## A new approach to congruences of Kummer type for Bernoulli numbers\*

Minking Eie and Yao Lin Ong<sup>†</sup> Department of Mathematics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan, R.O.C. mkeie@math.ccu.edu.tw

#### ABSTRACT

By means of simple identities among rational functions of a particular type, we are able to produce identities among Bernoulli numbers and from them congruences of the form

$$(1-p^{m-1})\frac{B_m}{m} \equiv \frac{1}{mp^{N+1}} \sum_{1 \leq j < p^{N+1} \atop 1 \leq j < p^{N+1} \atop n = 1} j^m - \frac{1}{2} \sum_{1 \leq j < p^{N+1} \atop n = 1} j^{m-1} \pmod{p^{N+1}}$$

when the odd prime p has the property that p-1 is not a divisor of the positive even integer m. With such relations, we are able to produce new identities among Bernoulli numbers as well as reproving congruences of Kummer type such as

$$\sum_{l=0}^{r} {r \choose l} (-1)^{r-l} \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \pmod{(p^{er}, p^{m-1})}$$

when  $\omega$  is a multiple of  $(p-1)p^{e-1}, e \geq 1$ .

<sup>\*1991</sup> Mathematics Subject Classification. Primary 11M41

<sup>&</sup>lt;sup>1</sup>This work was supported by the Department of Mathematics, National Chung Cheng University and by the National Science Fundation of Taiwan, Republic of China.

#### 1 Zeta-functions associated with rational functions

In this section we outline the general theory to produce Bernoulli identities through zeta functions associated with rational functions initiated by the first author [1]. Let  $m_1, m_2, \ldots, m_r$  be positive integers and P(T) a polynomial function in T. Consider the rational function

$$F(T) = \frac{P(T)}{(1 - T^{m_1})(1 - T^{m_2}) \dots (1 - T^{m_r})}.$$

For |T| < 1, F(T) has a power series expansion

$$F(T) = \sum_{k=0}^{\infty} a(k)T^{k}.$$

The zeta function  $Z_F(s)$  associated with F(T) is defined as

$$Z_F(s) = \sum_{k=1}^{\infty} a(k)k^{-s}$$
, Re  $s > r$ .

This zeta function is related to F(T) via a Mellin transform

$$Z_F(s)\Gamma(s) = \int_0^\infty t^{s-1} [F(e^{-t}) - F(0)] dt$$

for Re s > r, where  $\Gamma(s)$  is the gamma function defined by

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt.$$

For Re s>r,  $Z_F(s)$  is an analytic function of s. It has an analytic continuation to the whole complex plane and its special value at the negative integer  $s=-m(m=1,2,3,\ldots)$  is given by

$$Z_F(-m) = (-1)^m m!$$
  
× [the coefficient of  $t^m$  in the asymptotic expansion at  $t = 0$  of  $F(e^{-t})$ ].

For example, if we consider  $F(T) = \frac{1}{1-T}$ , then the zeta function associated with F(T) is the well-known Riemann zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$
, Re  $s > 1$ 

and

$$\zeta(-m) = \frac{(-1)^m B_{m+1}}{m+1},$$

where  $B_m(m=0,1,2,\ldots)$  are the Bernoulli numbers defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n t^n}{n!}, \quad |t| < 2\pi.$$

On the other hand, if we consider the rational function

$$F(T) = \frac{T^{\alpha}}{1 - T^{k}}, \quad \alpha > 0,$$

the zeta function associated with F(T) is

$$\sum_{n=0}^{\infty} (\alpha + kn)^{-s},$$

which is the product of  $k^{-s}$  and the well-known Hurwitz zeta function

$$\zeta(s;\delta) = \sum_{n=0}^{\infty} (n+\delta)^{-s}$$
, Re  $s > 1$ ,

with  $\delta = \frac{\alpha}{k}$ .

The value of the Hurwitz zeta function at the negative integer -m is given by

$$\zeta(-m;\delta) = -\frac{B_{m+1}(\delta)}{m+1},$$

where  $B_m(x)(m=1,2,3,...)$  are the Bernoulli polynomials defined by

$$B_m(x) = \sum_{j=0}^{m} {m \choose l} B_{m-l} x^l, \tag{1.1}$$

or equivalently

$$\frac{te^{xt}}{e^t - 1} = \sum_{m=0}^{\infty} \frac{B_m(x)t^m}{m!}, \quad |t| < 2\pi.$$

When we have more than one way to evaluate  $Z_F(s)$  at negative integers in terms of Bernoulli numbers or Bernoulli polynomials, this often leads to identities among Bernoulli numbers and Bernoulli polynomials. Proposition 1 illustrates this approach.

