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ABSTRACT. The dynamic harvest of a biological population is examined under different 
growth rates and different harvesting communities. A~er the general model is formu­
lated, the number of equilibria and the long term behavior of the state trajectory are 

daM:wsed. 

Introduction 

In this paper, we will examine general models of harvesting biological resources. The models 
are be.sed on an ordinary differential equation of the form 

x = F(x) - H(x) (1) 

where i:.:(l) denotes the size of the resource population, F(x) is the natural growth rate, 
and H(z) is the harvcsting ro.te. We will examine the number of positive equilibria and the 
asymptotical behavior of the state trajectory x(t) under different assumptions. Sorne special 
cases oí this model have been earlier examined in Clark (1990), who also has discussed the 
opttmal ma.nagement of renewable resources. Special cases of model ( 1) ha ve also been 
discussed for analyzing international fishing (Szidarovszky and Okuguchi, 1998, 2000). This 
paper deYelops as follows. The natural growth of biological resources will be first examined 
and then the optima! harvesting rate will be determined under various conditions. These 
t-...'O models will be then combined in model (l), and finally equilibrium and stability analysis 
will be performed. 
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2 Natural Growth 

Assume first tha.t, in the population the birth rate b and mortality rate m are proportional to 

the population size x , t hen without harvesting, the population is driven by the differential 

equation 

:i: = x r (2) 

where r = b - m.. lt is ea.sy to see that the solution of this equation is x(t) = x(O) er1 

showi ng that x(t) remains constnnt if r =O, converges monotonically to zero if 1· < O and 

converges to infinity monotonicnlly if r > O. Exponential growth of a population assumes 
ideal conditions, however as the population increases, sorne environmental limitations will 

make the growth rate declining. In such cases, equation (2) modifies as 

:i:= r(::r::)::r::, (3) 

where r (x) is a decrensing function of x. The most simple choice of r(x) is linear: 

(4) 

where r is called the intr.insic growth rate and K is the carrying capacity. In this case, 
F(x) = ,.(x)x is a para.bola as shown in Figure l. Notice that if O< x < K, then :i; >O, 
i f x = K then :i; =O, and if x > J<, then :i; <O. Therefore the state trajectory x(t) has 
the fo\lowing simple property. lf x(O) < K, then x(t) is increa.sing and converges to Kas 

t - oo, if x(O) = K, then x(t) will remain constant foral\ future times, a.nd if x(O) > I<, 
then x( t ) decreases and also converges to Kas t tends to infinity. This property is illustrated 
in Figure 2. 

F(x) 

K 

Figure 1: Linear proportional growth ratc 
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x(t~ 

Figure 2: State trajectory 

In many applications equation (4) is modified in order to obtain a nonsymmet ric shape 

oí F(z). Such modifications are next introduced. 

Consider first the function 

F(x ) =rxº (1 - -I<) (5) 

w1th 90me consta.nt o> O (Figure 3) . Notice that the case of a = l corresponds to equation 

(il). Smce 

F'(x) = ro xº- ! (1 - ~) +rxº (-R) = rox0 - 1 - r~º (a+ 1) 

nnd 
, 2 rax0 - 1 2 ( x(a + 1)) F' (x) =ro( o - l )xº- - -K-(o + 1) = roxº- o - 1 - -K-

Figure 3: Illustration of F\ mction (5) 

1t lSCM}' tosee the F increases if x < ~. decreases if x > :fi and it has the maximum 

poi.nt at z = ~. In addition, F is convex if x < ~, it is concave if x > ~. Notice 



On tlie Dynamism o{ Harvesting Biological Resources 

that if o :S 1, then F is concave far ali x > O. The a.symptotical properties of x (t) are the 
same as in the previous case. 

Consider next function (Figure 4) 

F(x ) = rxln ~ = rxln K - rx ln x (6) 

with derivatives 
F'(:r;) = r!nI< - dnx - rx ~ = r(lnK - 1 - lnx) 

and 

F 11 (x) = -;. 

T herefare F is concave far ali x >O, it increa.ses at x < eh1 K - I = f, it decrea.ses far x > f , 
and at x = f it has its unique maximum. The a.symptotic behavior of x(t) is the same ns 

in the previous cases. 

