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At prcsent non-commut.aL ive algebrn is Lhe ílavour oí the day1 and one of its 
prime examples is Lhe Weyl a.lgebra. T his is a mathemnt.ical system Lhat has 
found wide applicat.ion, not merely in various parts of matbematics, but a.Isa 
in physics, where it first originatecl. The object of tbis bri f arLicle is to present 
some of its bistory and properties¡ the aim is not to be comprehensive, there 
are now good accounts suoh ns Lhe book by Coul-iubo (3]. Here we merely 
discuss some of its nspects which show its differences írom the commutative 
situntiou. 

By tbe n-th Weyl algebrn A,.(k) over a field k (named a fter Hermann 
Wcyl, y.1ho laid much oí the mathemat ical foundntions in bis book [12}), one 
undcrstands an algebrn over k on 2ri gcnernt.ors x1 1 • • • , :tn, vi, · · · , Y11 such 
t hal each \'Viable commutes wilh al\ bul one oí the others1 while 

x ¡y¡ - y¡:t¡ = l (i = 1, 1 fl) . 

We shall be inlerested in t he simplest case, where n = 1, and we sha ll omit 
t he subscrlpt.s; t.hus we deal wit h the firsl Weyl algebra., here just called t he 
We.yl algchro A1(k) g nerated by x , y subject. lo Lhe sing le defining relation 

'Tbb ai-udc. ll b&..-cd 0 11 n llKlLurc givcn 011 l h c occMion oí tbc 80lh birthdn.y of thc lntc 
Kutl A lnndi oa 14 Jan1mry, \Otl6 nl Quccn Mnry College, Lcmdon. 
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xy-yx=l. (1) 

We shall fn?quently abbreviate xy-yx as [x, yJ, so that (1) reads: [x, yJ = l. 
The simplest. way of reaching this form is via differential operators. lf wc 

are den..ling with funclions of a variable t and writ.e D = -J¡ , tben lhe rule for 
differcntiating a product gives 

D(tf) = tD/ + / , 

which in opera.cor form reads 

Dt - tD = l , 

and tb.is is essentially (1). This accounts for much of the importance of t his 
nlgebro. 

~evertheless it. did noL become eslablished until ibe advent. oí quantum 
theory in the 19201s¡ t.hus Wedderburn in his paper 11 tJ on infi nit.e-dimensionnl 
nlgebra.s in 1924 does noL lisl it nmong his e.xamples. 

One rcason why it was t.hought odd is thaL iL has no finite-dimensionnl r p­
resentntions, al leasL in charncLeristic zero. This is well known and follows by 
loking lraces in ( 1): if pis a represenLation, t hen tr(p(xy - yx)) =tr(p(r )p(y)­
p{y)p{:r)) = 0 ;hr(/). Qf course nn infinit.e-d imensionaJ represenLntion is 
easily written down: using mntrix un its e,J, i 1 j = 11 2,···, we can pul 
z = L nenn+h y= E e11+ 111 • Then we obtain 

xy - yx = L: nenn - L nen+ln+ I 
= L:in - (n - !)Jenn = l . 

h ~ not bard to see Lhat A1(k) is simple, when k has chara.cLerisr.ic zero: 
E\ ry clement ho.s t.he form f = L aíjxiyj, whcrc a 1; E k. ln any non·1ero 
ideal I "11<0 f Í' O of lensl total degree. T hen l contains IJ,y) = /¡ · /, which, 
be1ngofkJ,. rdcgr in x, musl be O, heuce f = ¿:a,yl) (a1 E k), and toking 
f to bt' n polynomial in y of lenst degree in / 1 we have [z1 /J = /; · f = O, hencc 
f IS a non-1.C.fO eJcm nt of k, so f = A1(k). When k has prime charo.cterist ic 
p, ...l1 (k), or nuber, its skcw ficld of frnct.ions 1 becomes an algebrn of fini te 
dhnc.1won p1 O\'er k(xP, y''), us is easily verified. 

In quo.ntum mcchanics onc intcrprcts momentum as conjugate of Lhc po­
sllion \1U'ln.btc n.nd th Hnmiltonian Lhcory s uggesLs writing q for y a.nd -jq for 
z Thl.5 agrun lcads to ( 1) except for a sea lar factor 1 and if p1 q a.re momcn· 
tum n.nd position, il m nns Lhnt here we have Lwo obsen'D.bles whicli do noL 
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commute and 90 (rcga.rding t hem as matrices) they c.a.o.oot be simultaneously 
dingonaliied. T his dcrivation of the Heisenberg u.ncerta.int;y relation has a n air 
or magic nbout, it. But t hcrc is a more down-tcrearth (lhough more techn ical) 
c.xplanation by Pascua l Jordan 15] in te.rms of the Thomas-Kuhn formula for 
disp reion of coherent radiation. 