Proposition 1.1 Let p be a prime number and m a positive even integer. Then for any non-negative integer N, one has

$$(1-p^{m-1})\frac{B_m}{m} = \frac{p^{(N+1)(m-1)}}{m} \sum_{\substack{1 \leq j \leq p^{N+1} \\ (j,v) \equiv 1}} B_m(\frac{j}{p^{N+1}}).$$

Proof. Consider the rational function

$$F(T) = \frac{1}{1-T} - \frac{1}{1-T^p} = \frac{T+\ldots+T^{p-1}}{1-T^p}.$$

The zeta function associated with F(T) is

$$Z_F(s) = \sum_{n=1}^{\infty} n^{-s} - \sum_{n=1}^{\infty} (np)^{-s} = (1 - p^{-s})\zeta(s)$$

for Re s > 1. On the other hand, we also have

$$\begin{split} F(T) &= \frac{(T + \ldots + T^{p-1})(1 + T^p + T^{2p} + \ldots + T^{p(p^N - 1)})}{1 - T^{p^N + 1}} \\ &= \frac{1}{1 - T^{p^N + 1}} \sum_{\substack{1 \le j \in p^N + 1 \\ (j,p) = 1}} T^j. \end{split}$$

Note that for each positive integer j, the zeta function associated with the rational function

$$\frac{T^j}{1 - T^{p^{N+1}}}$$

is  $p^{-(N+1)s}\zeta(s,\frac{j}{p^{N+1}})$ . Consequently we have for Re s>1,

$$(1 - p^{-s})\zeta(s) = p^{-(N+1)s} \sum_{\substack{1 \le j < p^{N+1} \\ (j,n) = 1}} \zeta(s, \frac{j}{p^{N+1}}).$$

In the above identity, the zeta functions on both sides have analytic continuations. Setting s=1-m in this continuations we obtain the assertion of Proposition 1.

In order to obtain a congruence for  $\frac{B_m}{m}$  modulo a power of p, we need the following classical theorem concerning the denominators of Bernoulli numbers.

von Staudt-Claussen Theorem [2]. Let p be a prime number and m a positive even integer. Then the following assertions hold.

- If p-1 is not a divisor of m, then B<sub>m</sub> is p-integral, i.e. p is not a divisor
  of the denominator of B<sub>m</sub>.
- 2. If p-1 is a divisor of m, then pBm is p-integral and

$$pB_m \equiv -1 \pmod{p}$$
.

Proposition 1.2 Let p be an odd prime and m a positive even integer such that p-1 is not a divisor of m. Then for any non-negative integer N,

$$(1-p^{m-1})\frac{B_m}{m} \equiv \frac{1}{mp^{N+1}} \sum_{\substack{1 \leq j < p^{N+1} \\ (j,p) = 1}} j^m - \frac{1}{2} \sum_{\substack{1 \leq j < p^{N+1} \\ (j,p) = 1}} j^{m-1} \pmod{p^{N+1}}.$$

Proof. By Proposition 1 and (1.1), we have

$$(1 - p^{m-1})\frac{B_m}{m} = \sum_{l=0}^m C_l(m)$$

where

$$\begin{split} C_l &= \frac{1}{m} \binom{m}{l} B_l p^{(l-1)(N-1)} \sum_{\substack{1 \leq j < p^{N+1} \\ (j,p) = 1}} j^{m-l} \\ &= \frac{(m-1) \dots (m-l+1)}{l!} B_l p^{(l-1)(N-1)} \sum_{\substack{1 \leq j < p^{N+1} \\ l}} j^{m-l}. \end{split}$$

For sufficiently large l, we have  $C_l(m) \equiv 0 \pmod{p^{N+1}}$ . We now estimate how large l should be. Note that the exponent of p in l! is no greater than

$$\left[\frac{l}{p}\right] + \left[\frac{l}{p^2}\right] + \ldots + \left[\frac{l}{p^k}\right] + \ldots \le \sum_{k=1}^{\infty} \frac{l}{p^k} = \frac{l}{p-1} \le \frac{l}{2}.$$

