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ABSTRACT
The evolution of ferromagnetic systems can be described by cou-
pling the Maxwell equations with suitable constitutive relations. These
relations can be established for nondistributed systems, but the for-
mulation of a P.D.E. model raises nontrivial questions. Macroscopic
and a mesoscopic models of ferromagnetism are here reviewed.

1 Maxwell Equations

This paper discusses the mathematical modelling of electromagnetic evolution
of either ferromagnetic or ferrimagnetic materials which exhibit hysteresis.
It intends to address a composite audience which might include physicists,
mathematical-physicists, and electric engineers. Accordingly, an effort is made
to use a broadly accessible mathematical language.

We say that a system is distributed in space whenever the relevant state
variables depend on the space point. This is the domain of partial differential
equations, for instance. On the other hand, we say that a system is non-
distributed in space if all the relevant variables do not depend on space.

Let us consider an either ferromagnetic or ferrimagnetic material which
occupies a region  in a time interval ]0,7(. In Gauss units the magnetic
field, H, the magnetization, M, and the magnetic induction, E, are related
by the condition

B = H + 4ndi in Qoo := R*x]0, TY, (1.1)
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that is, in the whole physical space, for a time interval 10,7[ (T > 0). We
denote the electric _{ield by E, the electric displacement by D, the electric
current density by J, the electric charge density by p, and the speed of light

in vacuum by c¢. With this notation, the Maxwell equations read

eV x H = dnJ + aa—? in Qe (Vx := curl), (1.2)
S 6B

VxEB=-22 in Qoo, (1.3)

V-B=0 inQuw (V:i=div), (1.4)

V-D=drp  inQe (1.5)

These laws must be coupled with appropriate constitutive relations.

Let us denote the electric conductivity by o and the dielectric permeability
by e. We assume that the material is homogeneous and isotropic; o and e are
then constant scalars. We assume Ohm'’s law in  and insulation conditions

outside, namely,

= U(E+§) in @ := Qx]0, T, (1.6)
— 0] in (R® \ @) x]0, 7. ;

Here § represents an applied electromotive force. We also assume that

Sy

D =cE @) (1.7)

Appropriate initial and boundary conditions must then be appended to the

above equations.
By applying the operator ¢V x to (1.2) and e% to (1.3), using (1.6); and

(1.7), we get the following equation in the magnetic variables H and B:

B 9B = =

sﬁ+4wa§?+c2VxVxH=4wcaVXg in Q. (1.8)

If our material is a metal (as all ferromagnetic materials are), then e = 1

(in Gauss units); hence c? > € and 47mo > \/e. Therefore, whenever the field

B does not vary too rapidly, e%? is negligible in comparison with 41{0%—?.
This yields the so-called eddy current approximation:

GUEN = SRR
4#03{- +¢*V x V x H = 4mweaV x g in Q. (1.9)
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Obviously, this is tantamount to dropping the displacement current ert) in
(1.2). (For the nonlinear problem, a rigorous analytic justification of this
reduction does not look obvious.)

On the other hand, if our material is an insulator (as several ferrimagnetic
materials are), then o = 0 and (1.8) reads

B iy
e%% +VxVxH=0 inQ. (1.10)
We then need a further constitutive law, in order to represent hysteresis in the
M vs. H behaviour.

2 Non-Space-Distributed Constitutive Law

Let us review a classic measurement procedure. Let us consider a homogeneous
isotropic toroidal specimen of our magnetic material, wound it uniformly with
an electrically conducting coil, and let a current flow through the latter by
connecting it to a battery. By Ampere’s law (1.2), this induces a magnetic field
having uniform intensity, H, along the axis of the torus. Because of symmetry,
this determines a parallel magnetization field having uniform intensity, M,
which can be measured by means of a probe.

We represent the M vs. H relation in the form M = F(H). On account of
the symmetry, here we have no space dependence (in other terms, we deal with
a space-non-distributed system). We assume F to be a hysteresis operator;
by this we mean that

(i) F contains memory. This means that at each instant ¢, 1\7[(:) de-
pends not only on H(t) but also on H(:) (i.e., on the history of H in the time
interval [0, ¢]), and on the initial value 1\71(0). (In the formula M= .7-'(}7) the
latter dependence is not displayed.) In more refined models the initial value
includes internal variables, too.

