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Susseany. Time varying conflicts are examined with changing Pareto frontier, disagree-
ment payoffs, and break-down pi The icity and limiting properties
of the sofution obtained by alternating offering are first discussed, and then a differen-
tlal equation model is derived to model the time dependence of the solution. Several
partienbar models illustrate the general results.

1 Introduction

This paper & concerned with conflicts and negotiations in a dynamic framework, when
decinions axe made repeatedly in time or the best time period to make decisions is to be
determined. Based on the pioneering work of Nash (1950), many researchers have introduced
tolution comcepts and methods for conflict luti The axi pproach requires
the wolution 1o satisfy certain conditions which are called axioms and in most cases the
existence and uniqueness of such a solution is proven. The original collection of axioms
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of Nash (1950) was modified and generalized by several authors. For example, the non.
symmetric Nash solutions have been ined by H: yi and Selten (1972). Solutions
satisfying individual nonotonicity have been introduced by Kalai and Smorodinsky (1975).
This solution was further generalized by Anbarci (1995) which is called the reference function
solution. The egalitarian solution of Kalai (1977), the super-additive solution of Perles and
Maschler (1981), the equal sacrifice solution of Chun (1988) and the equal area solution
of Anbarci (1993) are also well known. Nash (1953) has shown that the equilibrium set
coincides with the set of Pareto solutions if the problem is considered as a two-person non-
cooperative game. We might consider bargaining as a single player decision problem, when
the strategy selection of the other player is considered random. If uniform distribution is
assumed and each player maximizes his/her own expected payoff, then the common optimal
selection is equivalent to the Nash solution. Similar equivalence holds for applying the
principle of Zeuthen (1930) in determining the order in which concessions are made. One
of the most popular bargaining method is the alternating offer process (Rubinstein, 1982),
which has been extended by Howard (1992). In the model of Anbarci (1995), the payoffs
of the players depend not only on their offers to themselves but also on how generous their

offers are.

In this paper, we will concentrate on the alternating offer process. After the mathemat-
ical model is presented, the existence and uniqueness of the solution will be proved. This
result is known from the literature, however some details of the proof will be used in the
latter parts of the paper. Some monotonicity and limiting properties of the solution will be
next discussed, and then the control of the solution by model parameters will be examined.
In the case of time-varying Pareto frontiers, a differential equation model will be derived for
the solution, and this model will be illustrated by particular examples.

2 The Mathematical Model

A two-person bargaining problem is usually identified by a pair (S,d), where S C R* is
the feasible payoff set, and de S is the disagreement payoff vector. It is assumed that the
Pareto frontier can be characterized by a strictly decreasing, concave, continuous function:

P = {(z1,22) |2 = f (z1),A < 2: < B} (1)

where A < dy < B and f(B) < da < f(A). To rule out trivial bargaining problems, it
is assumed that dp < f(d1). In each odd bargaining round, player 1 offers a payoff z; to
player 2, who either accepts or rejects the proposal. In the case of acceptance, the bargaining
process terminates. In the case of rejection, the process brakes down with probability 6;,d is

the terminal payoff vector; and with the probability 1 - 4;, player 2 gives a new offer. If his
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offer 1z s accepted, then the process terminates. Otherwise, with probability d;, bargaining
breaks down with payoff vector d, and with probability 1- §;, player 1 makes a new offer.
We assume the disagreement payoff and the break-down probability of the counterpart can
be estimated. The process continues until termination. For more details of this process, see
Rubinstein (1982).

In the case of subgame perfect equilibria (SPE), the responding player is indifferent
between accepting of rejecting the current offer. The stationary SPE proposal x of player

| and that y of player 2 are theref letel. ized by the following system of
equations:
) = g(x2), zg=08idz + (1 - 6))wa @
0 =Gy + (1 = 8p)an, v2 = f(n)

where g is the inverse of f, g = 4 gt

Exemple 1 An owner of a company and his employees wish to agree on the salary ad-
Justment through a negotiation to terminate a strike. This strike occurred because the
original proposal for salary adjustment by the owner was turned down by the employees.
The employees started the strike; in the mean time, they also started the negotiation with

the owner. In order to illustrate the process of alternating offer bargaining, assume that the
Pareto frontier is defined to be:

= {(11.12)|Iz =4/100-2%, 0< 2y < 10},
= f(z))=/100-2}, and =z = g(z2) = /100 — 23,

where 2, is the expected payoff of the owner, and z; is the d payoff of the emp

in terms of percentage of salary adjustment. For example, if the employees choose their
expected payoff 23 = 5 units, then the expected payoff to the owner z; = V100 — 52 = 8, 66
units, Then, for the 1 the p: age of salary adj Q, can be cal

based on the expected payoff z3, such as a linear relationship that Q = z3.