Also  $pB_l$  is p-integral by the von-Staudt-Claussen theorem. Thus,  $C_l(m)$  is p-integral and

$$C_l(m) \equiv 0 \pmod{p^{N+1}}$$

provided that

$$(N+1)(l-1)-1-\frac{l}{2} \geq N+1.$$

The above inequality is true for  $l \geq 6$ . Hence we have

$$(1-p^{m-1})\frac{B_m}{m} \equiv \sum_{l=0}^4 C_l(m) \pmod{p^{N+1}}.$$

Thus, to obtain our assertion, we have to show that  $C_4(m)$  and  $C_2(m)$  are divisible by  $p^{N+1}$ . Note that

by 
$$p^{N+1}$$
 . Note that 
$$C_4(m) = -\frac{(m-1)(m-2)(m-3)}{2^3 \cdot 3^2 \cdot 5} p^{3(N+1)} \sum_{\substack{1 \leq j < p^{N+1} \\ (j,p) = 1}} j^{m-4},$$

so that  $C_4(m) \equiv 0 \pmod{p^{N+1}}$  for any odd prime p. Also

$$C_2(m) = \frac{m-1}{2^2 \cdot 3} p^{N+1} \sum_{\substack{1 \le j < p^{N+1} \\ (j,p)=1}} j^{m-2},$$

and hence,  $C_2(m) \equiv 0 \pmod{p^{N+1}}$  for any prime p except p=3. However p=3 is excluded under the assumption that p-1 is not a divisor of m.

### 2 Congruences of kummer type

The classical Kummer congruence for Bernoulli numbers asserts that

$$\frac{B_m}{m} \equiv \frac{B_{m+p-1}}{m+p-1} \pmod{p},$$

if p-1 is not a divisor of the positive even integer m. See page 385 of [2] for the details. This was generalized to

$$(1-p^{m-1})\frac{B_m}{m} \equiv (1-p^{n-1})\frac{B_n}{n} \pmod{p^e}$$

if  $m \equiv n \pmod{(p-1)p^{e-1}}$  and p-1 is not a divisor of m [5]. Here we shall use Proposition 2 to prove a further generalization.

Proposition 2.1 [5]. Let p be an odd prime and m a positive even integer such that p-1 is not a divisor of m. Suppose that  $\omega$  is a multiple of  $(p-1)p^{e-1}, e \ge 1$  and r is a positive integer. Then

$$\sum_{l=0}^{r} {r \choose l} (-1)^{r-l} (1-p^{m+\omega l-1}) \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \pmod{p^{er}}.$$

To prove Proposition 3, we need the following lemma. Lemma 1. Let r, m and  $\omega$  be positive integers. Then

$$\sum_{l=0}^r \binom{r}{l} (-1)^{r-l} \frac{1}{x^{m+\omega l}-1} = \frac{(x^\omega-1)^r P_r(x^m,x^\omega)}{(x^m-1)(x^{m+\omega}-1)\dots(x^{m+r\omega}-1)},$$

where  $P_r(X,Y)$  is a polynomial in X,Y with integral coefficients. Proof. We shall prove the assertion by induction on r. For r=1, we have

$$\frac{1}{x^m-1} - \frac{1}{x^{m+\omega}-1} = \frac{(x^\omega-1)x^m}{(x^m-1)(x^{m+\omega}-1)},$$

so the assertion is true for r=1.

Suppose that it is true for r = k. Then for r = k + 1, we have

$$\begin{split} &\sum_{l=0}^{k+1} \binom{k+1}{l} (-1)^{k+1-l} \frac{1}{x^{m+\omega l}-1} \\ &= \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \frac{1}{x^{m+\omega l}-1} - \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \frac{1}{x^{m+\omega l}-1} \\ &= \frac{(x^{\omega}-1)^{k} P_{k}(x^{m+\omega},x^{\omega})}{(x^{m+\omega}-1)(x^{m+2\omega}-1)\dots(x^{m+(k+1)\omega}-1)} \\ &- \frac{(x^{\omega}-1)^{k} P_{k}(x^{m},x^{\omega})}{(x^{m}-1)(x^{m+\omega}-1)\dots(x^{m+k\omega}-1)} \\ &= \frac{(x^{\omega}-1)^{k} [P_{k}(x^{m+\omega},x^{\omega})(x^{m}-1) - P_{k}(x^{m},x^{\omega})(x^{m+(k+1)\omega}-1)]}{(x^{m}-1)(x^{m+\omega}-1)\dots(x^{m+(k+1)\omega}-1)} \end{split}$$

