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At present non-commutative algebra is the flavour of the day, and one of its
prime examples is the Weyl algebra. This is a mathematical system that has
found wide application, not merely in various parts of mathematics, but also
in physics, where it first originated. The object of this brief article is to present
some of its history and properties; the aim is not to be comprehensive, there
are now good accounts such as the book by Coutinho [3]. Here we merely
discuss some of its aspects which show its differences from the commutative
situation.

By the n-th Weyl algebra Ay (k) over a field & (named after Hermann
Weyl, who laid much of the mathematical foundations in his book [12]), one
understands an algebra over k on 2n generators zy,- - ,Zn,¥1,* ,¥n such
that each variable commutes with all but one of the others, while

sy —yizi=1 (i=1 ,n).

We shall be interested in the simplest case, where n = 1, and we shall omit
the subscripts; thus we deal with the first Weyl algebra, here just called the
Weyl algebra Ay(k) generated by z,y subject to the single defining relation

*This article is based on a lecture given on the occasion of the 80th birthday of the late
Kurt A. Hirsch on 14 January, 1986 at Queen Mary College, London.
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oy —yz = 1. (1)

We shall frequently abbreviate zy—yz as [z, y], so that (1) reads: [z,y] = 1.

The simplest way of reaching this form is via differential operators. If we
are dealing with functions of a variable ¢ and write D = %, then the rule for
differentiating a product gives

D(tf) = tDf + ,
which in operator form reads
Dt-tD =1,

and this is essentially (1). This accounts for much of the importance of this
algebra.

Nevertheless it did not become established until the advent of quantum
theory in the 1920%; thus Wedderburn in his paper [11] on infinite-dimensional
algebras in 1924 does not list it among his examples.

One reason why it was thought odd is that it has no finite-dimensional rep-
resentations, at least in characteristic zero. This is well known and follows by
taking traces in (1): if p is a representation, then tr(p(zy—yz)) =tr(p(z)p(y) -
plwle(z)) = 0 #tr(]). Of course an infinite-dimensional representation is
easily written down: using matrix units ej, 4,7 = 1,2,---, we can put
Z =3 Neuni1, Y=Y eniin. Then we obtain

TY = YT = 3 Nepp — ) Neniintl
=Y [n-(n-1)ean =1

It is not hard to see that A, (k) is simple, when k has characteristic zero:
Every element has the form f = Za,»)-z‘yj, where a;; € k. In any non-zero
ideal / take f # 0 of least total degree. Then I contains [f,y] = D’: « f, which,
being of lower degree in 2, must be 0, hence f = S a;y’) (a; € k), and taking
J to be a polynomial in y of least degree in I, we have [z, f] = D,? -f =0, hence
/ is a non-zero element of k, so I = Ay(k). When k has prime characteristic
p. Ay(k), or rather, its skew field of fractions, becomes an algebra of finite
dimension p? over k(z”, y"), as is easily verified.

In quantum mechanics one interprets momentum as conjugate of the po-
sition variable and the Hamiltonian theory suggests writing g for y and & for
*. This again leads to (1) except for a scalar factor, and if p, g are momen-
tum and position, it means that here we have two observables which do not
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commute and so (regarding them as matrices) they cannot be simultaneously
diagonalized. This derivation of the Heisenberg uncertainty relation has an air
of magic about it. But there is a more down-to-earth (though more technical)
explanation by Pascual Jordan [5] in terms of the Thomas-Kuhn formula for
dispersion of coh SAlat

In the early 1930's many papers were written which dealt with the Weyl
algebra, at least implicitly. Some of these were concerned with differential
operators, e.g. [6], others were more algebraic. Among the latter was a paper
by Dudley E. Littlewood (7] in which he studies real and complex algebras.
Everything was very much couched in 19th century language; a defining rela-
tor was called a 'modulus’ and Theorem X in his paper states (in the above
notation, though using his terminology):

No second modulus 1s patible with the modulus zy — yx — 1.

In modern terms this just states that A;(k) is simple; the proof was by a
normal form argument, and in essence the same as the above simplicity proof.
Much of the rest of the paper was taken up with the second normal form
(3 bryy"z* as against zaijz'yj) and a comparison of the two, and so does
not concern us here. What is of interest is that Theorem X gave rise to a
short paper by Kurt A. Hirsch [4], in which he gives a general proof that Weyl
algebras are simple. More precisely, he shows: If R is an algebra over a field of
characteristic 0, with generators 7y, - - , z, and defining relations z;z;—;z; =
a5, for a skew-symmetric matrix A = (aj;), then R is simple if and only if A is
non-singular. The proof is straightforward, using the well known reduction of
A to normal form. The language of the paper is thoroughly modern, describing
R by generators and relations (having first defined a free associative algebra),
and taking quite a general commutative field k, but pointing out that the
characteristic needs to be zero for the result to hold.

