

with a constant C > 0 independent of A, By Plancherel’s identity and (5.13) one can easily
conclude

||(l . \/——A;)'l Fond(O)f

m |l(1+ \/-_Ag £ J(t)fH2 dt
<C‘1/ 8 (0(1)? +"()?) "cos (t\/_) Xf“ dt < G| fl- (5.14)

On the other hand, by Duhamel’s formula
tsin((t — 7)/=A
ll(t)f=/ M__Q)J(,-)fd.,—y
0 V=84

and hence, in view of (5.14),

o< [ e+ v=E) " seoe] ar
< (/‘;l(t - r)?df)m (/Ot H(1+ \/——Ag)" J()f :dT)m

<2 (Aw‘i(l+m)_lJ(T)

Now the first term in the LHS of (5.9) can be estimated by combining (5.11), (5.12) and
(6.15). The second term is treated similarly. (a]

2 1/2
f} 4T> <CtP| . (5.15)
H

For nontrapping compactly supported perturbations of Ay we have a better free of
resonances region, which however does not follow anymore from Theorem 4.1. Namely, we
have the following extension of Lemma 5.3 to more general nontrapping operators which is
due to Vainberg [13].

Theorem 5.5 Under the assumption (4.2), the cutoff resolvent x(Ag + A?)~'x estends
analytically to {A € C : ImA < Nlog|A|, [ReA| > Cn}, VN > 1 with a constant Oy > 0,
and satisfies in this region the estimate

185x(Ag + A%) ™ Xll c(za (o), e (ry) < CelA[72CTmA (5.16)
Jor0< k<2 £=0,1,2, .., with some constants C¢,C > 0.

——
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Proof. We will derive (5.16) from the following result (known also as generalized Huyghens
principle) which in turn can be deduced from the classical propagation of C* singularities
(e.g. see Theorem 23.2.9 of [6]). Let R > 0 be such that suppx C {|z| < R}.

Proposition 5.6 Under the assumption (4.2), the kernel U(t, z,y) of the operator % X
is C-smooth in (t,x,y) for |z| < ct — R with some constant ¢ > 0.

Choose a function ¢ € C*°(R"*!) such that {(z,t) = 0 in R**'\ {|z| < ct - R}, {(z,t) = 1
in {|z| < ct/2 - R}. Let x; € Cg°(R"), x1 = 1 on suppX, x2 = 1 on suppx;. Setting
Q(t) = (87 — Ay, x1(x)¢(x, 1)), in view of Duhamel’s formula we have
sm sin (ty/=4,) A,) _sin (tv/=8,) Y /‘ sin ((t — 7)y/=4, Q(T)ain (r/=8,) o

Xi¢ V-4, V-8, ibdf V-8, V-4, :

Taking the Fourier-Laplace transform of this identity, we get, for Im A < 0,

sin (ty/=4,) ) 2y-1 2)-1 ( sin (ty/=4,;) )
-Fi, (16— 7——— X | = x(AgFX APEDN 1 Fiey t
A(Xl( X | = x(Bg+2?) " xA+x(B8+A%) T xaFrn | Q( )T_T'—\

=
Taking into account that x = 1 on supp(A, — Ag), one can easily obtain from this identity
the following one
X(Ag + A%~ x (1+K(X) = K1 (), (5.17)

where

K(A) = (89 = B0)(A0 + A xaFir (omﬂ——— o 5) x) 3

Ka(3) = ~Fimor (,«ﬂi‘/TgAL ) = ¥[8 +A7)"x2.ﬁ__,\( Q20 f}_A_" s) )
Since x¢ and Q(t) are identically zero for t > T for some constant 7' > 0, the operators
K(A) and Ky(A) extend to entire functi in A M , by P ition 5.6 we have
Q(t)U(t,z,y) € C§° with respect to (t,z,y). Therefore, for every integers N 3 1, £ > (),

AV F (Q(l)%— “”)x) = [[Feer (&"om% “_‘)x) < Cye™=A,
L | |
v =

where ||-|| denotes the norm in £(H). Now (5.16) with k = 0 follows easily from (5.17)-(5.19)
combined with (5.7). The bound (5.16) with k = 2 follows from (5.16) with k = 0 and the
fact that A, is elliptic. So, by an interpolation argument, (5.16) follows for every 0 < k < 2.

‘S Y
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6 Uniform Limiting Absorption Principle and Decay of
the Local Energy for General Long-Range Rieman-
nian Metrics on RY

Throughout this section the space R™, n > 2, will be equipped with a C*°-smooth Rieman-
nian metric g satisfying (4.1), but we will no longer suppose that (4.2) is fulfilled. Of course,
the results desribed in Sections 4 and 5 do not hold anymore. Nevetheless, there are weaker
analogues of these results in this general setting and that is what we are going to discuss in
the present section. Given an a > 1, choose a function 7, € C*°(R") such that 7,(z) = 0
for |z| € a, na(z) =1 for |z| 2 a+ 1.

