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ABSTRACT 
The evolution 0f fen:0magnetic systems can be described by cou­

pling the Maxwell equati0ns with suitable constitutive relations. These 
relations can be estab1'ishecl for nondistributed systems1 but the for­
mulation of a P.D.E. m0clel mises nontrivial questions. Macr©scopic 
and a mesoscopic m0dels 0f ferromagnetism are here reviewefil. 

1 Maxwell Equations 

This paper discusses the marthematica..I modelling of electromagnetic evolution 
of either ferromagnetic or ferrimagnetic materials which exhibit hysteresis. 
It intends to address a comp0site audience wbich might include physicists1 

mathematical-physicists) arnd electric engineers. Accordingly, an effort is made 
to use a broadly accessible marthematical language. 

We say that a system is distributed in space whenever the relevant state 
variables depend on the space point. This is the domain of partia\ differential 
equations1 for instance. On the other hand 1 we say that a system is non­
distábuted in space if ali the relevant variables do not depend on space. 

Let us consider an either ferromagnetic or ferrimagnetic material which 
occupies a region n in a time interval ]01 T [. In Gauss units the magnetic 
field, J] , t he magnetization, tv]1 and the magnetic induction1 .81 a:re related 
by the condition 

B = If+4nM in Q., := IR3 x JO, TI. (!.! ) 
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that is, in the whole physical s¡:>ace1 for a time interval ]O, T[ (T > O). We 
clen0te the electric field by E, the eleGtric dis¡¡>lacement by D, the electric 
current density by J, the electric charge clensity by p, and the speed of light 
in vacuum by c. With this n0tati0n, the Maxwell equations read 

- - aó 
e\! x H = 4rrJ + &t 

e\! x E= - i}B 
8t 

in Q00 (\/x := curl), 

in Q00 , 

in Q00 (\/· := div), 

These laws rnust be coupled with appropriarte constitutive relations. 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Let us denote the electric c0n©uctivity 0y a and the dielectric permeatility 
by f. We assume that the materié\!] is hom0geneous and isotropic; a and f are 
then constant scalars. We assume Ohm's law in n and insulation conditions 
0utside, namely, 

J = u(E+ií) 
j = o 

in Q := il x ]O,T[, 
in (JR3 \il)x]O,T[. 

Here § represents an appliecl electrom0tive force. We also assume that 

(1.6) 

(1.7) 

Appropriate initial and boundary c0nditi0ns must then be appended to the 
above equations. 

By app lying the operator c\/x to (1.2) and <#; to (1.3), using (1.6)¡ and 

(1. 7), we get the following equation in the magnetic variables fi and B: 

in Q. (1.8) 

If our materi a l is a metal (as ali ferromagnetic materials are) , then € = 1 
{in Gauss units) ; hence c2 » é and 47ía » fi. Therefore, whenever the field 

B <l oes not vary Loo rapidly, éfl§!. is negligible in comparison witb 47ía~. 
This yields t he so-call ed eddy current a.pproximation: 

in Q. (I.9) 



A bout Models of Ferromagnetic Hysteresis 

Obviously, lhis is lantamount to dropping the displacement current ~ in 
(1.2). (For the non\inear problem, a rigorous analytic just ification of this 
reduction does not look obvious.) 

On the other hand, if our material is an insulator (as severa! ferrimagnetic 
mater ials are), t hen u= O and (1.8) reads 

in Q. (1.10) 

We lhen need a further const it utive law, in order lo represent hysteresis in t he 
/vi vs. H behaviour. 

2 Non-Space-Distributed Constitu t ive Law 

Let us review a classic measurement procedure. Let us considera homogeneous 
isotropic toroidal specimen of our magnetic material, wound it uniformly with 
an clectrically conducting coil, and let a current flow through the latter by 
connecting it to a battery. By Am¡>ere's law ( 1.2), lhis induces a magnetic field 
having uniform intensity1 ¡.¡ , a long the axis of the torus. Because of symmetry, 
this determines a para\lel magnetization field having uniform intcnsity, M, 
which can be measured by means of a probe. 

We represent t he M vs. H relation in the form AÍ = .:F(ii). On account of 
lhe symmetry, here we have no space dependence (in other terms, we deal with 
a space-non-dislributed system). We assume :F lo be a hysteresis operator; 
by this we mean that 

(i} :F contains memory. This means that at each instant t 1 A1(t) de­
pends not only on JÍ(t) but also on ff(-) (i.e., on the history of fi in the time 
intcrval ¡o, t)), and on t hc initia l value M(O). (In the formula M = :F(Jf) the 
Jatter dependence is not displaycd.) ln more refined. models thc initial value 
includes interna! variables, loo. 