The Weyl algebra is an integral domain. This was already noted by Lud-
wig Schlesinger in his book [8] on differential equations (and proved again by
Littlewood). It is easily seen to be Noetherian, and so has a division ring or
more briefly, a skew field of fractions (though we shall usually omit the qual-
ifying adjective). This last is actually proved by Littlewood, who shows that
the Ore condition is satisfied. Of course the Ore condition also ensures that
the least field of fractions is determined up to isomorphism. We shall call the
field of fractions of A;(k) the Weyl field and denote it by D (k).

In forming fields of fractions, one has two choices: to illustrate this by
the polynomial ring k[z], we can either form the field k(z) consisting of all
fractions £ or we can first form the power series ring k[[z]], a local ring with
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maximal ideal (z), and on localizing, get the field of formal Laurent series in

@:
k((2)) = K((z]]=-
All this still goes through for skew polynomial rings. If K is a field (possibly
skew) with an automorphism «, we define K|[z; a] as the ring generated by K
and z with defining relations

ar = za® for alla € K. (2)

Again we have a field of fractions K (z; @) and a Laurent series field K ((z;a)).
Sometimes the commutation formula (2) is replated by

az = wa® +a’ for alla € K. (3)

Here o is again an automorphism (or at least an endomorphism), while 4 is a
linear mapping such that

(ab)® = a’b® + ab® for alla,b € K, (4)

as we see by equating terms in (ab)z = a(bz). A linear mapping satisfying
(4) is called an a-derivation and the polynomial ring with the commutation
rule (3) is called a skew polynomial ring, denoted by K|z;a,d]. For example,
the Weyl algebra may be written in the form K(y; 1,'], where ’ is a derivation
(short for 1-derivation).

If we want to form Laurent series, or even just power series, we have a
problem when a® # 0, for cach term cz™ gives rise to terms of lower degrees
and we do not get convergence. Briefly, the multiplication z ++ az is nor con-
tinuous; this problem was noticed by I. Schur [9], who overcame this difficulty
by replacing z by z~!. Writing z = ™!, we obtain from (3),

L

za = a% + za’z = a®z + a
and in this way we can obtain a power series expression for za. If we bear in
mind that = represents differentiation with respect to z, this is just an expres-
sion of the fact that integration improves convergence, whereas differentiation
makes it worse

Another way to deal with this problem is to put z = zy. Then (1) becomes

73— 20 = 2y — DYz = I,

hence we obtain

2z =z(z=1). (5)
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Thus we can form F = k(z) with the shift automorphism a: f(z) = f(z —1)
and then obtain a field containing A, (k) by taking F(z;a), or also F((z;a)).
Littlewood actually noted this possibility (however without explaining why it
worked).

This power series representation is often useful. Suppose that we want to
show that any element commuting with z is a function of z alone. We have
f =Y zl¢;, where ¢; = ¢i(z). If of = fz, then we have

O=zf-fz=3 a"lc -} aluz = ) 2" (a(z) - ailz ~ ).

By the uniqueness of this form we have ¢;(z) = ci(z = 1) = ¢i(z2 = 2) = -+,
hence ¢; is independent of z and so f is a function of = alone.

Strictly speaking, one still needs to show that a rational function of z, z
which is a power series in z alone is a rational function of z, but that is not
hard to see, using the classical criteria for the rationality of power series (see
e.g (2], p-69). Of course the same holds for y instead of z, because we have an
automorphism of A (k) (and its field of fractions) given by z v y, y — —a.
A similar result holds for z + y, using the automorphism z — z, y = o -+ y,
and similarly for other cases.

For any variables u, v one has the well known Baker-Hausdorfl formula

"
= »

where w is a Lie element, i.e. obtained by forming repeated commutators [1].

Explicitly,

w =t v+ gl o] + gollu, ol o] + gyl el ul 4

It follows that in A;(k) we have e®e! = =+ a relation noted already in
[6].