F(x) 

K e K 

Figure 4: Illustration of F\mction (6) 

More complicated model can be obtained by select ing 

(7) 

where O < K 0 < I<. This function is cubic with roots O, K 0 , and K . Notice that if 
O< x < Ko t hen F(x ) <O, far l<o < x < K function value F(x ) is positive, and if x > /( , 
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F(x) 

Figure 5: Cubic case of F(x) 

thcn F(x) becomcs negative again. This case is shown in Figure 5. Notice that 

F(x) = - - +1·x1 - + - - rx "x' ( 1 1) 
KKo Ko K 

, 3rx2 (1 1) F(x)=--+2r - +- x-r 
KK0 K0 K 

"( ) 6rx ( 1 1 ) 
F x = - K I<o + 2r !(¡, + K 

showing that F decrenses until its local minimum (between O and /(o), increases until its local 

ma.'<imum (between 1(0 and I<), and then decrea.ses again. F is convex if x < ~' and is 

conca\-e ií x > li.ofK. While the asymptotical behavior oí the state trajectory is similar in 

cases (4), (5), and (6), in the case of function {7) it becomes different. If O < x(O) < K0 , then 

:i:(t) decreases and converges to zero lending to the extension oí the biological population. 

lf Ko < :z:(O) < K , then x(t) is increasing and convergent to K , and if x (O) > J<, t hen x(t) 
bec:.omes decreasing and converges again to K. If :z:(O) = Ko or x(O) = K , then x(t) remains 
COi\SlMl. 

For further use we examine nex.t funct.rion r(x) introduced earlier in equatfon (3}. In 
rnodel (<I) it is strictly decreaslng and linear. In the case of mode! (5), 

r(x) =rx0 - 1 (1 - ~) . 

425 
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lf a> l , titen it has the shape shown in Figure 3. Jf a= 1, then it becomes linear. In the 
ca.se of a < 1 it has a more complicated shape: it. strictly decreases with infinite limit at 

x = O and negallve infinite limit o.t x = oo, and with a unique zero at x = K . 

In the ca.se of model (7), r(x) is a. concave para.bola with zeros K0 and K . 

3 Harvesting Rate 

Consider fi.rst the ca.se of a consto.nt harvest rate, fl (x) = llo with sorne positive constant 

H0 . Then equation (1) becomes 

± = F(x)- 110 • (8) 

Assume next t hat one firm is involved in harvesting tite population , and the harvested 

amount is sold in a market with known inverse demand function p(ll ). Let C(x, H ) denote 

the harvesting cost. lt is usually a.ssumed that pis strictly decreasi ng in fl , and llp(/1) is 

strictly ooncave and couverges to zero o.s H - oo. A particular form of the cost function can 

be derived a.s follows. Assume that the harvest rate is a fun l tion of t he existing popu lation 
and the harvesti ng effort . Using the fonn of production functions we a.ssume that 

H =oxfJF:', (9) 

where E is the harvesting effort. From (9) we have 

and if Co denotes the unit cost of effort, then the ha.rvesting cost is obtained as 

with k , u, and v being positive constants. It is usual\y assumed t hat u ~ l. Then at each 

t ime period the profit of the fi rm is given a.s 

fl " 
11' = Hp(H ) - k-;;- ( 10) 

which is strictly concave in H , so there is a unique profit maximiziug hnrvest rate fo r ali 

.e> O, which is denotes as ll = fl (z) . Assumi ng interior optimum (othcrwise no harvesting 
takes place) simple differentia.tion shows that a.t the optimum harvest. rate 

uH"- 1 

p( /J ) + flp'( fl ) - •---;;- ~o. 
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Uudcr the above assumptions the left hand side is strictly decreasing in H, so H is a function 

oí .i. J111phc1t d iffcrcntiation with respect to x shows that 

m1ply111g t hat 
kuH"- l vxv-1 

H' = - x 2 11(2p' + Hp") - x 11ku(u - l )H"- 2 > O 

tiinct' 2p1 + Hp" < O as n consequence of the strict concavity of function Hp(H) . Thus H is 

imictly increasing in x showing t hat more popu\ation makes the optima\ harvei-;t rate larger. 

