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ABSTRACT. The dynamic harvest of a biological population is examined under different
growth rates and different harvesting communities. After the general model is formu-
lated, the number of equilibria and the long term behavior of the state trajectory are
discussed.

1 Introduction

In this paper, we will examine general models of harvesting biological resources. The models
are based on an ordinary differential equation of the form

& = F(z) - H(z) (1)

where z(t) denotes the size of the resource population, F(z) is the natural growth rate,
and H(z) is the harvesting rate. We will examine the number of positive equilibria and the
asymptotical behavior of the state trajectory z(t) under different assumptions. Some special
cases of this model have been earlier examined in Clark (1990), who also has discussed the
optimal management of renewable resources. Special cases of model (1) have also been

discussed for analyzing ional fishing (Szid ky and Okuguchi, 1998, 2000). This
paper develops as follows. The natural growth of biological resources will be first examined
and then the optimal harvesting rate will be determined under various conditions. These
two models will be then combined in model (1), and finally equilibrium and stability analysis
will be performed.
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2 Natural Growth

Assume first that in the population the birth rate b and mortality rate m are proportional to
the population size z, then without harvesting, the population is driven by the differential
equation

C=lar (2)

where r = b —m. It is easy to see that the solution of this equation is x(t) = z(0)e"
showing that x(t) remains constant if » = 0, converges monotonically to zero if 7 < 0 and
converges to infinity mc ically if » > 0. Exp ial growth of a population assumes
ideal conditions, however as the population increases, some environmental limitations will
make the growth rate declining. In such cases, equation (2) modifies as

% =n(z)s, 3)

where r(z) is a decreasing function of &. The most simple choice of r(z) is linear:

() =r(1— %) ()

where 7 is called the intrinsic growth rate and K is the carrying capacity. In this case,
F(z) = r(z)z is a parabola as shown in Figure 1. Notice that if 0 < z < K, then & > 0,
if z = K then & = 0, and if ¢ > K, then ¢ < 0. Therefore the state trajectory z(t) has
the following simple property. If 2(0) < K, then z(t) is increasing and converges to K as
t — o0, if (0) = K, then x(t) will remain constant for all future times, and if z(0) > X,
then z(t) decreases and also converges to K as t tends to infinity. This property is illustrated
in Figure 2.
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Figure 1: Linear proportional growth rate
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x(0)

Figure 2: State trajectory

In many applications equation (4) is modified in order to obtain a nonsymmetric shape
of F(z). Such modifications are next introduced.

Consider first the function
T
Rl o (e T
F(z) = rz (1 K) (5)

with some constant & > 0 (Figure 3). Notice that the case of @ = 1 corresponds to equation
(4). Since
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Figure 3: Illustration of Function (5)

it is easy to see the F increases if z < fﬁ, decreases if z > ;“% and it has the maximum

pointatx = -;‘5 In addition, F is convex if z < %‘1—]11, it is concave if z > L‘(;_*]lz Notice
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that if @ < 1, then F is concave for all z > 0. The asymptotical properties of z(t) are the
same as in the previous case.

Consider next function (Figure 4)

F(a:):rzln—?:rzlnl(—r:lnz ©

with derivatives 1
F'(z) =rlnK -rlnz — ro— = r(lnK — 1 - Inx)

and
-
Fl(z)=-L.
(@)=L
Therefore F is concave for all & > 0, it increases at & < e K=1 = %, it decreases for & > £,
and at z = § it has its unique maximum. The asymptotic behavior of a(t) is the same as

in the previous cases.
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Figure 4: Illustration of Function (6)

More complicated model can be obtained by selecting

F(z) =1z (-k’—n = 1) (- %) @)

where 0 < Ko < K. This function is cubic with roots 0, Ko, and K. Notice that if
0 <z < Ko then F(z) < 0, for Ko < = < K function value F(z) is positive, and if z > K,
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Figure 5: Cubic case of F(z)
then F(x) becomes negative again. This case is shown in Figure 5. Notice that
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and
6ra

1 1

A= o -F2n (Fo + I_()

showing that F decreases until its local minimum (between 0 and Kj), increases until its local
maximum (between Ko and K), and then decreases again. F is convex if # < ’—‘“gﬁ, and is
concave if z > Eﬂ;—"’ While the asymptotical behavior of the state trajectory is similar in
cases (4), (5), and (6), in the case of function (7) it becomes different. If 0 < (0) < Ko, then
(t) decreases and converges to zero leading to the ion of the biological population.
If Ky < z(0) < K, then (t) is increasing and convergent to K, and if 2(0) > K, then x(t)
becomes decreasing and converges again to K. If 2(0) = Ko or z(0) = K, then z(t) remains
constant.

