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The Mathematics of Financial Risk Management

Luis A. Seco
University of Toronto

"The same equations have the same solutions”
R. Feynman

1 Financial markets

Although one can find examples of financial markets going back to the middle
ages, organized financial markets became common in the second half of the
19’th century. One of the most representative cases was the bond issue that
took place in 1857, to finance the construction of the railroad system in the
United States. It is important to point out that the original needs that finan-
cial markets were destined to address were: the financing of enterprises, and
the uncertainty of future events.

Up until recently, financial trading consisted mainly of two aspects: trading
of underlying financial instruments (currencies, stocks and bonds), and the
trading of their futures contracts. A futures contract is a transaction by which
two counterparties agree on a future purchase at a pre-determined price. As
will become more clear later in this article, trading of both types has a linear
dependence on market events, and therefore the risk it entails is rather limited.
In the seventies, new types of financial products were developed and traded
in large volumes: the derivatives. Here is a simple example of a derivative:

Imagine a certain stock trades today at $1 per share, and its future value
(after one year, for example) can only be one of the following two values: $2,
or $0.50. The following graph summarizes this situation.
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Two individuals, A and B, agree to enter into the following transaction:
A pays B $1 if the stock increases in value, and nothing if the stock price
decreases in value. The only thing left to do is for the two of them to agree on
the price. This financial contract can be summarized by the following graph:

o,

From a certain point of view, one might try to model the problem as
follows: call p the probability the stock increases in value, and ¢ = 1 — p the
probability it decreases in value. Therefore, it seems that the fair price for the
contract would be $p. We will see below that this is not quite correct, but for
the time being the reader should realize that the price fixed in this manner is
based on the participants’ perception on the likelyhood of future events, and
therefore it is not unlike gambling in a casino.

To understand another way to price the contract, consider the following
possibility (we assume that interest rates are 0, to simplify the argument;
otherwise, a small modification is needed): A sets the price at $0.333 and
B agrees; the transaction takes place, A undertakes obligations with B for a
payment of $1 if the stock value goes up, and B gives A $0.1/3; at this point,
A borrows an additional $0.333 from a bank (interest free); with the money A
charged B and borrowed from the bank, a total of $0.666, A buys 2/3 of one
unit of stock.

o If the stock increases in value, A will sell its 2/3 of stock for $1.333; this
is exactly what is needed for A to pay B what it owes ($1), and to repay
the loan ($1/3)..

o If the stock decreases in value, A pays B nothing, and selling 2/3 of stock
gives A just enough money to return the value of the loan.

In other words, from a replication point of view, the fair value of the
contract is $0.333, because there is a trade (buying 2/3 of stock, and taking a
loan of $1/3) which costs exactly that much, and has the same cash flows as
the contract that A and B have with each other, under each of the possible
events. The advantage of this approach is that the price is determined without
any assumption on the probability distribution of stock prices.
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Although this is clearly a simple example, volumes of derivative have in-
creased very rapidly throughout the 1990’s, and they all share with our simple
example the following properties:

o The contract has (or may have) a purchase price.

o Its future cash flows are linked to the behavior of the underlying (a stock,
a bond, exchange rate, the price of a commodity, or many others).

e They offer the purchaser a certain type of insurance. In our example,
individual B may have an interest in entering into the contract to protect
himself against increasing costs linked to the increase of the value of the
stock.

o They can also offer the purchaser the possibility of a speculative invest-
ment. In our example, if B simply buys the stock, and not the derivative,
if the stock increases in price (by 100%), he will obtain a return of 100%
also; if the stock drops by 50%, his losses wouls also be of 50%. However,
by purchasing the derivative instead, an increase of the stock price by
100%, turns his investment of $0.333 into $1.00, that is, a 200% return
on the investment. If the stock drops, he will lose his entire investment.
This is what we made a reference to before as a non-linear investment.

Issuing derivative contracts forces the issuer to seek replication (hedging)
strategies, to minimize its risk.

2 Stochastic Calculus and the Black-Scholes formula

For the example presented in the previous section to be applicable to a wide
variety of financial derivatives, one needs to extend the argument to take into
account a continuum of future possible stock values, the possibility of trading
at frequent intervals, and many different pay-off structures. These problems
were tackled by a variety of authors, but the theory that has become most
famous has been the one developed by Black, Merton and Sholes, which lead
to the Nobel prize awarded to the two last ones (Fisher Black died a year
prior to the award). In this section we present, in heuristic form, the basic
arguments that lead up to the theory.