In the early 1930's many papers were wrilten wbich dea.lt wit h the Weyl 
algebra, n.t leasL implicitly. Sorne of tbese were concerned with d ifferentinl 
operators, e.g. l6J1 othcrs were mor algcbraic. Among ihe latter was a papcr 
by Oudlcy E. Lit.tlewood [7J in whi h he stuclies reaJ and complex nlgebras. 
Ev rything wns v ry much couched in 19th ccntury laoguage¡ n defi ning re la­
tor wns called a 'modulus' and 'Theorem X in his paper states (in the a bove 
notntion, though using his ter minology): 

o Jecond modulus is com¡mtiblt with the modulu-5 x y - yx - l . 

In modcrn tcrms t his jusl states that A1(k) is simple¡ t he proof was by a 
11 rmal form argument, nncl in essen e th same as the above simplicity proof. 
Much oí the resL oí t h pap r wns taken up w1th the second normal form 

{L:br.u'.r:' as against L: a1;x11/) a nd a comparison oí Lhe t.wo, a nd so does 
not conccro us hcre. What is of interest is that Theorem X gave rise to a 
short paper by Kurl A. Hirsch [4] , in which he gh·es a general proof thal Weyl 

nlgcbras are simple. ~forc prcciscly, he shows~ tí R is an algebra ovcr a field of 
chrm1ctcrislic O, with gen rators x i,··· , Lr and defining relations X;x; - x;x¡ ;:; 
0 1; 1 for a skew-symmctric matrix A = (011). Lhen R is simple if and only if A is 
non-~inguhu Thc: proof is stmight forwnrd, using the \\ 11 known reduction of 
A to norma.J íorm. Th la nguagc of Lhe paper is thoroughly modern, describing 
/l by gencra.tors and r la t. ions (having firsL defined a free associat.ive a lgebra) , 
and taking quite a gen -ral commutntive field k, but pointing ouL that Lhe 
t harn umsHc ncecls t.o be zero for Lhc resull to hold. 

1'he Weyl a lgebrn is a n integra.1 doma.in. This v.•as already noted by Lud­
wig chlesinger in his book [8] on differcntial equations (and proved again by 
Littlewood). lt is easily s · n t.o be Noet.herian, and so has a d ivis ion ring or 
more bneOy1 a skew field of fractions {though we hall usually omit t he q ual­
Hying adjec:tive). This last is actua lly preved by Lilllev.'OOd , who shows that 
l hc re condi1ion is satisfi d . Of omse the Ore condition a lso ensures t hat 
th 1 a.st field of frn.ct.ions is determined up lo isomorphism. We shall call t he 
fi •Id of lrnc1ions o í A1(k) t he Weyl field and denote il by 0 1 (k). 

In íorming fi lds of íractions, onc has t.wo choices: lo illust.mte this by 
thc polynomial n ng Ati::J, w can either íorm the field k(x) consis ting of a ll 
fr ctions ~ · or v. can ílrst fonn Lhc power series ring k((xJJ, a local ring with 
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maximal ideal (z), and on localizing, get t be field of íormal Laure.nt series in 

k((x)) = k[[xJ].. 

ALI this still goes through for skew polynomial rings. lf K is a 6eld (possib ly 
skcw) with an automorphism a1 we define K !x¡ aJ as the ring generated by K 
and x with defi.n.ing relations 

ax = xaª for a1l a E K . (2) 

Again we have a fi eld of fract ions K(x¡ a) anda Laurent series fie ld K((::i::¡ o) ). 
Sometimes the oommutation formu la (2) is replated by 

ax = xaº + a6 for aJJ a E K. (3) 

Here o is agn.in an aulomorph ism (or at least an endomorphism), whi le ó is n 
linear mapping such that 

(ab)6 = a6bª + ab6 for a li a, b E K, 

ns wc see by equati ng terms in (ab)x = a(bx). A l.inear mapping sat isfying 
{4) lS ca.l.led an o- d~nvat.ion a nd t he polynomia l r ing witb the commutnL1on 

rule (3) is ca.Ued a skew polynornial ring, denoted by K lx; 0-1 ó]. Por example, 
the Weyl algebra mny be wriL te n in the íorm K[y; I .' J, where 1 is a deri vaLion 
(sbort. íor l-der-iva tion) . 

lí we V."lrnt to íorm Laurenl seri es , or even jusl power series , we ha"c n 
problem wben o-5 :¡:. O, for cnch term cxn gives rise to tenns oí lowe.r degrees 
and \\""e do nol gei convergence. Briefly, t he multipl.icaLion :r: t-+ ax is nor con­
tiouou.s¡ thls problem wns noticcd by J. Schur 19), who ove.reame this diffi culty 
by repln.cmg z by x - 1. Writing z = x - 1, we obtai_n from (3), 

tuid io 'hi5 ""ªY we ca n obLa in a power series expression íor =a. Jf we bea.r in 
mind tha& .z: re-present.s differenl.iaLion with respect. Lo :r, this isjust. nn expres­
sion oí th fact thBL inLegrat ion improves conve rgence, wbereas differentiaLion 
mn.kts it worsie. 