Note that

$$Q(x^m, x^\omega) = P_k(x^{m+\omega}, x^\omega)(x^m - 1) - P_k(x^m, x^\omega)(x^{m+(k+1)\omega} - 1)$$

is a polynomial function in variables  $X=x^m$  and  $Y=x^\omega$  with integral coefficients, which is zero if  $x^\omega=1$ . This implies that

$$Q(x^m, x^{\omega}) = P_{k+1}(x^m, x^{\omega})(x^{\omega} - 1)$$

for some polynomial  $P_{k+1}(X,Y)$  with integral coefficients. This completes our proof.

Proof of Proposition 3. By Proposition 2, we have for  $0 \le l \le r$ ,

$$(1-p^{m+\omega l-1})\frac{B_{m+\omega l}}{m+\omega l} \equiv \frac{p^{-er}}{m+\omega l} \sum_{\substack{1 \leq i \leq e^{er}\\ (i,j)=1}} j^{m+\omega l} - \frac{1}{2} \sum_{\substack{1 \leq i \leq e^{er}\\ (i,j)=1}} j^{m+\omega l-1} \pmod{p^{er}}.$$

Multiplying both sides of this congruence by  $\binom{r}{l}(-1)^{r-l}$  and summing over  $l=0,1,\ldots,r$ , we obtain

$$\begin{split} &\sum_{l=0}^{r} \binom{r}{l} (-1)^{r-l} (1-p^{m+\omega l-1}) \frac{B_{m+\omega l}}{m+\omega l} \\ &\equiv \sum_{l=0}^{r} \binom{r}{l} \frac{(-1)^{r-l} p^{-er}}{m+\omega l} \sum_{\substack{1 \le j$$

For (j, p) = 1 we have

$$(j^{\omega}-1)^r\equiv 0\pmod{p^{er}}$$

so that we can drop the second terms.

Let g be a generator of the cyclic group  $(\mathbb{Z}/p^{er}\mathbb{Z})^{\bullet}$ , the multiplicative group of the ring  $\mathbb{Z}/p^{er}\mathbb{Z}$ . Then

$$\begin{split} &\sum_{l=0}^{r} \binom{r}{l} \frac{(-1)^{r-l} p^{-er}}{m+\omega l} \sum_{1 \leq j < p^{er} \atop (j,p)=1} j^{m+\omega l} \\ &\equiv \sum_{l=0}^{r} \binom{r}{l} \frac{(-1)^{r-l} p^{-er}}{m+\omega l} \frac{g^{(m+\omega l)(p-1)p^{er}-1}-1}{g^{m+\omega l}-1} \pmod{p^{er}}. \end{split}$$

Now set

$$g^{(p-1)p^{er-1}} = 1 + \alpha p^{er},$$

so that

$$\frac{p^{-er}}{m+\omega l}(g^{(m+\omega l)(p-1)p^{er}-1}-1)\equiv\alpha\pmod{p^{er}}.$$

Thus it suffices to prove

$$\sum_{l=0}^{r} \binom{r}{l} (-1)^{r-l} \frac{\alpha}{g^{m+\omega l} - 1} \equiv 0 \pmod{p^{er}}.$$

But it follows from Lemma 1 that

$$\sum_{l=0}^{r} \binom{r}{l} (-1)^{r-l} \frac{1}{g^{m+\omega l} - 1} = \frac{(g^{\omega} - 1)^{r} P_{r}(g^{m}, g^{\omega})}{(g^{m} - 1)(g^{m+\omega} - 1) \dots (g^{m+r\omega} - 1)}$$

Corollary. Let r be a positive integer, p an odd prime number and m a positive even integer such that p-1 is not a divisor of m. Then for any positive integer e and  $\omega = (p-1)p^{e-1}$ , one has

$$\sum_{l=0}^r \binom{r}{l} (-1)^{r-l} \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \pmod{(p^{er}, p^{m-1})}.$$

As shown in [3], p-adic integration on p-adic spaces can be used to prove congruences of Kummer type. Here we shall give another proof of Proposition 3 via p-adic integration.

Let p be a prime number.  $\mathbb{Z}_p$  and  $\mathbb{Q}_p$  are the rings of p-adic integers and the field of p-adic numbers, respectively.  $\nu_p$  is the p-adic valuation on  $\mathbb{Q}_p$ .  $\Omega_p$  is the algebraic completion of  $\mathbb{Q}_p$ .