Let’s begin with an example. Consider an underlying (a certain stock,
for instance) with a value S, which will depend on time in some stochastic
manner. A European call on S is a contract that allows the holder to purchase
the stock at a predetermined price K (strike price), at a later point in time
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T (expiration date). Equivalently, it will give the holder a payment (pay-off)
fo(S) equal to

S-K if S=2K

fo(8)=(S-K)y =
otherwise

In the previous section we have computed the price for such an instrument
in a simple case, when S can only take two values in the future, and K = 1.
We also obtained a replicating (or hedging) strategy. We would like to extend
this analysis.

The Black—Scholes analysis will allow us to create replicating portfolios. It
will also allow us to price options more comlicated than the European (such as
the American, which allow the hold to redeem the option at any time, before
expiration).

To explain this analysis in its simplest case, consider a market in which
the following three securities are available for trade:

o A riskless bond with constant interest rate r; its price at time ¢ is given
by
B(t) = @1,

o A stock whose value evolves according to the stochastic differential equa-
tion as
s adt + vdW, (1)

where a > 0 is the instantaneous rate of return on the stock per unit
time, dW is the standard Wiener Process and v > 0 is the volatility.

e An option with payoff at maturity given by fo(S). We will denote its
price by f(S,t), which is determined by the price S of the stock at time
t.

The derivative security can be priced by means of a replicating portfolio
I1(t) made up of a(t) units of the underlying risky asset S as well as b(t) pure
discount riskless bonds. The composition of the replicating portfolio must
be dynamically adjusted so that a(t) and b(t) are adapted processes with
respect to S(t) and the value of II(t) replicates that of the derivative securities
whenever this one expires. One way to formulate the replication condition is
to consider an investor that takes a short position in the derivative asset and
implements a self-financing trading strategy by forming a portfolio I1(¢) which
contains bonds and shares of the underlying risky asset.

—T—
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Self-financing means that no money is put into the portfolio and no money
is taken away from the portfolio after the creation of the portfolio. In other
words, stock can only be purchased (or sold) by selling (or buying) bonds,
and bonds can only be purchased (or sold) by selling (or buying) stock. In
mathematical terms,

daS+dbB =0.

The value of the replicating portfolio TI(t) is
() = a(®)S(t) + b(&)B(),

and the replicating assumption implies that

This equation determines the number of bonds; in fact

£(5(2),t) — a®)S@®)

b(t) = 5

The self-financing condition is
Sda + Bdb = 0.
Hence, we have that

dIl adS + Sda + bdB + Bdb

adS + bdB
dS + r(f —aS) dt

[aaS + T(f—aS)] dt + acS dW.

By using Ito’s formula, we find

dpee Zé Gl (% 4 25235{)
af

i of of | 1300
= ﬁUSdW+<6£+0535 5852 dt.

The hedging condition df = dII is therefore equivalent to

a(t) = ( (t),t) (2)
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and
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Equation (2) tells us the number of shares to be bought or sold at each time
to replicate the price of the option. Equation (3) is a backwards difussion
equation that the price of the option has to satisfy. When we couple (3) with
the payoff at maturity, we end up with the backwards initial value problem

Gl Sl Dl s O
T zaS 552 TS@S S @

f(8,T) = fo($).

This determines the value of the option at all times prior to maturity, for all
values of the underlying stock.

One of the marvels of this theory is that the Black and Scholes equation
is (in different units) the same as the heat equation, a well known partial
equation that describes heat transmission in a homogenous body. Moreover,
Einstein wrote a famous paper where he connected the Brownian theories
with the heat equation, and Bachelier developed similar ideas in his thesis in
1900. Brownian theories borrow the name of Brown who created the concept
of erratic motion when studing the movement of particles of dust, a concept
refered to explicitly by Darwin in his theory of the evolution of the species.
What we find there is that, the mathematical principles that lead to the Black-
Scholes theory had already been developed about one hundred years ago, and
they share the same mathematical foundation as the physics of heat transfer,
dust motion, and share the same language as genetic biology.

3 Risk Management

It may appear, from the principles of hedging and replication explained above,
that trading can always be done in a riskless manner, because one’s positions
can be replicated by trading in the market. However, this is only accurate
taking into account a large set of assumptions; risk lurks in several places: in
the validity of the gaussian assumption, in the assumption that trading will
be done continuously and without transaction charges, in the assumption that
the counterparty of the contract will always honor their obligations, in the
assumption that securities are always available for trade, and many others.
Furthermore, one might think that the previous long list of sources of risk
leads makes the mathematical theory presented above nothing else than a
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theoretical excercise. The truth is somewhere in-between: the mathematical
theory of finance is a superb tool which enables businesses to trade away their
risks, but there is a residual source of risk which it does not eliminate and
must be monitored and managed as a separate process.