In the begi of the iation, the owner asi

percent salary adj
to the emph In such condition, the d payoff to the employees is z; = 6 units, and
the expected payoff to the owner is z; = V100 — 6 = 8 units. In the case of acceptance,
the bargaining process terminates. In the case of rejection (six-p t adj was

considered oo Jow by the employees), with probability §, = 0.3, the process breaks down
(the strike continues and no definite date set for the next negotiation).

If the strike continues, the owner needs to hire temporary workers with higher wages to
keep the plant partially operate, the productivity drops, and the employees receive no pay-
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checks from the owner. We assume under such condition, the expected payoff to the owner
drops down to three units. Also, the employees who are on strike receive two units per week
from the union. That is, the disagreement payoff vector is d= (3,2).

However, with probability 1—4; = 0.7, the employees made a new proposal of 8-percent
adjustment to the owner. Then the new d payoff to the empl 2 was 8 units
and the expected total payoff to the owner z; = /100 — 82 = 6 units. If this new proposal
was d, the jation termi; 1. Otherwise, with probability d; = 0.5, bargaining

broke down, and again, d= (3,2) became the terminal payoff vector. Or with the probability
le, a percent adj It is casy

1—48; = 0.5, the owner gave a new offer; for
to see that if the bargaining continued this way, it was very likely that an agreement could

be reached eventually.
Then our example can be modelled as:
@y = g(@z) = /100 — 23,
22 =032+ (1~ 03)y2 =06+0.7-pa,
1 =053+(1—-05)z =15+05-2;, and
2= () = V100 -y}
In the next section, we will discuss the unique solution to equations (2) that satisfies
the conditions > d and y > d. That is, with fixed values of disagreement payoffs, d; and
dy, and break-down probabilities, §; and d; there is always a unique stationary SPE.

3 Existence and Uniqueness of the Solution

lent to a single

As in Houba (1993), notice that ions (2) are equi
f@1) = 81da = (1 = 6;)f(82ds + (1 — b2)z;) = 0. 3)

For the sake of simplicity, let A(z;) denote the left-hand side. Since f is continuous, i
is also continuous; furthermore
h(dr) = f(d1) = 81da = (1 = 61)f(dy) = 6:(f(dy) — da) >0,
and with the notation D) = g(d3),
h(Dy) = d3 = 61dy = (1 = &1) f(d2d1 + (1 = 62) D) = (1 = 6)(da = f(6ads + (1 = 62) Dy)) < 0.
Hence, there is at least one solution to equation (3). The solution is unique, since

function A is strictly decreasing:
h(zy) = 61 - [f(62dy + (1 = 62)z1) = da] + [f(x1) = f(z1 = Ba(1 = dn))],

o . a\
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where both terms are decreasing in ;. The first term strictly decreases, since f is strictly
decreasing. The second term also decreases, since f is concave.

The next simple result gives a sufficient and necessary condition that guarantees that

) Is strictly decreasing, so we might relax the assumption on the concavity of function f.

Theorem 1 Assume that f strictly decreases in [dy, Dy]. Function h strictly decreases in
xy with arbitrary values 6y,0; € (0,1) if and only if

Ya(21) = f(21) = f((1 - a)dy + azy)
\s decreasing m 1, for all a € (0,1).
Proof. Notice first that h strictly decreases if and only if for all z < X,
f(@) = didy = (1 = 61) f(62dy + (1 = 62)z) >
S(X) = b1dz = (1 = 61) f(82dy + (1 — 82) X)
which holds if and only if
JIX) = f(z) < (1= 8)[f(62ds + (1 = 82)X) — f(S2ds + (1 = 8)a)). ()

Introduce the notation a = 1 — ;. Assume first that relation (4) holds for all 6,8, € (0,1).
By letting &, — 0, inequality (4) implies that