Fix a k-th root of unity  $\epsilon(\epsilon \neq 1)$  with k relatively prime to p.  $\mathbb{Z}_p^*$  is the set of invertible elements in  $\mathbb{Z}_p$  and  $a + p^N \mathbb{Z}_p$  is the set of x in  $\mathbb{Z}_p$  which maps to a in  $\mathbb{Z}/p^N \mathbb{Z}$  under the natural projection from  $\mathbb{Z}_p$  to  $\mathbb{Z}/p^N \mathbb{Z}$ . Define

$$\mu_{\epsilon}(a+p^N\mathbb{Z}_p)=rac{\epsilon^a}{1-\epsilon^{p^N}},$$

and

$$\mu(a+p^N\mathbb{Z}_p) = \sum_{\epsilon^k=1, \epsilon \neq 1} \mu_{\epsilon}(a+p^N\mathbb{Z}_p).$$

Also for any continuous function  $f : \mathbb{Z}_p \to \Omega_p$ , we define

$$\int_{\mathbb{Z}_p} f(x) d\mu(x) = \lim_{N \to \infty} \sum_{0 \le a < p^N} f(a) \mu(a + p^N \mathbb{Z}_p).$$

Proposition 2.2 For any positive integer m, one has

$$\int_{\mathbb{Z}_p} x^{m-1} d\mu(x) = (1 - k^m) \frac{B_m}{m}.$$

**Proof.** For each t in  $\Omega_p$  with  $\nu_p(t) > 1/(p-1)$ , the exponential function  $e^{tx}$  defined by the power series

$$e^{tx} = \sum_{i=0}^{\infty} \frac{t^i x^i}{t!}$$

is a continuous function on Zp.

Hence we have

$$\begin{split} \int_{Z_p} e^{tx} d\mu_{\ell}(x) &= \lim_{N \to \infty} \frac{1}{1 - \epsilon^{p^N}} \sum_{0 \le a < p^N} e^{at} \epsilon^a \\ &= \lim_{N \to \infty} \frac{1}{1 - \epsilon^{p^N}} \frac{1 - \epsilon^{p^N} e^{p^N t}}{1 - \epsilon e^t} \\ &= \frac{1}{1 - \epsilon \epsilon^t}, \end{split}$$

since  $e^{p^N t} \to 1$  as  $N \to \infty$ . It follows that

$$\int_{\mathbb{Z}_p} e^{tx} d\mu(x) = \sum_{e^k = 1, e \neq 1} \frac{1}{1 - ee^t} = \frac{k}{1 - e^{kt}} - \frac{1}{1 - e^t}.$$

Comparing the coefficients of  $t^{m-1}$ , we get

$$\int_{\mathbb{Z}_p} x^{m-1} d\mu(x) = (1 - k^m) \frac{B_m}{m}.$$

Note that

$$\int_{\mathbb{Z}_p^\star} x^{m-1} d\mu(x) = \int_{\mathbb{Z}_p} x^{m-1} d\mu(x) - \int_{p\mathbb{Z}_p} x^{m-1} d\mu(x)$$

and

$$\int_{p\mathbb{Z}_p} x^{m-1} d\mu(x) = p^{m-1} (1 - k^m) \frac{B_m}{m}.$$

by a similar calculation as in the proof of the previous proposition. Thus we obtain the following.

Proposition 2.3 For any positive integer m, one has

$$\int_{\mathbb{Z}_p^*} x^{m-1} d\mu(x) = (1 - p^{m-1})(1 - k^m) \frac{B_m}{m}.$$

Now the application of Proposition 5 to congruences of Kummer type is clear. By Proposition 5, we have the identity

$$\begin{split} \int_{\mathbb{Z}_p^*} (x^w - 1)^r x^{m-1} d\mu(x) &= \int_{\mathbb{Z}_p^*} \sum_{l=0}^r \binom{r}{l} (-1)^{r-l} x^{m+\omega l - 1} d\mu(x) \\ &= \sum_{l=0}^r \binom{r}{l} (-1)^{r-l} (1 - p^{m+\omega l - 1}) \frac{B_{m+\omega l}}{m+\omega l} (1 - k^{m+\omega l}). \end{split}$$