For further use we examine next function r(z) introduced earlier in equation (3). In
model (4) it is strictly decreasing and linear. In the case of model (5),

(@)= rz>=" (l = %) o

425
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If a > 1, then it has the shape shown in Figure 3. If @ = 1, then it becomes linear. In the
case of a < 1 it has a more complicated shape: it strictly decreases with infinite limit at
x = 0 and negative infinite limit at z = oo, and with a unique zero at z = K.

In the case of model (7), r(x) is a concave parabola with zeros K and K.
3 Harvesting Rate

Consider first the case of a constant harvest rate, H(z
Hy. Then equation (1) becomes

Hy with some positive constant

i = F(z) — Ho. 8)

Assume next that one firm is involved in harvesting the population, and the harvested
amount is sold in a market with known inverse demand function p(H). Let C(x, H) denote
the harvesting cost. It is usually assumed that p is strictly decreasing in H, and Hp(H) is
strictly concave and converges to zero as H — oo. A particular form of the cost function can
be derived as follows. Assume that the harvest rate is a function of the existing population
and the harvesting effort. Using the form of production functions we assume that

H=azfE", (9)

where E is the harvesting effort. From (9) we have

U
E=a"7"H3z™7,

and if Cy denotes the unit cost of effort, then the harvesting cost is obtained as

£ u
Hig Lp

28 zv

C(z,H) = Coa™>

with k, u, and v being positive constants. It is usually assumed that u > 1. Then at each
time period the profit of the firm is given as

o el

m = Hp(H) (10)

which is strictly concave in H, so there is a unique profit maximizing harvest rate for all
x > 0, which is denotes as H = H(x). Assuming interior optimum (otherwise no harvesting
takes place) simple differentiation shows that at the optimum harvest rate

i 1 gt
p(H) + Hp'(H) = k——

e A\
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Under the above assumptions the left hand side is strictly decreasing in H, so H is a function
of z. Implicit differentiation with respect to = shows that

u(u —1)HY2H'z" — uH" lvg¥~!
=

0=2H'p' + Hp"H' -

implying that
kuH"~lyz'~1

=
4 22(2p' + Hp") — avku(u — 1) HY=

=il

since 2p' + Hp" < 0 as a consequence of the strict concavity of function Hp(H). Thus H is
strictly increasing in x showing that more population makes the optimal harvest rate larger.

Consider next the following generalization of the previous case. Assume that there are
n firms doing the harvesting, and they sell their harvested volumes in m markets. In order
to obtain closed form solution we have to make simplifying assumptions. Let h;; denote the
amount of harvest of firm i sold in market j. Then the total harvest of firm 4 is given as

., and the supply in market j is S; = ): hi;. Assume that the inverse demand

=1
function o{ market j is linear: P;(S;) = a; — b, S] where a; and b; are positive constants.
Assume in addition that in the cost function of firm i,u; = 2 and v; = 1 (which is the usual
in ial fishing). Then similarly to Szidarovszky and Okuguchi
(1998, 2000) we can easily verify that the total harvest rate is given as

R = % 1)
with
= il
)=
5 ‘;st&;
where

moa
=% ad B=
>u o
i=1 ;._1
if we assume that the firms are competitive and at each time period a Cournot-Nash equi-
librium determines the harvest rate. If in contrary we assume that the firms are cooperative
and they maximize their total profit at each time period, then

ACz

H(z) = 2Cz+B) (12)

with
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It is easy to see that in both cases (11) and (12), the harvest rate increases in z. In the case
of equation (11) notice that f(x) increases in z, since each term is increasing. Furthermore

A
H(z)=A- ——
=) 1+ 7@
which shows that H(x) is strictly increasing in z. In the case of equation (12) we notice
that
e A - (w45

H(@) =5 - s—=»
@ =3 - 5cz78)
which is clearly strictly increasing in z. A relatively simple but lengthy calculation shows
that in both cases H(z)/w is strictly decreasing in z and is strictly convex, furthermore it

converges to zero as & — 00.

4 Equilibrium and Stability Analysis

Consider first the case of constant harvest Hy. Let the maximal value of F(z) be denoted by
Fy. If Hy > Fp, then there is no equilibrium in system (1), and since the right hand side is
always negative, z(t) always decreases and converges to zero. Thus in this case the biological
population will vanish in the long run. Assume next that Hy = Fy = F(z*), where z* is the
maximizer of F(z). Then z* is the unique equilibrium. If z(0) < z*, then z(t) is decreasing
and converges to zero, and if x(0) > z*, then z(t) also decreases and converges now to z*.
If 2(0) = z*, then z(t) = @* for all ¢ > 0. Assume finally that Hy < Fy. Then there are
two values zj and x5 such that 0 < z} < zj and F(z}) = F(z3) = Ho. These values z} and
x5 are the equilibria of system (1). If 2(0) < z, then z(¢) is decreasing and converges to
zero. If 27 < x(0) < @3, then a(t) increases and converges to z3, and if z(0) > z3, then z(t)
decreases again and converges to x5 as t — oo. So small initial biological population cannot
survive, but if it is larger than the smaller positive equilibrium, then it always converges to
the larger equilibrium. In such cases the population is stable.