J(X) = f(@) £ f(Gady + (1 = 82)X) = f(02dy + (1 = b2)z) (5)

showing that v, decreases. Assume next that 1), decreases, then (5) holds with negative
right-hand side. Therefore (4) is true with arbitrary 6, € (0,1). [ ]

Function & depends on two parameters, however ¢, has only one. Therefore in practical
cases it is easier to check if 1, is monotonic rather than to check the same for h. In the

case when f s differentiable, an even more simple monotonicity check is provided by the
following result

Theorem 2 Assume that f is differentiable and strictly decreasing. Then . decreases for
all @ € (0,1) of and only if function zf'(dy + z) decreases in z € [0, Dy — dy).

Proof. Function ¢, decreases if and only if ¢4 (z) < 0 for all z, that is,
f'(z) = af'((1 = a)dy + ax) < 0.
This is equivalent to inequality

(2= d))f'(dy + (& = dy)) € a(z = d1)f'(dy + alz = dy)).

il ——
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Since a € (0,1) is arbitrary, this relation is equivalent to the assumption that =f'(d; + z)

decreases. L]

The condition that zf/(d, + z) is decreasing is a much weaker assumption than the
requirement that f'(dy + z) is decreasing, which is equivalent to the condition that f is

concave.
Exemple 2 In the previous example on salary negotiation,
h(wy) = 0.3 [£(0.5- 8+ (1= 0.5)z1) = 2] + [f(z1) = f(z1 = 0.5(z1 — 3))]
= 0.3 [f(1.5 +0.521) — 2] + f(z1) — (0.5 + 1.5)
= f(a1) = 0.7f(0.5z; + 1.5) — 0.6.
Simple differentiation shows that this function is strictly decreasing. Therefore, there is a
unique SPE for this example.

The results of this section can be summarized as follows.

Theorem 3 Under the conditions of Theorem I or Theorem 2, the alternating offer proce-

dure has a unique solution.

4 Monotonicity of the Solution

Let (z7,x3,y;,¥3) denote the stationary SPE with fixed values of §; and d,. From equations

(2) we have

(a5 = o= = [ 5 = ) 6+ (= 005 -
g ©
= R - s - da).

The offers (x},x3) and (yf,y3) of the two players therefore have the same Nash product if
and only if §; = &,. It is also easy to see that

@i = yi = 2] = bady — (1 = 82)z} = ba(z] — di) 2 0,

and
U3 — o3 = 3 — S — (1= 61)u3 = 6y (5 — da) 20

These inequalities imply that
z} > yj and y; > 75,

‘e A
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That is, at the stationary SPE, each player offers at least the same payoff value to himself
(o herself) s be (she) offers to the other player. If §, — 0, then y3 — z3 — 0; and if
§ — 0, then ] — yi — 0. This property can be interpreted as in the case when the
break ~down probabilities converge to zero, the discrepancies between the offers of the two
players also tend to zero. This is not surprising, since in the absence of possible break-downs
when 1o threat is present on disagreement penalty, the two players must reach a common
solution.

The monotonicity of the stationary SPE on §; and §; will be examined next. First, we
pote that with fixed vales of dy, da, &) and &, h strictly decreases in z;, as was demonstrated
in the previous section. Since

hlzy) = f(@1) = f(b2dy + (1 = b2)z1) + 61 - [f(S2ds + (1 — 82)z1) — o)

with all other variables kept fixed, h(z) increases in 6y. Let x,(8;) denote now the solution
af equation (3), and let A(zy, 1) denote the left-hand side of equation (3). We will next prove
that £} = x;(4) increases in ;. In contrary, assume that 6; < A; and z1(61) > z1(Ay).
Then

0= h(z:(61),81) < h(z1(A1),81) < h(z1(A1), A1) =0,

which is an obvious contradiction. Equations (2) imply that yi also increases and both z3
and yi decrease in ;. The symmetry of the two players implies that with fixed values of
dy.dy and &y, 23, and yi decrease in dy, and @3 and y3 increase in 8. This property can be
Interpreted as any increase in break-down probabilities of the other player has an increasing
effect on equilibrium payoff.