Another •'By to d a l wit h t hi s problern is Lo pul z = xy. T'hen (1} becomcs 

x= - zx = ':1; 2y - x yx = :t, 

hcncc w obta.m 
zx = x( z - 1). (5) 
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T hu• wc can forro F = k(z) with tbe shift aulomorpbism cr : f (z) >-> /(z - 1) 
and lhcn oblrun a ficld conta ining A a{k) by laking F (:z:;o'), or also F((x;o)). 
Littlewood act.ua lly noted Lhis possibiUty (howeve.r witbout explaining why it 
workcd). 

T his power series representation is oílen useful. uppose t hal we want to 
show lhat any element commuting with :r is a function o í z alone. We have 
f = ¿:,,..e,, ~·liere e, = e¡(z). rr xf = f x, then wc ha"• 

O= z/ - / z = I>;+•e¡ - L z'c,x = L ,.•+' (e,(: ) - e¡(z - i)). 

By lhe uoiqu ness oí th is íorm wc have e¡(z) =e,(: - l ) = c,{z - 2) = · · · , 
hence e, is independent of z and so f is a íunction oí x aJone. 

triclly spen.king, one still needs to show that a ralional function of x, z 
wlii h is n powcr series in x nlone is a rat.ional function of x, but that is not 
lrn.rcl to see, us ing th cla.ssical criterio. for the rationaUly o í power series (see 
.g. (2J, p.69). or course t.he sanie holds for y instead oí .z:, because we have an 

automorph.ism oí A 1 (k) (and its fi Id oí fractions) given by :z; H y , y H -x. 
J\ similar rcsult holds fo r x + y, using the aulomorphism z t-t x, y H x + y , 
nnd similnrly for other ca.ses. 

Por any \'8.rinble.s 111 v one has thc well known Baker-1 lausdorff formu la 

whcrc w ¡..,a Lie e lement1 i.e. obtained by fonning rcpeated commutntors 11 J. 
8xplicitly, 

1 1 l 
UI = u+ v + 2[11,vJ + J2[[u, vJ , vJ + J2 [[u, vJ, uJ + · 

lt follows thal in ;11 (k) we hnvc e.celo' = %+v+t, a relalion noted a lready in 

J6J. 
In some rcspects t.h Weyl fielcl 0 1(k) bchavcs like a field oí rationa l func­

tions oí one vanable, in othcr rcspects like a field oí rational funcLions in two 
variables. Let us consider t he possible valuations oí D ov r k (s e ShLipelman 
[IOJ) . F'or comparison we look at the commutative case first; t his was Lreated 
by Zariski in (13). Any funcLion fie ld E oí t.wo variables is a n a lgebraic ex ten­
sion oí tbe ntional funct ion fi •Id k(x, 'Y)· o in dassiíying valuations on E 1 

it is enougb LO consider valuations on the latter, because t.he value group for 
k(u;, y) LS oí finite ind x in t he value group oí E, a.nd ihe resiclue class field 
unde.rgoes a ñnit c.xkmsion. 

A valuouoo is called d-dimc.nsional ií Lhe rcsidue class fie ld has Lranscen­
clcnce dcgree d Q\"Cr Lhe rield oí constnnts. For a non-trivial valua tion this musl 
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go down í:rom 'be dimension of the given field , so we have juat a 0-dimemtooal 
or n 1-dimens.ional case. 

1-dtmt:nsionill ualuation. This is a principal valuation defined by a prime 
di\iisor in k(:z: , yJ. Geometrically it is a curve defined on k{:z: , y). 

0-dtmensional ualuation. We denote the value group by r and disLinguisb 
severa.! cases. 

i) r i.s discret,e of rank l. Choose a uniíormizer e; then ~-e have an em­
bcdding k(z ,y)-+ k({O). Geometrically tltis is a non-algebraic curve on the 
suríace. E.g. fo r any f E k(x, y) define v(J) as Lhe order (in t) oí / (t, e' ). 
This gives a O-dimensional valuation 1 corresponding to the curve y = ez. 

ii .a ) r is oí rank 11 non-diacrete but rational . Every s ubgroup oí the 
additive group of rational numbers CQ is determined by a 'supernatural number1 

= rr pº' . wherc O'p is a natural number or OO. The divisors of N form thc 
p 

t of d nominat.ors. We t hus get a fractiona l power series: 

~ !!!.1 
y=c1x"1 +c2x "~ + 

ii .b) r iso( rMk l 1 non-d iscrele nnd no t. ra t.ioaal. Let. u(.::z:) = l 1 v(y) = r , 
...,,hcre T is i.rmtiona l. We obla in n branch of t.he curve y = x" . 

iii) r isofrank 2. In t.his case Lhe vnlunt ion is composed oí a !-dimensional 
\'l\Junlion of k(:t, y), íollowed by n valuat.iou of t.he residue class ficld. Geomet.-­
ric.o.lly iL defines a pince on nn nlgebraic curve on t.he surface. 