(ii) :F is rate-inclependent. This means that the path of thc pair 
(ti(t), AÍ(t)) is invariant w.r. t. any increasing homeomorphism 
'P , ¡o, T) -+ ¡o, T), t ha t is, 

in ¡o,T). (2.1) 

In other terms, if :F maps fi to NÍ , then it maps ii 01.p to A1' 01.p. ln particular, 
if the function R is periodic, then the A1 vs. J-f relation <loes not depend on 
the frequency. 
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The latter property is regarded as characteristic of hysteresis, and is ful­
filled within a good <legre~ of approximation whenever the rate of Ñ is not too 
large. For high frequencies the relaxation dynamics should be included. 

Scalar hysteresis operators have been extensively studied in the last thirty 
years¡ see e.g. [1 ,3,6,7,9,11,12]. Severa! results are known for continuous hys­
teresis operators. Discontinuous operators have also been studied , and cou­
pled with P.D.E.s. ; in severa! cases this corresponds to so-called free boundary 
problems. 

For one-dimensional systems, F may represent either the Preisach model 
[10], or one of it many generalizations, or another hysteresis model. In the 
scalar setting, the operator :F must also account for the dynamics in the inte~ 

rior of the region bounded by the main hysteresis loop, cf. Fig. l. 

w 

Figure l. Hysteresis dynamics, for a univariate system. 

For un ivariate systems, the operator F can be identified by meaos of a 
series of tests, in which a sui table set of input functions H (-) is applied, and 
t he corresponding outpu t functions M(-) are measured; see e.g. [2,5]. in 
lhe vector sett ing t he number of measurements to be performed for d irect 
identificat ion would be very large. It seems then convenient to devise a vector 
model which is strictly related to a scalar one, a nd to identi fy t he latter. 

Ana logous sit uations are met in fe rroelec tricity, in elasto-plast icity, in 
pseudo-elasticity, and in a number of other phenomena which a lso exhibit 
hysteres is. 
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3 Space-Distributed Constitutive Law 

Now we go back to our space-distributed system. Fa r the sake of simplicity, 
here we just deal with equations in n, assuming that the relevant boundary 
condit ions are known. However , we must point out that it is not easy to 
formulate physically appropriate boundary conditions. A more sound model 
would then be obtained by prescribing M = 6 outs ide n, and studying the 
problem in the whole space. In any case, our discussion also applies to the 
latter setting. 

As a first guess, we insert the space variable, x1 as a parameter in the 
constitutive law, and write 

M(x,t) = [F{Ñ(x, J)](l) in Q, (3.1) 

We then couple this constitutive relation with t he P.D.E. (1.9) , 

8 - - 2 -41'a¡¡¡(H + 41rM) +e\/ x \/ x H = 41'ca\I x g in Q, (3.2) 

and with suitable init ial and boundary condit ions. 
Jn univariate systems, this problem is mathematical ly well-behaved. For 

several choices oí the operator F, including the Preisach model, there exists 
a unique solution; t his depends continuously on tbe data, and can efficiently 
be approximated; see e.g. [12; Chap. XIJ. A natural vector extension of the 
Preisach model has been proposed in [4J¡ see a lso [8:?J· This is based o~ a 
rather simple idea: for any unit vector O, the input H is projected along O; a 
prescribed scalar hysteresis operator (:F¡) is then applied to this projection, 

and is multiplied by the unit vector O. Finally, as 8 varies in the unit sphere 
(S 2), a li t hese vectors are averaged w.r.t . a prescribed finite Borel measure, µ . 
In formula, we have 

Ñ -+ li . Ó-+ .1"0-(H · U)ó-+ ( F¡{ ii · Ü)Üdµ(Ó). 
is• 

Although this simple model does not account for a li of t be complexity of mag· 
netic hysteresis, its qualitative agreement witb experiments seems satisfactory, 
and severa) engineers regard it as useful, cf. [8,9J. 
Monotonic ity. At this point, a íurt her d ifficulty arises: the structure of the 
P.D.E. {1.9) is such t hat we are notable to exclude the onset oí rapid space­
oscillations in the fle ld il , as we have no control on 'iJ · f!. (On the other 
hand, under naiural assumptions, the energy estimate can be derived , and 
t his provides an estimate for J0T dl fn' l'V x ÑI' dx). 
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In order to give the reader an idea of the difliculties that arise in the 
analysis of {1.9), we compare the latter with the analogous equation in which 
the hysteresis operator is replaced by a superposit ion operator. In this case 
the latter dlfficulty is overcome; sorne mathematical technicali ties are needed 
to illustrate this issue. Let us assume that 

M(x,t) = G(H(x,t)) in Q, 

with G a prescribed monotone vector func tion, i.e., 

(3.3) 

For reasons we are not going to explain here, in this case the main issue is 
the stability of the product JJQ M .¡¡ dxdt with respect to weak L2-convergence 
of both factors. By (1. 1), we then have 

j fo M · ff dxdt = j fo J3. ff dxdt - 4,,. j fo IÑ l'dxdt. 