In 1991, the Bank for International Settlements held a meeting in Basle,
where it came up with a number of recommendations for the risk management
of banks throughout the world. One of the recommendations is that banks
should calculate a number, called Value-at-Risk, which can be roughly defined
as the amount of money the bank can lose on a bad market day. This definition
will be enough for our purposes below. The purpose of this least section is to
show how simple mathematics can enter, in strage ways, in tackling difficult
problems in banking.

4 An example

The calculation of Value-at-Risk of a portfolio can be done through the genera-
tion of future scenarios, evaluating the portfolio under each of those scenarios,
and obtaining statistical conclusions about the losses inferred from those val-
uations. Sometimes, the bottleneck in this approach is the ability to evaluate
the portfolio under a large colletion of scenarios. One simple example is a port-
folio of so-called mortgage backed securities; these are instruments whose value
are linked to the value of mortgages. Mortgages are very interesting objects,
which have a very difficult dependency of market variables, as follows:

A mortgage allows the holder to borrow a certain amount of money, which
is paid back in regular intervals (usually to buy a house) using an interest rate
which is often fixed. Once they have been obtained, they can be considered to
be an asset, which can have a positive value (the case when interest rates rise),
a negative value (when interest rates drop), or stay at a constant value (when
interest rates stay constant). The dependence is however more subtle, because
interest rates are not given by a single number, but by a curve, representing
the interest rate of all possible terms (one day, one month, several years, etc.).
While the value of the mortgage clearly increases or decreases as all rates
go up or down, it is not so easy to figure out how its value changes as the
curve experiences twists and changes in shape. Moreover, mortgages give the
holder the option to prepay, at least part of the mortgage, which the user does
when the curve moves in certain directions which makes pre-payment increase
the value of the mortgage, something which we already discussed could be
difficult to determine. The end result, is that pricing a mortgage when the
interest rate curve changes, can be a very difficult computational exercise, and
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computing this for a large portfolio of mortgages, with a fixed interest rate
curve, could add up to half an hour of computater time. The implication of
this is that performing a VaR calculation on the portfolio, usually requiring
several thousand or millions of samples, is out of the question, as it would
take years or centuries of computer time. This poses the following interesting
optimization problem, in mathematical terms:

Consider a function (the portfolio value)
f(=), == (a1, 2n) €R"

Consider a multivariate probability distribution for z (we can assume it to be
Gaussian). Determine a set of k points (20, for example, which allows for an
overnight calculation), @, ,, and denote by g(z) the function obtained
by linearly interpolating the values

(@ (@)= ks

Furthermore, consider the difference ||f — g|| in some appropriate norm (sup-
norm, for simplicity).

The problem consists in determining the points z; such that the norm
difference between f and g is mi ed.

To understand what is involved in this problem, consider the simplest
solution: a two-dimensional risk space, with a set of z; which form a certain
square grid.

Because we are approximating a function by its linear approximation, the
value of the reduction in the number of points, by Taylor’s theorem can be
considered to be proportional to

14
M=d—2,

where each grid point has a cell associated of volume V, and the point which is
furthest from a grid point is at a distance d. The reason for this is the fact that
the number of points required to fill the risk-space is inversly proportional to
V, and because the largest error in the linear approximation is proportional
to the square of the largest distance.

For the square grid, we have V =1, and d = 1/+/2. This yields
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This yields
HSquareGrid = 2
For the hexagonal grid, we have V = v/3/2, and d = 1/+/3. This yields

MHoxGrid = 3V/3/2 ~ 2.5980.

Therefore, performance of the hexagonal grid will be -roughly- 30% better
than the square grid.

‘When one tries to extend this example to the case of more dimensions
(the case for sure in mortgage portfolios, as we saw, influenced by all the
interest rates of all possible terms), one finds having to deal with optimal
packing lattices in spaces of possibly high dimensions; this is one of Hilbert’s
problems and one that still remains unsolved to this date (solutions do exist
in dimensions 2 and 3, and up to 8 in some form).

The previous exposition has been conducted without referencing to basic
literature, to aid in the reading of the basic concepts. References that the

interested reader may find useful to deepen in some of the issues presented
here are:
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