Assume next that the values of §;,d; and dy are kept fixed. From equation (3), we see
that Alz;) increases in dy. Similarly to the previous case, it is easy to prove that ] and y}
are increasing in dy, and 3 and y; are decreasing in d,. By interchanging the two players,
we also conclude that with fixed values of 8y, 8, and d,, z} and y} are decreasing and z3 and
i are increasing in dy. That is, an increase of the disagreement payoff of any player has an
Increasing effect of his (her) equilibrium payoff.

Assume finally that function f defining the Pareto frontier is changed. Let f denote
the new function, and assume that for all 2y, R(x;) > h(z,) with fixed values of all other
variables, where K is also defined as the left-hand side of equation (3), with f instead
of f. This condition is necessarily satisfied if for all z,f(z,) > f(z), and for all h >
0,7(21) = F(xs = h) 2 f(z1) - f(z1 - h). Let 73,73, 71 and y3 denote the coordinates of the
stationary SPE. Based on the previous idea, one can easily prove that 7] > «}, and therefore
U1 > ¥ 1f the inverses of f and f satisfy the above conditi then by i )i ing the
two players, we conclude that Z3 > z3 and 33 > y3.

| aemmme——
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5 Limit Properties of the Solution

Assume first that the disagreement vector converges to a point on the Pareto frontier, and
let (dj,d3) denote the limit point. Since the stationary SPEs are in a compact set, they
have at least one limit point (%],T3,¥1,¥3). Since both should dominate the disagreement
vector, T} = J} = d} and Tj = 73 = dj regardless of the selection of 6, and §;. In the
remaining part of this section, we assume that (dj,d3) is not on the Pareto frontier, that
is (d3 < f(d})), as it was assumed with regard to the disagreement payoff vector in the
beginning of this paper. We assume now that, in addition to the disagreement vector, the
break-down probabilities §; and d; also converge. Let 67 and 83 denote the limits. The
continuity of f implies that equations (2) and (3) hold with dj,d3, 6] and 63.

Assume first that § and &3 are both positive and less than one. Then (z},z3) and
(¥7,43) is the unique stationary SPE with parameters dj, d3, 6] and 63. So, the stationary
SPEs have a unique limit point; hence they are convergent. Assume next that 6 = 0 and
0 < 43 < 1. From equation (3) we see that

f(z1) - f(&2d; + (1 - 83)z]) = 0.
That is, z} = y} = df and 2§ = y3 = f(d]). If0 < 6] < 1 and dj = 0, then by interchanging
the players,
z3=y;=dj and zj=y]=g(d}).

Assume next that 6 =1 and 0 < 63 < 1. Then from equation (3) we see that f(z}) = dj,
that is, 2§ = Dj. From equations (2) we conclude that z3 = d3, y; = 83d} + (1 - 63) D] and
vi = f(y}). 1f 63 = 1 and 0 < 8} < 1, then by interchanging the players, z3 = f(d}),z} =
di,y3 = 67d3 + (1 - 61) f(d}), and yi = 9(u3)-

Assume next that §; = 63 = 1. Then, obviously, z{ = Dj 23 = dj,yj = dj, and
v = f(dj)-

Consider last the cage of 8 = 63 = 0. Assume first that ;é converges to a positive
constant K. A slight ification of the proof p d in Binmr;re et al. 1986 shows that
z} =i, 73 = 3, and (x}, 3) coincides with the non-symmetric Nash bargaining solution

arg max { (2, - d})®(z2 —d3)'"°|(z1,22) €8, 71 > df, 72 > d3}

with a =

KLl. 1f 31 does not converge to a positive limit, then we have the following
bilities. For every sut where f converges to a positive constant, the stationary
SPEs converge to the corregponding non- symmetnc Nash bargaining solution. Consider now

a sub-sequence such that él converges to zero. By rewriting equation (3) as

flx)+ (1= )%{‘—M-@u, d)—dj =0,

Y )
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and using the fact that the left hand side derivative of f is bounded, we wnclude that at the
limit, f(2}) = d3, that is 2} = Dj. Therefore, zj = yj = dj and yj = Dj. If 31 converges
1o Infinity, then by interchanging the two players, we have the limit z3 = f(d} ) = y3 and
=y =d

6 Control by Break-Down Probabilities

Assume first that parameters 8;,d, and d; are given and fixed, and only 4, is controlled. If
2} i the target value for zy, then equation (3) implies that §; has to be selected as

