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ABSTRACT
By means of simple identities among rational functions of a particular
type, we are able to produce identities among Bernoulli numbers and from
them congruences of the form

A 1 > 1 =1 N41
(A-p"NH==—z Y im-5 Y ™ (modpMH)
4 upd 185<pN +1 4 155 <pN 1
()=t Gwp)=1

when the odd prime p has the property that p — 1 is not a divisor of the
positive even integer m. With such relations, we are able to produce new
identities among Bernoulli numbers as well as reproving congruences of
Kummer type such as

D (;)(—1)"'——5'1*;', =0 (mod (p,p" ")

1=0

when w is a multiple of (p—1)p*~',e > 1.
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1 Zeta-functions associated with rational functions

In this section we outline the general theory to produce Bernoulli identities
through zeta functions associated with rational functions initiated by the first

author [1]. Let my,mg,...,m, be positive integers and P(T') a polynomial
function in 7. Consider the rational function
F(T) = (D)

A=Tm)(I-Tm)...0—Tm™)

For |T| < 1, F(T') has a power series expansion
«
F(T) =" a(k)T*.
k=0
The zeta function Zp(s) associated with F(T) is defined as

o
Zp(s) =Y a(k)k™", Re s>r.
k=1

This zeta function is related to F(T) via a Mellin transform
0o
Zp(s)I'(s) = / "1 [F(e!) — F(0))dt
0
for Re s > r, where I'(s) is the gamma function defined by

o0
F(s):/ et
0

For Re s > r, Zp(s) is an analytic function of s. It has an analytic
continuation to the whole complex plane and its special value at the negative
integer s = —m(m = 1,2,3,...) is given by

Zp(-m) = (-1)"m!
% [the coeflicient of £™ in the asymptotic expansion at ¢t = 0 of F(e“')].

For example, if we consider F/(T') = 1’1]‘7‘- then the zeta function associated
with F(T) is the well-known Riemann zeta function

o

(6€))= Zn", Re s> 1

| |
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and
_ (=1)™Bms1

(Emy=
where B,(m = 0,1,2,...) are the Bernoulli numbers defined by

t o Bt"

— = =, lt<2m
et—1 = n!

On the other hand, if we consider the rational function
«

T
F(T)—-m, a>0,

the zeta function associated with F(T) is

0

Z(a +kn)~,

n=0

which is the product of £~* and the well-known Hurwitz zeta function

00
((8;0) = Z(n+6)", Res>1,
n=0
with § = §.
The value of the Hurwitz zeta function at the negative integer —m is given
by
5y _ _ Bmi1(9)
((-m;b) = -=me

where By, (z)(m = 1,2,3,...) are the Bernoulli polynomials defined by

m

A=, (T) Btz (1.1)

=0
or equivalently

te® N B(@)t™
v B g o A 3

m=0

When we have more than one way to evaluate Zg(s) at negative integers
in terms of Bernoulli numbers or Bernoulli polynomials, this often leads to
identities among Bernoulli numbers and Bernoulli polynomials. Proposition 1
illustrates this approach.
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Proposition 1.1 Let p be a prime number and m a positive even integer.

Then for any non-negative integer N, one has

By pN+1m-1)

o J
Q- )= Z Bo(—757)-
iy m 1<5<pN+1 P i
Gwp)=1
Proof. Consider the rational functi
1 1 T+...+TP!
A e 1-77

The zeta function associated with F(T) is

00 0o

Zr(s) =Y 0~ = 3 (np)~* = (1~ 7))

n=1 n=1

for Re s > 1. On the other hand, we also have

PT) = (T4 A TP~ ) (14 TP 4T 4. 4T 1))
(T) = T

e T W
1-T» i
1<5<pN+1
Gip)=1

Note that for each positive integer j, the zeta function associated with the

rational function 4
T

1 . TFN+|
is p~(N+Dsg (g, ;,Jn-) Consequently we have for Re s > 1,

W=p)ole) = T o).

|Sl<’,N+l
Gp)=1
In the above identity, the zeta functions on both sides have analytic con-
tinuations. Setting s = I —m in this continuations we obtain the assertion of
Proposition 1. [ ]
In order to obtain a congruence for %'n modulo a power of p, we need the
following classical theorem concerning the denominators of Bernoulli numbers.
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von Staudt-Claussen Theorem (2]. Let p be a prime number and m a
positive even integer. Then the following assertions hold.

1. If p—1 is not a divisor of m, then By, is p-integral, i.e. p is not a divisor
of the denominator of By,.

2. If p—1 is a divisor of m, then pBy, is p-integral and

pBm = -1 (mod p).

Proposition 1.2 Let p be an odd prime and m a positive even integer such
that p — 1 is not a divisor of m. Then for any non-negative integer N,

N 1 g 1 an—
(1 e e S R ol s b e L B R
P 1<5<pN +1 155<pN+1
Gopy=1 Gpr=t

Proof. By Proposition 1 and (1.1), we have
b m
(1=p" =2 =57 Gi(m)
1=0

where

1 /m
*, (1=1)(N~1) m-1
] ( ! )Bm E Jj

1<5<pN+1
Ow)=1
_(m=1)...(m=1l+1) o q_1yn-1 m=i
_——T—_BP _s_ Ry
lsl<’N$l
Ow)=1

For sufficiently large I, we have Cj(m) = 0 (mod p™*'). We now estimate
how large I should be. Note that the exponent of p in I! is no greater than

Gl e ol e < B -5

Also pBy is p-integral by the von-Staudt-Claussen theorem. Thus, Ci(m) is
p-integral and

Ci(m)=0 (mod pV*!)
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provided that ;
(N+1)(l—1)—1—§ZN+1.