Clearly

$$(x^{\omega}-1)^r\equiv 0\pmod{p^{er}}$$

it x is relatively prime to p. This implies

$$\int_{\mathbb{Z}_p^*} (x^{\omega} - 1)^r x^{m-1} d\mu(x) \equiv 0 \pmod{p^{er}}.$$

It follows that

$$\sum_{l=0}^r \binom{r}{l} (-1)^{r-l} (1-p^{m+\omega l-1}) \frac{B_{m+\omega l}}{m+\omega l} (1-k^{m+\omega l}) \equiv 0 \pmod{p^{er}}.$$

On the other hand, Lemma 1 implies that

$$\sum_{l=0}^{r} \binom{r}{l} (-1)^{r-l} \frac{1}{1 - k^{m+\omega l}} \equiv 0 \pmod{p^{er}}.$$

Therefore,

$$\sum_{l=0}^r \binom{r}{l} (-1)^{r-l} (1-p^{m+\omega l}) \frac{B_{m+\omega l}}{m+\omega l} \equiv 0 \pmod{p^{er}},$$

by applying Theorem 1 in [5], which we restate as follows.

Proposition 2.4 Theorem 1 of [5]). Let p be a fixed prime and let  $\{a_m\}$ ,  $\{b_m\}$  be two sequences of rational numbers that are integral (mod p). Suppose that

$$\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} a_{m+s(p-1)} a_p^{r-s} \equiv 0 \pmod{p^{er}}. \tag{2.1}$$

and

$$\sum_{s}^{r} (-1)^{r-s} {r \choose s} b_{m+s(p-1)} b_p^{r-s} \equiv 0 \pmod{p^{er}}. \tag{2.2}$$

for all  $m \ge r \ge 1$ . Then the same type of congruence is true for  $\{c_m\} = \{a_m b_m\}$ .

## 3 Congruences of Kummer type for Bernoulli polynomials

Congruences of Kummer type for Bernoulli polynomials were first considered by the authors [3] in 1997. Again we begin with a simple rational function

$$F(T) = \frac{T^{\alpha}}{1 - T^{k}}.$$

For a prime number p relatively prime to k, there exists an integer j such that

$$a + kj = p\beta$$
,  $0 \le j < p$ .

Thus it follows that

$$\begin{split} \frac{T^{\alpha}}{1-T^{k}} - \frac{T^{p\beta}}{1-T^{kp}} &= \frac{1}{1-T^{kp}} \sum_{\substack{j=\alpha+kl\\0 \le t < p^{k}+1\\(j,j)=1}} T^{j} \\ &= \frac{1}{1-T^{kp^{N+1}}} \sum_{\substack{j=\alpha+kl\\0 \le t < p^{N+1}\\0 \le t < p^{N+1}}} T^{j}. \end{split}$$

From the above with a similar argument as in Proposition 2, we have the following

Proposition 3.1 Let p be a prime number and m a positive integer such that p-1 is not a divisor of m. Suppose that k is a positive integer relatively prime to k and  $\alpha$ ,  $\beta$  are non-negative numbers such that  $\alpha+kj=p\beta$ ,  $0 \le j < p$ . Then for any nonnegative integer N,

$$\begin{split} &= \frac{1}{m} \bigg\{ B_m(\frac{\alpha}{k}) - p^{m-1} B_m(\frac{\beta}{k}) \bigg\} \\ &= \frac{p^{(m-1)(N+1)}}{m} \sum_{\substack{j=\alpha+kl \\ 0 \le l \le p^{N+1} \\ (j,p)=1}} B_m(\frac{j}{kp^{N+1}}) \\ &= \frac{1}{mk^m p^{N+1}} \sum_{\substack{j=\alpha+kl \\ 0 \le l \le p^{N+1} \\ (j,p)=1}} j^m - \frac{1}{2k^{m-1}} \sum_{\substack{j=\alpha+kl \\ 0 \le l \le p^{N+1} \\ (j,p)=1}} j^{m-1} \pmod{p^{N+1}}. \end{split}$$

In summing

$$\frac{1}{mp^{N+1}} \sum_{\substack{j=\alpha+kl\\0 \le l < p^{N+1}\\(j,p)=1}} j^m,$$

we note that in general j does not range over a set of representatives of  $(\mathbb{Z}/p^{N+1}\mathbb{Z})^*$ . Suppose that

$$j_1 = j_2 + \epsilon(j_2)p^{N+1}$$

with  $0 \le j_2 < p^{N+1}$  and  $\epsilon(j_2) \in \mathbb{Z}$ , then

$$\frac{1}{mp^{N+1}}(j_1^m - j_2^m) \equiv \epsilon(j_2)j_2^{m-1} \pmod{p^{N+1}}.$$