(ii) F is rate-independent. This means that the path of the pair
( ‘(t), A\-l(l)) is invariant w.r.t. any increasing homeomorphism
¢ :[0,T) = [0,7], that is,

F(Hoyp)=F(H)ogp in [0, 7. (2.1)
In other terms, if]-' maps H to M, then Lt mapiﬁo‘p to I\;Iow. In particular,

if the function H is periodic, then the M vs. H relation does not depend on
the frequency.
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The latter property is regarded as characteristic of hysteresis, and is ful-
filled within a good degree of approximation whenever the rate of H is not too
large. For high frequencies the relaxation dynamics should be included.

Scalar hysteresis operators have been extensively studied in the last thirty
years; see e.g. [1,3,6,7,9,11,12]. Several results are known for continuous hys-
teresis operators. Discontinuous operators have also been studied, and cou-
pled with P.D.E.s.; in several cases this corresponds to so-called free boundary
problems.

For one-dimensional systems, F may represent either the Preisach model
[10], or one of it many generalizations, or another hysteresis model. In the
scalar setting, the operator F must also account for the dynamics in the inte-
rior of the region bounded by the main hysteresis loop, cf. Fig. 1.

w

Figure 1. Hysteresis dynamics, for a univariate system.

For univariate systems, the operator F can be identified by means of a
series of tests, in which a suitable set of input functions H(:) is applied, and
the corresponding output functions M(:) are measured; see e.g. [2,5]. In
the vector setting the number of measurements to be performed for direct
identification would be very large. It seems then convenient to devise a vector
model which is strictly related to a scalar one, and to identify the latter.

Analogous situations are met in ferroelectricity, in elasto-plasticity, in
pseudo-elasticity, and in a number of other phenomena which also exhibit

- )

hysteresis.
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3 Space-Distributed Constitutive Law

Now we go back to our space-distributed system. For the sake of simplicity,
here we just deal with equations in 2, assuming that the relevant boundary
conditions are known. However, we must point out that it is not easy to
formulate physically appropriate boundary conditions. A more sound model
would then be obtained by prescribing M = 0 outside Q, and studying the
problem in the whole space. In any case, our discussion also applies to the
latter setting.

As a first guess, we insert the space variable, z, as a parameter in the
constitutive law, and write

M(z,t) = [F(H(z,))](t) inQ, (3.1)

We then couple this constitutive relation with the P.D.E. (1.9),
41ro%(1? + 41rM) +c*V x V x H=4rcaV x § in Q, (3.2)

and with suitable initial and boundary conditions.

In univariate systems, this problem is mathematically well-behaved. For
several choices of the operator F, including the Preisach model, there exists
a unique solution; this depends continuously on the data, and can efficiently
be approximated; see e.g. [12; Chap. XI]. A natural vector extension of the
Preisach model has been proposed in [4]; see also [8.9]. This is based on a
rather simple idea: for any unit vector @, the input H is projected along 6; a
prescribed scalar hysteresis operator (F) is then applied to this projection,
and is multiplied by the unit vector 6. Finally, as § varies in the unit sphere
(5?), all these vectors are averaged w.r.t. a prescribed finite Borel measure, p.
In formula, we have

g -0 FfH 05 / FAH - 8)Fdu().
b

Although this simple model does not account for all of the complexity of mag-
netic hysteresis, its qualitative agreement with experiments seems satisfactory,
and several engineers regard it as useful, cf. [8,9].

Monotonicity. At this point, a further difficulty arises: the structure of the
P.D.E. (1.9) is such that we are not able to exclude the onset of rapid space-
oscillations in the field H as we have no control on V- H. (On the other
hand, under natural assumptions, the energy estimate can be derived, and
this provides an estimate for fUT dt [ps |V x H|? dz).

F s
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In order to give the reader an idea of the difficulties that arise in the
analysis of (1.9), we compare the latter with the analogous equation in which
the hysteresis operator is replaced by a superposition operator. In this case
the latter difficulty is overcome; some mathematical technicalities are needed
to illustrate this issue. Let us assume that

M(z,t) = G(H(a,t)) in Q,

with G a prescribed monotone vector function, i.e.,

[G(@) - G(®)] - [0 — 2] 20 Vo, 52 € RS (3.3)

For reasons we are not going_to_'explain here, in this case the main issue is
the stability of the product fo M -H dzdt with respect to weak L*-convergence
of both factors. By (1.1), we then have

//M-ﬁdzdt=//§-ﬁdzdt—47r// |H|?dzdt.
Q Q Q

AsVB =0inQ,a compensated compactness argument yields the stability
of the first integral; the second one is obviously weakly lower semicontinuous
in L2(9;IR®). This yields the desired stability property.