~f(af) + £(6adh + (1= 8)z7)
R T (=) o

Notice that if 23 € (dy, f~"(dy)), then the numerator and denominator are both positive,
and 8, < 1. The above assumption on x] means that at the equilibrium offers, both
players enjoy higher payoff than in the case of disagreement. Hence, z} can be completely
controlled by the selection of 6y. Since xj = f(x}),x} is automatically controlled by x}. In
addition, to control the value of y}, the special selection of only 4, is not sufficient, since
yi = dady + (1 = &)z} does not necessarily hold. If y§ € (dy,z}), then §; has to be selected
n“

_T-u
82 Zo=l
which is always positive and less than one. The above derivation and the symmetry of the
players imply the following result.

Theorem 4 The value of z} (as well as z3) is completely controllable by 6y, and the value
of yi (as well as y3) is completely controllable by 5. The pair (z3,y7) (as well as (z3,y3))
i completely controllable by the pair (6,,82).

7 Control by Disagreement Payoffs

Assume next that the values of 6,; and d; are given and fixed, and only the value of d,
can be selected as control. If 27 is the desired value, then equation (3) implies that d; has
10 be selected as the solution of equation

T + 1 - )ap) = L0t ®

Sinee the left hand side strictly decreases in dy, there is a solution for d, in the interval
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[A.z7) if and only if
102+ (1~ )z > LD =0 o
and
J(a1) ~ buds. i

flzi) < 1%

The second inequality is necessarily satisfied if z; < f~'(da), as assumed before. If
mequality (9) is satisfied, then d; has to be the unigue solution of equation (8). The value
of z3 is automatically controlled, since 23 = f(z}). Similarly to the control with break-
down probabilities, we see that the value of y; in addition cannot be controlled only by the
selection of dy, since relation yf = dady + (1 — d2)z] does not necessarily hold. The value of
1 can be controlled by either the selection of only dy (by interchanging the two players), or
in the case of dj < yj < aj, there is a unique value of 6, € (0,1). In summary, we have the

following result.

Theorem 5 The value of x} (as well as x3) can be controlled by selecting dy if and only if
ts of the stati y SPE can be lled by the simulta-

relation (9) holds. All comp
neous selection of dy and 8y, if relation (9) and dy < yj < zj hold.

iti can be obtained by i 1 ing the two

We mention here that similar
players.

8 Time-Varying Pareto Frontiers

Assume now that the Pareto frontier, f, is time-dependent: f = f(t,z)). Then, for all ,
equation (3) can be rewritten as

F(tywn(t) = 61z — (1= 61)f (¢, 62y + (1 = 62)z1 (t)) = 0. (11)

Assume that f is differentiable, then implicite differentiation shows that

= (1=80)[fo(t, Sady + (1~ 62)z1 )+ (1= 82) fo(t, Saddy + (1 = 82) 1 )ita] = 0

Feltozy)+ fet, z1)
that is,
by = o Jelh3) = (L= )it Gy + (L= Ba)ma) (12
Ja(ty@1) = (1 = 61)(1 = 62) fz(t, 8201 + (1 = 83)z,)
This equation shows how the value of z; changes with time. If z{ is the solution of (11) at
£ =0. then x,(t) is the solution of the ordinary differential equation (12) with initial condition
£1(0) = x}. Assume furthermore that for all t > 0, j(l.z,) satisfies the conditions of the

fa -
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static model being outlined in Section 2. The monotonicity and concavity of f implies that
f, I8 decreasing, and is negative for z, > A. Therefore, | fz(t, z1)| > | f=(t, 62d1 +(1—d2)z1)],
and the denominator of (12) is always negative. Hence the sign of #; is determined by the
sign of the numerator. The shape and major properties of the trajectory {x1(t)} depends
on the way i depends on t. Some special cases will be shown next.

9 Special Cases

I this section, we will discuss some special cases of how Pareto frontier might move in time.
Other cases can be examined in a similar manner.