In more general cases equation (1) can be rewritten as
& = z(r(z) — h(z)) (13)

with h(zx) = H(z)/x. Depending on the analytical properties of functions r and h, we might
have a variable number of positive equilibria. For example, if both r and h are decreasing and
convex (as in some previously discussed cases) we might have many equilibria, there is even
the possibility of infinitely many equilibria. However if h is strictly decreasing and convex,
and r is decreasing linear, or concave parabola or even having shape shown in Figure 3, then
there are at most two equilibria, and the stability of the state trajectory is very similar to

that of the constant harvest case.
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Assume first that in the general case no equilibrium exists. Since H(0) = 0 and strictly
increasing, in this case H(x) > F(z) for all > 0. Then z(t) always strictly decreases and
converges to zero as t — 0o, Assume next that the set of positive equilibria is not empty.
Notice that zero is always an equilibrium. z(0) is larger than the largest equilibrium, then
i < 0, so z(t) converges monotonically to the largest equilibrium (which is always below
K). Assume next that z(0) is between two equilibria z} < z;,, and there is no further
equilibrium between these points. If F(z(0)) — H(xz(0)) > 0, then x(t) — z{;, and if
F(2(0)) - H(z(0)) <0, then a(t) — @} and in both cases the convergence is monotonic. If
F(x(0)) = H(z(0)) = 0, then z(t) remains constant for all future times.
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Figure 6: Cases of constant harvest rate
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It is easy to see that in both cases (11) and (12), the harvest rate increases in z. In the case
of equation (11) notice that f(z) increases in z, since each term is increasing. Furthermore

A
H(z) = A
@ 1+ f(@)
which shows that H(z) is strictly increasing in z. In the case of equation (12) we notice
that
A A AB
2 2(Cz+B)

which is clearly strictly increasing in z. A relatively simple but lengthy calculation shows
that in both cases H(z)/w is strictly decreasing in z and is strictly convex, furthermore it
converges to zero as x — oo.

4 Equilibrium and Stability Analysis

Consider first the case of constant harvest Hy. Let the maximal value of F(z) be denoted by
Fy. If Hy > Fy, then there is no equilibrium in system (1), and since the right hand side is
always negative, z(t) always decreases and converges to zero. Thus in this case the biological
population will vanish in the long run. Assume next that Hy = Fo = F(z*), where z* is the
maximizer of F(z). Then z* is the unique equilibrium. If z(0) < z*, then z(t) is decreasing
and converges to zero, and if z(0) > z*, then z(t) also decreases and converges now to z*.
If z(0) = z*, then z(t) = z* for all t > 0. Assume finally that Hy < Fop. Then there are
two values zj and z3 such that 0 < zj < z3 and F(z}) = F(z3) = Ho. These values zj and
a3 are the equilibria of system (1). If #(0) < «}, then x(t) is decreasing and converges to
zero. If 2} < z(0) < z3, then x(t) increases and converges to «3, and ¥ z(0) > z3, then z(t)
decreases again and converges to 23 as t — oo. So small initial biological population cannot
survive, but if it is larger than the smaller positive equilibrium, then it always converges to
the larger equilibrium. In such cases the population is stable.

In more general cases equation (1) can be rewritten as
& =a(r(z) - h(z)) (13)

with h(z) = H(z)/z. Depending on the analytical properties of functions r and h, we might
have a variable number of positive equilibria. For example, if both r and h are decreasing and
convex (as in some previously discussed cases) we might have many equilibria, there is even
the possibility of infinitely many equilibria. However if h is strictly decreasing and convex,
and r is decreasing linear, or concave parabola or even having shape shown in Figure 3, then
there are at most two equilibria, and the stability of the state trajectory is very similar to

that of the constant harvest case.
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Assume first that in the general case no equilibrium exists. Since H(0) = 0 and strictly
increasing, in this case H(z) > F(z) for all ¢ > 0. Then x(t) always strictly decreases and
converges to zero as t — co. Assume next that the set of positive equilibria is not empty.
Notice that zero is always an equilibrium. z(0) is larger than the largest equilibrium, then
& < 0, so z(t) converges monotonically to the largest equilibrium (which is always below
K). Assume next that x(0) is between two equilibria z} < i, and there is no further
equilibrium between these points. If F(z(0)) — H(z(0)) > 0, then x(t) — zi,, and if
F(x(0)) — H(x(0)) < 0, then z(t) — =} and in both cases the convergence is monotonic. If
F(z(0)) — H(z(0)) = 0, then z(t) remains constant for all future times.
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Figure 6: Cases of constant harvest rate
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