This argument however does not take over to hysteresis constitutive laws,
for only trivial hysteresis operators are monotone in the sense of (3.3). This
is illustrated by the following scalar counterexample, which can easily be
extended to nondegenerate hysteresis operators. Let F : WHl(0,T) x R :
(u,w") — w be defined by the following Cauchy problem

dw _ rdu
@& (E

This is a hysteresis operator: causality and rate-independence are straight-
forward. (In this case, the pair (u,w) cannot move along any closed hysteresis
loop; but this is immaterial.) Let us fix any T > 37/2, and take

)" ) =

w(t) :=sint in (0,37/2], w(t) :=—-1 in [37/2,T),
uz:=0 in (0, 7).

Setting w; := F(u;,0) for i = 1,2, we have (wy —wp)(u1 —u) = —1 for t > 3m.
Hence o
(wy — wa)(uy — uz)dt <0 if T is large enough,
0

that is, the monotonicity fails.
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The folllowing weaker monotonicity-type property applies to a large class
of scalar hysteresis operators, and is especially convenient for the analysis of
several P.D.E.s:

V(u,w®) € Dom(F),V[t1,t2) C (0,7,
if u is nondecreasing (nonincreasing, resp.) in [y, ta], (3.4)
then F (u,w°)is also nondecreasing (noni ing, resp.) in [t1,ta].

This means that hysteresis branches are nondecreasing, and entails that

V(u,w®) € Dom(F) such that u,w = F(u,v®) € Wh(0,T),

%% >0 ae in]0,T[

Despite of these difficulties, some progresses have been achieved in the
analysis of the system (3.1) and (3.2). Existence of a solution has been proved
for a corresponding initial- and boundary-value problem, through a suitable
weak formulation of the vector Preisach hysteresis operator, and by using a
homogenization technique known as two-scale convergence; see [16].

4 A Mesoscopic Model

A possible reason of the above difficulties stays in the fact that the hysteresis
relation (3.1) does not account for space interaction in the M vs. H constitu-
tive law. On a mesoscopic length-scale, the theory known as micromagnetics
accounts for this interaction. In particular, the initial- and boundary-value
problem obtained by coupling a classic equation due to Landau and Lifshitz
with the system of the Maxwell equations and with the Ohm law has a so-
lution, which can also be approximated; see e.g. [13]. The Landau-Lifshitz
equation reads
O o 30 x H® =30 x (M % BY),

ot 1)

He:=AM-A M+ H;

A, and A, are constants, Ay > 0 (typically A; > A,, in some cases A\; > A3), A
is a positive-definite symmetric tensor. Equation (4.1); represents a natural
relaxation dynamics for a magnetic moment of constant modulus, which is

- =
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under the action of the effective magnetic field H°. The vector —M x (1\71 xH ‘)
is the projection of the effective magnetic field He onto the tangent plane at M
to the sphere with center 0 and radius M. By (4.1) this term drives M to move
towards H® and is dlssq)atlve The vector M x H® stays in the same tangent
plane, and is orthogonal to M x (M x H°). It drives M to rotate around
H¢ by forming a constant angle (precession motion) with angular velocity
proportional to |H¢|, and is not dissipative. As a result of the composition of
these two forces, M asymptotically converges to H® along a nonplanar spiral
on the sphere of radius M. The relaxation time is proportional to A5 b

The dynamics (4.1) can equivalently be expressed by the Gilbert equation

oM = (e W20M y
o I =R 2 4.2
En pmM x ( X in Q (4.2)
Indeed, multiplying (4.1) vectorially by M and eliminating M x (M x B &)
we get £4.2). Conversely, multiplying (4.2) vectorially by M and eliminating
M x ‘-’%, we get (4.1). This calculation shows that the two pairs of constants
(A1,A2) and (g1, p2) are related by the following transformation formulae:

#1 A2 4 2 M2
N _ Mt
T pIM2’ B 5 ]
or equivalently (4.3)
_ Mp2 X
2T T4 uIme B2

This model does not account for rate-independence in the M vs. H
constitutive law. However, a suitable modification fulfils that property, cf.

[14].
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