Exemple 3 Assume first that the Pareto frontier is shifted with a constant speed. Then

ft,o) = at + f(z, - Bt), (13)

where f satisfies all previous conditions and a and 3 are given constants. Then equation
(12) has the form

_la—Bf'(x) — Bt)) ~ (1 - &i)(a — Bf'(82dy + (1 - 8)(z1 — fit)))
S'(@y = Bt) = (1= 80)(1 = 82) /" (82d + (1 = 82) (1 — ft))

BY'(z1 - Bt) - aby — (1= 8))Bf'(d2ds + (1 - 5a) (=1 - BY))

[z = Bt) = (1= 61)(1 = 82) f' (b2 + (1 = &) (1 — BY))

Natice that the denominator is always negative, as shown before.

i)

(14)

If & and 3 are both positive, then &, > 0, that is, z; increases in time. If both o and
i are negative, then ; < 0, so x; decreases. If a and 3 have different signs, then the sign
of &y is not determined. Assume that f(z1) = b— az; with some a,b > 0. Then

i ady + 8 a8
&y =

s A 18)

therefore. if & + af is positive, then x; increases with a fixed positive velocity; if « + aff
I8 negative, then x, decreases with a constant velocity, and if a + af = 0, then z; remains
constant

IF we have & target solution, @{ , then it is easy to determine the time when we reach this
solution. We have to solve the differential equation (14) with the initial condition a (0) = 7},
and then solve the nonlinear equation () = zJ. In the special case of equation (15), it
becomes

ady + a8

a(dy + 62 - 6182)

. 0
t4a)=ad.
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Exemple 4 Assume next that the Pareto frontier is shifted at nonconstant velocity. We

assume that
f(t,21) = at* + f(z: - BtY), (16)

where u, v > 0 are given constants. In this case, equation (12) can be rewritten as

oo laut " = BY)(=B)ut ™) = (1= 6y)(aut ! + f/(g(xr, 1)) (=B)u~t)
A f1(@y = BEY) = (1= 6)(1 = 62)f(g(x1, 1))

(1)
where g(xy,t) = Sdy + (1 = 62)(zy — Bt¥). The denominator is always negative, and the
numerator can be simplified as

F@y = Bt")But" =" = Graut"= — (1= 6:)f'(J2dy + (1 = 8a) (1 — At"))But* ™",

which is negative if a, 4 > 0 and is positive if a, 3 < 0.
Hence , is positive for o, 3 > 0, so, z; increases. Similarly, z, is negative for a, 4 < 0,
therefore, z; decreases. As a special case, assume that f(z,) = b— ax;,. Then
7 Saut*"! + §;afut*!
WS e 18
S ) o
so the trajectory ) (t) can be easily computed and also the timing for a given outcome can

also be determined. In this case, we have to solve the nonlinear equation

S at™ + 6,a5t"

o L 0
AT G e
Exemple 5 Assume next that
it =21 (3) (19)

with some positive a and 3. Equation (12) now reduces as
gy W {u'ln af (%%) atf! ( ) (218710 B) - (1 - &)
Y [a’ e (5,:1, + (l;‘— 6;}1,) +atf (dgd, + (ﬂl'— 6:):1)

X(=(8dy + (1 = 82)a1)B~" In 8]}

/(o (§) 5 -0 -ia-amtr (S5=5) 2)

e @ AW
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The denominator is always negative and the numerator can be rewritten in the following

way:
~In,a [a'[ (%’) — (1 =81)a'f (_6_,.1, + (;"‘ 5:):.)]
+2,57" In Bat [I' (%) —(=ey) 1! ("’L‘*(;ﬂ_“m_‘l)]

b =
=) o = i) g n oy (A BB

—Ina (8yds) + z18~1n fa* [f‘ (%}) = (=B (i’i‘—”;,'&)]

ol Gady + (1 = 6.
+(0 = )6a(er =) g S (%) : (20)
If o anel @ are greater than 1, then @ > 0, which implies that x; is strictly increasing. If
both e and 3 are less than one, then @) < 0, so x; strictly decreases.