Co11.s1dcr ncxt the following genera.lization of the previous case. Assume that there are 

11 finn.~ doing thc harvesting, and thcy sel\ their harvested volumes in m markets. In order 

1u obtrun e~ íorm solution we have to make simplifying assurnptions. Let h¡j denote thc 
amount oí har"est oí firm i sold in markct j. Then the total harvest of fino i is given as 

11, 2 h,1 and thc supply in markct j is Sj = 'f: h,,. Assume that the inverse demand 
J"I i=l 

func11011 of market J is linear: P1(S1 ) = a, - b1 S, where a, and b1 are positive constants. 

A1111ume lll addit ion that. in the cost function of finu i, u, = 2 and v, = l (which is the usual 

M11U1npt1011 in cxamining commercial fishing). Thcn similar\y to Szidarovszky and Okuguchi 

(100 , 2000) we can easily vcrify that the total ha..rvest rate is given as 

H(x) = Af(x) 
1 + f (x) 

(11) 

w1th 

" 1 
J (x) = L 1 +2Bi!o. 

i = l i: 

where 

if wt assume that the firms are competitive and at each time period a. Cournot-Nash equi­

hbnum determines thc harvcst rate. lf in contrary we assume that the firms are cooperative 

and they maximiz.e their total profit at ea.ch time period, then 

H() ACx 
x = 2(Cx+B) (12) 

w1th 

" 1 C= I::-
¡. 1 kt 
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lt is easy to see that in both cases (11) and (12), the harvest rate incres.ses in x. ln thc case 

of equation ( 11 ) notice thnt /(x) increases in x, since each term is increasing. F'urt ltermorc 

H(x)~A--A-
1 + f(x ) 

which shows that H(x) is strictly increasing in x. In the case of equution {12) we notico 

that 
A AB 

H(x) ~ 2 - 2(Cx + 8) ' 

which is clearly strictly increasing in x. A relatively simple but lengthy calculntiou shows 

that m both cases H(x)/x is strictly docreasing in x and is strictly convex, furthermore il 

converges to zero as x - oo. 

4 Equi librium a nd Stability Analysi 

Consider first the cnse of constant hurvcst H0 . Let the maximal va.lue of F(x) be dcnotcd by 
F0 . Jf Ho > Fo , 1.hen therc is 110 equilibrium in system ( 1 ), and since the right hund sidc is 

alwnys negative, x(t) nlwnys decrcases and converges to zero. Thus in this ca.se the biological 

population wi\l vanish i11 the long run . Assume next that H0 =Fo= F(x•), wherc x · is lhe 

ma.ximizer of F (x). Then x · is the unique equilibrium. lf x(O) < x·, then x(t ) is decrcasiug 

and co1wergcs to zero, and if x(O) > x · , then x(t) also decrea.ses and converges now to x · . 
1f z(O) = x " , then x(t) = x· for ali t 2: O. Assume finally that H0 < F0 . Then t herc are 

two values x¡ and x2 such that O < x¡ < x2 and F(xj ) = F(x2) = H0 . These vnlues x¡ ruid 

x; are the equilibria of system {l). lf x(O) < x¡, then z(t) is decreasing and converges to 

zero. lf x ¡ < x(O) < x;¡, then x(t) increases and converges to x;, and iJ x(O) > x;, thcn x(t) 

<lec.rea.ses again and converges to x2 as t. -- oo. So small initial biological populatiou canuot 

survive, bu t if it is larger than the smaller positivc cquilibrium, thcn it a lways converges to 

the \arger equili brium. In such cases the populat ion is stable. 

In more general cases equation (1) can be rewritten a.s 

x = x(c(x) - h(x)) (13) 

with h(x) = H (x)/x. Depcuding on the analytical properties of functions r and h, we might 

havc a variable number of positive equilibria. For example, if both r and h are decrea.sing aud 

convex (a.s in some previously discussed cases) we might have many equilibria, there is evcn 

the possibi lity of infinitely many equilibria. However if h is strictly dccrca.sing a11d convex, 

and r is decrea.sing linear, or concave parabola or even having shape shown in Figure 3, thcn 

thcre are o.t most two cquilibria , and the stabi lity of the state trajectory is very simi lar lo 

that of the constant harvest ca.se. 