So if we let j range over a set of representatives of  $(\mathbb{Z}/p^{N+1}\mathbb{Z})^*$  in the summation, it will cause a perturbation in the term

$$\sum_{\substack{j=\alpha+kl\\0\leq l< pN+1\\(j,p)=1}}j^{m-1}.$$

If we proceed as in the proof of Proposition 3, we obtain

**Proposition 3.2** Let p be an odd prime and m be a positive integer such that p-1 is not a divisor of m. Suppose that k is a positive integer relative prime to p and  $\alpha, \beta$  are non-negative integers such that  $\alpha + kj = p\beta, 0 \le j < p$ . Then for any positive integer r and  $\omega$ , a multiple of  $(p-1)p^{e-1}$ ,

$$\sum_{l=0}^{r} {r \choose l} (-1)^{r-l} \left[ \frac{B_{m+\omega l}(\frac{\alpha}{k})}{m+\omega l} - \frac{p^{m+\omega l-1}B_{m+\omega l}(\frac{\beta}{k})}{m+\omega l} \right] \equiv 0 \pmod{p^{er}}.$$

# 4 Congruences of Kummer type for generalized Bernoulli polynomials

Let f be a positive integer and  $\chi$  a primitive character of conductor f. The generalized Bernoulli polynomials  $B_{\chi}^{n}$  are defined by

$$\sum_{j=1}^{f} \chi(j) \frac{t e^{jt}}{e^{ft}-1} = \sum_{n=0}^{\infty} B_{\chi}^{n} \frac{t^{n}}{n!}, \quad |t| \leq \frac{2\pi}{f}.$$

In terms of Bernoulli polynomials, we have

$$B_{\chi}^{n} = f^{n-1} \sum_{j=1}^{f} \chi(j) B_{n}(\frac{j}{f}).$$

In particular, if  $\chi$  is a nontrivial character, then

$$B_{\chi}^{1} = \frac{1}{f} \sum_{j=1}^{f} j \chi(j).$$

Generalized Bernoulli polynomials are used to give the values at negative integers of the L-series defined by

$$L(s,\chi) = \sum_{n=1}^{\infty} \chi(n) n^{-s}, \ \ \mathrm{Re} \ \ s \geq 1.$$

Indeed,  $L(s,\chi)$  has a meromorphic continuation in the whole complex plane and for each positive integer n,

$$L(1-n,\chi)=-\frac{B_{\chi}^{n}}{n}.$$

Congruences of Kummer type for generalized Bernoulli numbers can be obtained as a simple application of those for Bernoulli polynomials, see Ernvall [5], Eie and Ong [3].

**Theorem 1.** Suppose that  $\chi$  is a nontrivial character with conductor  $f \geq 1$ . Let m, n be positive integers, and p be an odd prime such that p-1 is not a divisor of m and p is not a divisor of f. Then we have

$$(1 - \chi(p)p^{m-1})\frac{B_{\chi}^{m}}{m} \equiv (1 - \chi(p)p^{n-1})\frac{B_{\chi}^{n}}{n} \pmod{p^{N+1}}$$

if  $m \equiv n \pmod{(p-1)p^N}$ .

**Proof.** For each j with  $1 \le j \le f$ , there exists an unique  $\vec{j}$  with  $1 \le \vec{j} \le f$  and

$$j + \mu_j f = p\bar{j}$$

for some  $\mu_j$  with  $0 \le \mu_j < p-1$ . Hence, by the Kummer type congruence for Bernoulli polynomials, we have

$$\frac{1}{m}\left\{B_m(\frac{j}{f})-p^{m-1}B_m(\frac{\bar{j}}{f})\right\}\equiv\frac{1}{n}\left\{B_n(\frac{j}{f})-p^{n-1}B_n(\frac{\bar{j}}{f})\right\}\pmod{p^{N+1}}$$

if  $m \equiv n \pmod{(p-1)p^N}$ .
Consequently,

$$\begin{split} &\frac{f^{m-1}}{m} \left\{ \sum_{j=1}^{f} \chi(j) B_m(\frac{j}{f}) - p^{m-1} \sum_{j=1}^{f} \chi(j) B_m(\frac{\bar{j}}{f}) \right\} \\ &\equiv \frac{f^{n-1}}{n} \left\{ \sum_{j=1}^{f} \chi(k) B_n(\frac{j}{p}) - p^{n-1} \sum_{j=1}^{f} \chi(j) B_n(\frac{\bar{j}}{f}) \right\} \pmod{p^{N+1}} \end{split}$$

if  $m \equiv n \pmod{(p-1)p^N}$ .