Consider next the relative payoff of player 1 compared to the payoff of player 2: r(t) =

2y(t)/23(t). Notice that za(t) = f(t, 1(t)), so

@y (t)wa(t) — wy(t)wa(t)
4 @y(t)?

aOf(hn() =10 (At 21 ®) + fubn©)a 0)]

Stz (8)?
o (f = oufa | - i fe
- 7 2 (1)
Exemple 6 Assume that dy = dy = 0, and f(z;) = a — bz;. Then equation (3) has the
form
a=bxy — (1= 6)[a—b(1 = &)x] =0,
Which implies

o ady
S -0 - 6]
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Therefore,
aby _al-(1-8)(1~-d&) -4
B e e e e e ()
> a(l = 61)8
1= (1=68)(1=da)’
* g Wb WIS o e (22)

@y ba(l—01)8  b(1—&;)dz

If the time-variant Pareto frontier is given as

£ u b 7
f(t, @) = at* + (n—b%:) =(a+at") = 5o (23)
where a., 3, u are positive constants, then from equation (22) we see that
zy 8,8

@ b=
which increases for # > 1 and decreases for 3 < 1.

Exemple 7 Assume next that di = dp = 0 and f(z;) = a — bzf(p > 1). Then, from
equation (3), we have
a—ba? — (1= 8)[a—b(1 - 8)z}] =0
which implies that
e 1—6)8
Sl Jabi A e a0
“‘{bll—(l—al)u—zsz)y} B S T=a-a)1-6)
Therefore,
Tis (a81)'/7(1 = (1 = &)(1 - &3)) : (24)
@ al = 8)50"/P[1 = (1= 61) (1= 62)]'/7
In the previous time-variant model, a and b have to be replaced by a + at* and b/j",

respectively. Therefore,

T 6;/"[1 —(1=8)Q _&)ll—“/ﬂ

Ty (a +atu)l-(l/y) (%)lh“ —6,)6,‘

Notice that u, §;, &y, a, and b are positive constants; therefore the right-hand side is a
positive constant multiple of

Qt) = (a+ at*)=+ (/P gt e, (25)
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Hence, the major properties of z)/ zy are the same as those of Q(f). As an illustrative
sumerical example, select p = §, and u=1. Then

Q(t) = (a +at)g*. (26)
Noties first that Q(0) = a > 0 and if # < 1, then lim,_.oc Q(t) = 0. Differentiation yields
Q'(t) = af* + (a + at)f*2In f = f*(a + 2(a + at) In f). (27)

Assume that o + 2aln 8 > 0, then Q'(0) > 0. Then

>0ift< Mv
2 2aln 8
Q' )
<0ift> =(a+2aln )
2aln 8
and therefore Q(f) has its maximum at
5 _u+2(zln ]
E 5 2amp )

This maximum property indicates that if player 1 wants to get the largest payoff com-
pared to that of player 2, then the timing of agreement is very important. This ratio is
maximal at £*, so this player has to make the agreement at t* to achieve this maximum
value,

Consider next the general case. If 4 < 1, then
Q(0)=a~'+(/P) 50

with limy., Q(t) = 0. In addition,
QW) = (-I + ,1’) (a+utu)-l+(|/ﬂ)m'u—lal/p+(n+o‘-)>10(l/p)[’(/pxl,|" 4
= §%(a 4 at*)=2+0/p) { (-1 + ,1’) aut"~! 4 (a+at*) % In B} : (29)
Assume first that p < 1 and u > 1, then

Q(0) = =20/ (g ma) <0,

Ifp<landw=1,then

@0 =a0m (14 asalms).
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which is positive if and only if
1 a
—-l+=-]Ja+=-Ing>0.
( P) P (30)

In this case, Q is increasing at ¢ = 0. It starts from a positive value and converges to zero
as t — oo, Therefore it has a maximal value at a certain time period t* > 0.

If p<1and u < 1, then Q'(0) = o0, hence Q very rapidly increases at 0. Therefore Q
las a maximum at some positive t*. Assume next that p > 1. Then always Q'(0) < 0.

In summary, we see that if p < 1, and u < 1 or u = 1 with condition (30), then Q(t),
as well as z; /x5, has a maximum at a certain positive value t*.

In practical cases, differential equation initial-value probl and i algebraic
equations are solved. For the most popular comy; see, for pl
and Yakowitz (1986).

10 Conclusions

In this paper, the monotonicity, the limiting properties, and the control of the solution of the
alternating offer bargaining process with time-varying Pareto frontier were first examined.
A general differential equation model was next introduced to describe the solution. We have
also provided several examples to show how to use the general model to design negotiation

strategy in order to reach a given or to imize an The hodol
of this paper can be successfully applied in the designing of iati
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