Consider now the Wey l íleld D = k(x , z) wit.h zx = z (z - ! ). IL t.urns out 
thot thcre are fewer possibilities hcre. We note thnt a priori thc vnluc group 
need not be abclian, a lt hough we s ha ll soon find t.hat in fact. it. is so. As \.\ 
snv.•, a l+dímcusional vn lua.t.ion is defined by n prime divisor, but. sincc A 1 (k) is 
nnple, tbi5 ca.se c.annol a rise now. T hus our vnluation will be O-dimensional. 

ll'e ~'TllC agarn F = k(z) wiLh shifL a utomorphism o : / (z) ....+ / (z - 1), so that 
D = F (z , o ), and firs t. consider the valua lion restricted to P. Thc possibl 
\1lluat1ons of F 0\1er k are o.ssocinted with 1) an irreducible poly nominl in z, 
l ) Lbc lrt\1ia.I ca.seor 3) nssociated with : - 1. 

1) l.cl p E A·(: J be irreducible s uch LhBL v(p) > O. Then pº is agnin 
1rrech1a btc Md p"' -;. p so p" is prime to p. We ha.ve u(p) > O, v(p") = O buL 
l'C z:¡f' , hence v(p) + >1(x) = v(x) + v(pº) and so u(p0 ) > O, a controd iction. 
h íol~-i thal t his case cnnnoL occur. 
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2) u is tri'.1ial on k(z). Let V be lhe valuntion ring io D a.nd suppose t ha.t 
z E V. Theo V mecWl F[zj in a prime ideal (p) and the polynomial p musl be 
invo.riant, i.c. the len or right ideal generaled by it is h·~sided. T his meo.ns 
t ho.t p = x" , for sornen ~ t. By irreducibility1 n = 11 so we ha"e the x~adic 

vnluntion on D. 
If x ~ \!, lhe.n :z:- 1 E V, nnd n similar argument shows lhai t.he vo.luntion 

is nssocinted with :z:- 1 • In both cases wc havc a 1-dimensional rcsidue class 
ílcld, nnmcly k(:). The ílrst cns mny be rcnliicd by expressing our elemcnl 
n.s a power scri in :t with poly nominls in z ns cocJJicienls: / = ¿ xie¡ and 
Lnking u(/ ) 10 be the order, i.c. the least degree occurring¡ similarly íor Lhc 
11 cond case..-. writ.e our lement as n power series in .r- 1 

3) u is associnlcd with :-1• T hus u(:- 1) > 01 and we may la.k v(z- 1) = 1, 
wilhoul IOM of genernliiy. 'Thc relntion (5) may be "'Tille n .:z;.: - 1 = z- 1x (l -
: 1); on "'Til ing .:- 1 =-u wc obtain xu = ux + uxu, "'1bich yields the com­
mulMion formula 

(6) 

Suppo.ic that v(r ) - .\; s ine v(u) = 1, (6) shows that ,\ + 1 1 + .\; il 
fOliOWS that r l.s nbcJian. W llOW distinguish YQIIOU5 ca.ses depending 01'1 tiie 
sLnictur OÍ r : 

1) r 1$ of ronk 1 and discl'OLC. Thking a uniform1zer t , we cnn ex pand .e, 
u ln powcr tenes m t, and so find thaL :tu = u:x, a contradiction . H nce Lhis 
co.s Cl\.IHlOl cx:cur. 

ii.a) r is oí rank J 1 non-d iscrete, but rational. Now r consists oí a ll 
rMionnl numbcrs with denominator dividing sorne supc.rnat.ural number N. 
Wc cnn e:xpress ::z: as n frnctional power series, a.nd ngain find t.hat :z:u = ux, 
so this ca.se is a.gain ruled out. 

ii.b) r i.s of ra nk 1 , non-clise.rete, Lhus r is noo·rational. Then A is 
irratiomU and dis\.inct monominls hnve d istinct values. Writing our element 
ns n double pov."tr series, we have f = }:c,1 u'x-', where c,1 E k¡ here v(/) = 
min{i + .l1lc., #-O). 

ii i) r is of ra.nk 2, n-nd A is not renl (e.g. A is infinit.cly large or in.finitely 
srnall, or more g ne.rally, infini tely close lo some real numb r) . Here v ta.kes 
th tH.unc íorm o.s in ii.b). 
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