As 'J.ÍJ =O in Q, a compensated compactness argument yields the stabi li ty 
of the first integral ; the second one is obviously weakly lower sem icontinuous 
in L 2 (ni lR.3). This yields the desired stability property. 

This argument however <loes not take over to hysteresis constitutive laws1 

for only t rivial hysteresis operators are monotone in the sense of (3 .3). T his 
is illustrated by t he following scalar counterexample1 whicb can easily be 
extended to nondegenerate hysteresis operators. Let :F : W 1•1(0 1 T) x IR : 
(u1 u,O) 1-l- w be defined by the following Cauchy problem 

~ = (~) + in JO,T[, 
dt dt 

w(O) = w0 . 

This is a hysteresis operator: causality and rate-independence are straight­
fo rward . (In t his case, the pair (u1 w) cannot move along any closed hysteres is 
loop; but this is immaterial.) Let us fix any T > 37r/2 , and take 

u1(t) '= sint in [0,3rr/21, u 1(t) '= - 1 in [3rr/ 2,T], 
u2 '= O in [O, TI. 

Set ting W¡ := F( u11 0) for i = l, 2, we havt: (w ¡ - w2)(u1 -u2 ) = - 1 for t ~ ~7r. 
Hence 

ií T is large enough, 

t hat is , t he monotonicity fa ils. 



About Models of Ferromagnetic Hysteresis 23 

T he folllowing weaker monotonicity-type property applies to a large class 
of scalar hysteresis operators, and is especially convenient for the analysis of 
severa\ P.D.E.s: 

ll{u, w0 ) E Dom(F), \l[t1 , t2] e [O, TJ. 
ifu is nondecreasing (nonincreasing, resp.) in [t1,t2J, (3.4) 
then .r(u1 w0) is also nondecreasing (nonincreasing, resp.) in [t1,t2]. 

This meaos that liysteresis branches are nondecreasing, and entails that 

ll(u, wº) E Dom(F) such that u , w := F(u,w0 ) E W1•1(0, T), 

'!:"_~>O a.e. in ]O,T[. 
dl dl -

Despite of these difficulties, sorne progresses have been achieved in the 
analysis of the system (3.1) and (3.2). Existcnce of a solution has been proved 
for a corresponding initial- and boundary-value problem, through a suitable 
weak formulation of the vector Preisach hysteresis operator, and by using a 
homogenization technique known as two-scale convergence¡ see [16]. 

4 A Mesoscopic Model 

A possible reason of t he above d ifficulties stays in the fact that t he hysteresis 
relation (3. 1) does not account for space interaction in the M vs. fi constitu­
t ive law. On a mesoscopic length-scale, t he theory known as micromagnetics 
accounts for this interaction. l n particular, the initial- and boundary-value 
problem obtained by coupl ing a classic equation due to Landau a nd Lifshitz 
with the system of t.he Maxwell equations and with the Ohm law has a so­
lution, which can also be approximated¡ sce e.g. '13). The Landau-Lifshitz 
equation reads 

{ 
&M - - - - -7it = A¡M X H' - >.,M X (M X H'), 

fl' := ó.M - A. M + fi; 

(4.1} 

,\1 and ,\2 are constants, ..\2 > O (typically ,\1 > ..\21 in sorne cases A1 » ..\2) 1 A 
is a positive-definite symmetric tensor. Equation (4.1)1 represents a nat ural 
rela..'<ation dynamics for a magnetic moment of constant modulus, which is 
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under the action ofthe effectivemagnetic field fie. The vector -Mx (Mxfie) 
is the projection of the effective magnetic field .fie onto tbe tangent plane at M 
to the sphere with center O and radius M. By (4.1) this term drives M to move 
towards fie and is dissipative. The vector M x jje stays in the same tangent 
plane, and is orthogonal to M x (M x fie). It drives M to rotate around 

fie by forming a constant angle (precession motion) with angular velocity 
proportional to !He¡, and is not dissipative. As a result of the composition of 
these two forces, M asymptotically converges to ¡¡e along a nonplanar spiral 
on the sphere of radius M. The relaxation time is proportional to >.21. 

The dynamics ( 4.1) can equivalently be expressed by the Gilbert equation 

in Q. (4.2) 

Indeed, multiplying (4.1) vectorially by M and eliminating M x {.M x H'), 
we get (4.2). Conversely, multiplying (4.2) vectorially by M and eliminating 

M x ª/f, we get (4.1). This calculation shows that the two pairs of constants 
(A1, A2) and (µ1, µ2) are related by the following transformation formulae: 

¡ ,\ - µ¡ 
i- l+µ~M2' 

,\ - µ¡µ2 
2 - I+µ~M2 

or equivalently ¡ µ¡ = ,\¡ \~iM', 

,\2 
µ2 =A; 

(4.3) 

This model does not account for rate-independence in the M vs. ff 
constitutive law. However, a suitable modification fulfils that property1 cf. 
{14]. 
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