In some respects the Weyl field D, (k) behaves like a field of rational func-
tions of one variable, in other respects like a field of rational functions in two
variables. Let us consider the possible valuations of D over k (see Shtipelman
[10]). For comparison we look at the commutative case first; this was treated
by Zariski in [13]. Any function field £ of two variables is an algebraic exten-
sion of the rational function field k(z,y). So in classifying valuations on E,
it is enough to consider valuations on the latter, because the value group for
k(a,y) is of finite index in the value group of E, and the residue class field

dergoes a finite ion

A valuation is called d-di ional if the residue class field has transcen-
dence degree d over the field of constants. For a non-trivial valuation this must
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go down from the dimension of the given field, so we have just a 0-dimensional
or a l-dimensional case.
I-dimensional valuation. This is a principal valuation defined by a prime
divisor in k|z,y). Geometrically it is a curve defined on k(z,y).
0-dimensional valuation. We denote the value group by I' and distinguish
several cases.

i) I' is discrete of rank 1. Choose a uniformizer §; then we have an em-
bedding k(z,y) = k((¢£)). G trically this is a Igebraic curve on the
surface. E.g. for any f € k(,y) define v(f) as the order (in t) of f(t,e').
This gives a 0-dimensional valuation, corresponding to the curve y = e*.

iia) T is of rank 1, non-discrete but rational. Every subgroup of the
additive group of rational numbers @ is determined by a 'supernatural number’
N= Hp"ﬂ where ay, is a natural number or co. The divisors of NV form the

P
set of denominators. We thus get a fractional power series:

my my my _ mg
Y=Clo Y -+ camiPAlCts oo ) Sl S NG
n n2
ii.b) I is of rank 1, non-discrete and not rational. Let v(z) =1, u(y) =1,
where 7 is irrational. We obtain a branch of the curve y = z7.

i) I' is of rank 2. In this case the valuation is composed of a 1-dimensional
valuation of k(z,y), followed by a valuation of the residue class field. Geomet-
rically it defines a place on an algebraic curve on the surface.

Consider now the Weyl field D = k(z, z) with zz = z(z — 1). It turns out
that there are fewer possibilities here. We note that a priori the value group
need not be abelian, although we shall soon find that in fact it is so. As we
saw, a l-dimensional valuation is defined by a prime divisor, but since A;(k) is
simple, this case cannot arise now. Thus our valuation will be 0-dimensional.
We write again F = k(z) with shift automorphism a : f(z) = f(z~1), so that
D = F(z;a), and first consider the valuation restricted to F. The possible
valuations of F over k are associated with 1) an irreducible polynomial in z,
2) the trivial case or 3) associated with z~1.,

1) Let p € k[z] be irreducible such that v(p) > 0. Then p° is again
irreducible and p® # p so p® is prime to p. We have v(p) > 0, v(p®) = 0 but
px = xzp” hence v(p) 4 v(z) = v(z) + v(p®) and so v(p®) > 0, a contradiction.
It follows that this case cannot occur.
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2) v is trivial on k(z). Let V be the valuation ring in D and suppose that
z € V. Then V meets F[z] in a prime ideal (p) and the polynomial p must be
invariant, i.e. the left or right ideal generated by it is two-sided. This means
that p = z", for some n > 1. By irreducibility, n = 1, so we have the z-adic
valuation on D.

If z ¢ V, then 2! € V, and a similar argument shows that the valuation
is associated with z='. In both cases we have a I-dimensional residue class
field, namely k(z). The first case may be realized by expressing our element
as a power series in z with polynomials in z as coefficients: f = Zz‘c; and
taking v(f) to be the order, i.e. the least degree occurring; similarly for the
second case we write our element as a power series in z !

38) v is associated with z~!. Thus v(z~") > 0, and we may take v(z™") = 1,
without loss of generality. The relation (5) may be written zz~! = 2z~ !2(1 -
z~1); on writing #~! = ~u we obtain xu = uz + uzu, which yields the com-
mutation formula

:u:u:c-r-u’z-r‘--:z:u"‘lz. (6)

Suppose that v(z) = A; since v(u) = 1, (6) shows that A + 1 = 1+ A; it
follows that I is abelian. We now distinguish various cases depending on the
structure of I':

i) ['isof rank 1 and discrete. Taking a uniformizer ¢, we can expand x,
u in power series in ¢, and so find that zu = uz, a contradiction. Hence this
case cannot occur.

ii.a) I is of rank 1, non-discrete, but rational. Now I' consists of all
rational numbers with denominator dividing some supernatural number N.
We can express z as a fractional power series, and again find that zu = uz,
50 this case is again ruled out.

ii.b) I is of rank 1 , non-discrete, thus I' is non-rational. Then A is
irrational and distinct monomials have distinct values. Writing our element
as a double power series, we have f = Y c;;u'z?, where ¢;; € k; here v(f) =
min{i + Ajle; # 0}

iii) [isofrank 2, and A is not real (e.g. A is infinitely large or infinitely
small, or more generally, infinitely close to some real number). Here v takes
the same form as in ii.b).
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