Note that for any positive integer k,

$$\begin{split} \sum_{j=1}^f \chi(j) B_k(\frac{\bar{j}}{f}) &= \sum_{j=1}^f \chi(j+\mu_j f) B_k(\frac{\bar{j}}{f}) \\ &= \sum_{\bar{j}=1}^f \chi(p\bar{j}) B_k(\frac{\bar{j}}{f}) \\ &= \chi(p) \sum_{j=1}^f \chi(j) B_k(\frac{j}{f}). \end{split}$$

Finally we have

$$(1-\chi(p)p^{m-1})\frac{B_\chi^m}{m}\equiv (1-\chi(p)p^{n-1})\frac{B_\chi^n}{n}\pmod{p^{N+1}}$$

if  $m \equiv n \pmod{(p-1)p^N}$ .

As a simple application of Proposition 8, we have the following extension of Theorem 1.

Proposition 4.1 Suppose that  $\chi$  is a non-trivial character with conductor  $f \ge 1$ . Let m be a positive even integer, and p be an odd prime number such that p-1 is not a divisor of m and p is not a divisor of f. One has for any positive integer r and  $\omega$ , a multiple of  $(p-1)p^{r-1}$ ,

$$\sum_{l=0}^r \binom{r}{l} (-1)^{r-l} (1-\chi(p)p^{m+\omega l-1}) \frac{B_\chi^{m+\omega l}}{m+\omega l} \equiv 0 \pmod{p^{er}}.$$

As a final application of our general procedure to produce congruences of Kummer type, we shall mention here a new identity resulting from the observation that

$$a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \pmod{p} \ \text{ so that } \left[a^{(p-1)/2} - \left(\frac{a}{p}\right)\right]^r \equiv 0 \pmod{p^r},$$

where p is an odd prime number, a is an integer relatively by prime to p and  $\binom{a}{n}$  is the Legendre symbol defined by

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{c} 1, & \text{if a is a quadratic residue modulo } p, \\ -1, & \text{otherwise.} \end{array} \right.$$

Theorem 2. Let p be an odd prime number and  $\chi$  the character defined by

$$\chi(a) = \begin{cases} \left(\frac{a}{p}\right), & \text{if } a \text{ is relatively prime to } p, \\ 0, & \text{otherwise.} \end{cases}$$

Suppose  $\omega = (p-1)/2$  and m is a positive even integer such that (p-1) is not a divisor of m. Then for any positive even integer r,

$$\sum_{0 \le l \le r \atop l \equiv r \pmod 2} \binom{r}{l} (1-p^{m+\omega l-1}) \frac{B_{m+\omega l}}{m+\omega l} \equiv \sum_{\substack{0 \le l < r-1 \\ l \equiv r-1 \pmod 2}} \binom{r}{l} \frac{B_\chi^{m+\omega l}}{m+\omega l} \pmod {p^r}.$$

The authors would like to thank an unknown referee for suggestions improving the presentation of the results in this paper.

#### References

- Minking Eie and K. F. Lai: On Bernoulli identities and applications, Part I and II, Revista Metemática Iberoamericana 14, (1998), 167-213.
- [2] Z. I. Borevich and I. R. Shafarevich: Number Theory, Academic Press (1966)
- [3] Minking Eie and Y. L. Ong: A Generalization of Kummer's Congruences, Abh. Math. Sem. Univ. Hamburg 67 (1997) 149-157
- [4] R. Ernavall: Generalized Bermoulli numbers, generalized irregular primes, and class number, Ann. Univ. Turku, Ser. AI 178, (1979), 72
- [5] L. Carlitz: Some Theorems on Kummer's Congruences, Duke Math. J. 19, (1952), 423-431.
- [6] N. Koblitz: p-adic Analysis: A short course on recent work, Cambridge University Press (1980)
- [7] L. C. Washingtion: Introduction to Cyclotomic fields, Springer-Verlag, New York Heidelberg Berlin (1982)