Laszlo Kapo/yi 429 

Assume firsl that in thc genera.\ cose no equilibrium exists. ince H (O) = O nnd strictly 

lncre11.Smg. in tliis case H(z) > F(x) for ali x > O. Then x(t) always strictly decreoses aud 
cOU\'t'rges to zero as t - oo. Assume next that the set oí positive equilibria is not empty. 
Notict' tha.l zero is always an cc¡uilibrium. z (O) is lo..rger tha.n the largest equilibrium, thcn 

¡ < O, so .x(t) co1wcrges monotonically to the largest equilibrium (which is always below 
K). Auume next that z(O) is between two equilibria z ; < z :+i and there is no íurther 

tquilibnum bctween thcse points. lf F (z(O)) - H (.z(O)) > O, then .z(t) _, x¡+1 o.nd if 
F(.r(O)) - H(.z(O)) < O, then x(t) - x; and in both cases the oonvergencc is monotonic. lf 

f (.t(O)) - l/(:i:(O)) = O, thcn x(t) remains constant for all future times. 

F(x), H0 

>------------ no equilibrium 

x, xi K 

Figure 6: Coses of consta.nt harvest rate 
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It is ea.sy to see that in both cases (11) and (12), the harvest rate increases in x. In the case 
of equation (11 ) notice that f(x) increases in x , since each term is increasing. Furthermore 

H(x)=A--A­
l + f(x) 

whlch shows that H (x) is strictly increasing in x. In the case of equation (12) we notice 
t hat 

A AB 
H(x)=2 - 2(Cx+ B) ' 

which is clearly strictly increasing in x. A relatively simple but !engthy calculation shows 

that in both cases H(x) / x is strictly decreasing in x and is strictly convex , furthermore it 

converges to zero as x _...,. oo . 

4 Equilibrium and Stability Analysis 

Consider first the case of constant harvest Ho . Let the maximal value of F(x) be denote<l by 

F0 . lf H0 > F0 , then there is no equilibrium in system (1), and since the right hand side is 

a lways negat ive, x (t ) always decreases and converges to zero. Thus in this case the biological 

populat ion will vanish in the long run. Assume next that Ho = F0 = F(xº) , where x ' is the 
maximizer of F (x) . Then x ' is the unique equilibrium. Jf x(O) < x ' , then x(t) is decreasing 

and converges to zero, and if x (O) > x' , then x( t ) also decreases and converges now to x · 

lf x(O) = x · , then x(t) = x · fo r ali t 2: O. Assume finally that Ho < Fo. Then there are 

two values x j and x ; such that O < xj < x:¡ and F(x j) = F (x i ) = Ho. These values x j and 
x2 are the equilibria of system (1). If x{O) < xj , then x( t ) is decreasing and converges to 

zero. If x j < x (O) < x ; , then x(t) increases and converges to x2, and iJ" x(O) > x:i. then x( t) 
decreases again and converges to x:i as t --+ oo. So small initial biological population cannot 

survive, but if it is larger than the smaller positive equilibrium, then it always converges to 

the larger equilibrium. In such cases the population is stable . 

In more general cases equation ( 1) can be rewritten as 

x ~ x(r(x) - h(x)) (13) 

with h(x) = H(x )/x. Depending on the analytical properties of functions r and h, we might 
ha.ve a variable number of positive equilibria. For example, if both r and h are decreasing and 

convex (as in sorne previously discussed cases) we might have many equilibria, there is even 

the possibility of infinitely many equilibria. However if h is strictly decreasing and convex, 
and r is decreasing linear, or concave parabola or even having shape shown in Figure 3, then 

there are at most two equilibria, and the stability of the state trajectory is very similar to 
that of the constant harvest case. 

• 
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Assume first that in the general case no equilibrium exists. Since H {O) =O and strictly 

increasing, in this case H(x) > F(x ) for ali x > O. Then x(t) always strictly decreases and 
converges to zero as t -+ oo. Assume next that the set of positive equilibria is not empty. 
Notice that zero is always an equilibrium. x(O) is larger than t he largest equi\ibrium, then 
X < O, so x(t) converges monotonica\ly to the largest equilibrium (which is always below 

K). Assume next that x(O) is between two equilibria x; < xi+i and t here is no further 

ec¡uilibrium between these points. If F (x(O)) - H(x(O)) > O, then x(t) -+ Xi+ i and if 
F(x(O)) - H{x(O)) < O, then x(t) -+ x; and in both cases the convergence is monotonic. If 
F(:i:(O)) - H(x(O)) = O, then x(t) remains constant for ali future times 

F(x).H0 

t----------- no equilibrium 

Figure 6: Cases of const ant harvest rate 
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