Theorem 6.1 Under the assumption (4.1), for Vs > 1/2, X > Xg the limit
,ET‘(I)—‘(A’ + X tie) Nz):H—H
exists and satisfies the estimates
[I2)=* M85 + X £i0)~H2) =l o ) < CET, (6.1)
[[70(2)(2)~*A@g + 2 & 0)2) 10 2| gy < (62)
uith some constants C, Cy, \g,a > 0 independent of \.

Clearly, in this more general situation the estimate (4.5) is no longer true. Instead, we have
the following analogue

Proposition 6.2 Let u € H*(R"). Under the assumption (4.1), for R > po and for
O<e<1, A2 A, the following estimate holds

e Mull an) + |6l 11 (Bryi\Br) < CeM(Ag + A2 = ig)ull 125,y
+OA (A + A = ie)ulla(Basa\Br) + Cllull i (Basa\Basy)s (6.3)

with some constants ¢y, cz,C, Ao > 0 independent of A, € and u.

This estimate is proved in (3] by using the Carleman inequalities in Br. Theorem 6.1 follows
from combining the estimates (4.6) and (6.3) in a way similar to that one carried out in
Section 4. At low frequency we have the following

Proposition 6.3 Under the assumption (4.1), for 0 < XA < Ao, s > 1/2, we have
162)7* A8 + A £10) ™ (2) ~*ll oy + I(2) 0z, (g + A £i0) ™ (2) ~*ll(a)
+(@) 7" V=Bg(8g + N £10)~ (2)~*l(m) < Const. (6.4)

e
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Note that to prove (6.4) one can proceed as in the proof of Theorem 4.1 using instead
of (4.5) the Carleman inequalities (for example, (6.3)) which hold at low frequency as well,
together with a low frequency analogue of (4.6).

Using (6.2), in the same way as in Section 4 one can prove the following

Corollary 6.4 Under the assumption (4.1), ¥f € L*(R™), ¥s > 1/2 the following inequal-

ities hold:
[ futartar- ’am,'““"\}_{ 2) (o) -*na(2)s

with a constant C > 0 independent of f.

2
(@) @) c08 (£/=B5) (=) ~*na(@)

IL’(R")

dt < C"f"i’(ﬂ.")v (6.5)

2

dt < Ollflfamny,  (66)
La(rn)

In what follows we will assume that g = go outside a bounded domain. The following
proposition is an easy consequence of the estimates (6.1) and (5.8) and can be considered
as an analogue of the results in Section 5 in this general setting.

Proposition 6.5 The cutoff resolvent x(A, + X\*)~'x eztends analytically to {\ € C :
ImA < Corexp(—=Ci|A|), £ReX > 0}, where Cy > 0 is the constant in (6.1), Cy > 0, and
satisfies in this region the estimate

[IxA(8g + A2 Xl c(ary < CeS P (6.7)
for some constant C > 0.
We will derive from this proposition the following

Theorem 6.6 Form >0, t > 1, we have

Hx(l A cos (:\/E;) x”qm < Cp(logt)™, (68)
”x(l = A (z 5,) x”m” < Crllogt)™, (69)

with a constant Cp, > 0.

Proof. Let A > 1 and let $4(9) = 1 for 0 < A, ¥4(c) = 0 for 0 > A. By the spectral
theorem we have

- 0 (190 (V) s (/) <47 60

com =

(T T
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x(1-48,)"™2y,s (\/—_Ag) cos (t —Ay) X

A
- (2ri) j,, (14 N)=/2 cos(tA)x (B + A2 +i0)~ — (Ay + X — i0)~}) x2AdA

2 A
=(m) Y (D / (14 X3) ™20 0 (A, + A2+ (—1)4i0)IxAdA. (6.11)

vl 0

In view of Proposition 6.5 and the Cauchy theorem one can write

A
E(t) = (zn)-‘/ (14 22) =26 (A, + X2 — 0)~"xAdA
0
= (zm)"/ (14 X%/ 2e A5 (A g + A2) T XAA
Ty
+(2m)"/ (14 A2)"™/26 5 (Ag + A2) " xAdA
ImA=6,6<ReA<A

+(2mi)~! / (14 A%)"™2e N (Ag + A2) " xAdA = B (t) + Ea(t) + Es(t),
0<ImA<S,ReA=A

where 0 < & = O (e~©14) is such that (A, +A? —i0)~'x extends analytically to 0 < Im A <
§,and Ty = {ImA=0,0 < ReA < 8} U{ReA =4, 0 < ImA < 6}. In view of (6.7), one has

IEv®)llecmy € C8, |1Ea(O)lcqy < CAPA8, | By(@)llcqy < Ct7'e@ A (6.12)
Take A = (2C;) " logt so that § = O(t~/2). By (6.12),
|E@lcmy < Ct=2. (6.13)

Clearly, the other terms in the sum in (6.11) can be treated similarly. This together with
(6:10) imply (6.8). The estimate (6.9) is treated similarly.
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