The above inequality is true for / > 6. Hence we have
By L=
_ =1y 2m N+1
(1-pm") = ,_E_o Ciy(m) (mod p™*?%).

Thus, to obtain our assertion, we have to show that Cy(m) and Cy(m) are
divisible by pV*1. Note that

m—1)(m—2)(m -3 e
( ) )( )p:(m.n e

Cy(m) = - 25.32.5

1<5<pN+1
Gopy=1
so that Cy(m) = 0 (mod pN*!) for any odd prime p. Also

m—1p~+1 DD e

Catm) = 195

1g<pN+1
Gp)=1

and hence, Cy(m) = 0 (mod pN*!) for any prime p except p = 3. However
p = 3 is excluded under the assumption that p — 1 is not a divisor of m. m

2 Congruences of kummer type

The classical Kummer congruence for Bernoulli numbers asserts that
B, Brnyp-
=i e i od )
m m+p-—1
if p— 1 is not a divisor of the positive even integer m. See page 385 of [2] for
the details. This was generalized to
B, B,
1 = pm=1yEm g on=1yZn Gl
(W=l ==l snh e S(mod py)
if m=n (mod (p—1)p® ') and p — 1 is not a divisor of m [5]. Here we shall
use Proposition 2 to prove a further generalization.
Proposition 2.1 [5]. Let p be an odd prime and m a positive even integer
such that p — 1 1s not a divisor of m. Suppose that w is a multiple of (p —
1)p~'.e > 1 and r is a positive integer. Then

Z (’)(_])r 11 — pmtel=1y Bimsat =0 (modp™.)
m+ wl

1
1=0
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To prove Proposition 3, we need the following lemma.
Lemma 1. Let r,m and w be positive integers. Then

i (r)(_l),-. 9% 8 (2 ~1)" P (z™,2")

= 1 gmtwl ] (z"‘ ) l)(zm+w cad 1)~”(zm+rw ok, 1)‘
where P,(X,Y) is a polynomial in X,Y with integral coefficients.

Proof. We shall prove the assertion by induction on r. For r = 1, we have

1 1 (2% — 1)z™

Zh—1 gmtw_1 (a™ - 1) (@™ —1)’

s0 the assertion is true for r = 1.
Suppose that it is true for r = k. Then for r = k + 1, we have

k+l
i ("+ 1)(_1)k+1—1 1
= ] amiwl ]

k

&
k & 1 k . 1
i (l)(_l)k 'zm+u+ul_1 _2(1)(—1)k ’Im+ul_1
=0

[t 1=0

5 (2* = D*Py(a™, 2¥)
T (@™t - 1) (et — 1) (@D — 1)

(& — V*Pu(a™, 2*)
(z™ - 1)(zm+u - l)...(m"“*"” e 1)

_ @ - DR, 2@ ~ 1) = Pa™, 2¥)(@mHEDY - 1))
5 (@™ = 1)(zmtw —1)... (em+E+De 1)

Note that
Qe™,2*) = A(z™1",2")(z™ — 1) — Py(z™,2")(#™+ "1V _ 1)

is a polynomial function in variables X = z™ and Y = z“ with integral
coefficients, which is zero if 2 = 1. This implies that

Q(z"™,2") = Py (z™,2%)(z - 1)

for some polynomial Pyy1(X,Y) with integral coefficients. This completes our
proof. [ ]
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Proof of Propositi .9.ByP.r it 2,wehnvefor05!$r,

Bl
(l—p'“""""l) mbwl Z mtwl E J-m+wl—l (mod p°).
mtwl m+wll( e ls:<f'
Gt Gar=1

Multiplying both sides of this congruence by (})(—1)"~! and summing over
1=0,1,...,r, we obtain

Z (r)(_])r—l(l _pm+m—1)'fn::ll
= 1 —er
_Z()( 1) o % 3 UG -0 (mod pf).

m+ wl s 1
Gipy=1 G)=1

For (7,p) = 1 we have
(¥ =1)"=0 (mod p™)

so that we can drop the second terms.
Let g be a generator of the cyclic group (Z/pZ)*, the multiplicative group
of the ring Z/p®"Z. Then

zr: (r) (EliEra DI i
=0 l g w’ 1<5<p"

Gw)=1
r (,_)(_l)r_lp—zrg(mﬁul)(p—l) |
o 1

= = T (mod p°").
1=
Now set
g ST
s0 that

PTY otmiwl)p-1pt oy = er
ErT (9 1)=a (mod p).

Thus it suffices to prove

= [r a

z (,>(-1)"'W—, =UL il
=0 9

But it follows from Lem™a 1 that
S~ (1) i e St i n ey
] mml ) (R (g™ — 1)(g™* — 1) »(gmoruAl)‘

=0

. A
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Corollary. Let r be a positive integer, p an odd prime number and m
a positive even integer such that p — 1 is not a divisor of m. Then for any
positive integer e and w = (p— 1)p*~!, one has

r
> (7) 0t Enet =0 (mod 67 5m ).
=0

As shown in (3], p-adic integration on p-adic spaces can be used to prove
congruences of Kummer type. Here we shall give another proof of Proposition
3 via p-adic integration.

Let p be a prime number. Z, and Qj are the rings of p-adic integers and
the field of p-adic numbers, respectively. v, is the p-adic valuation on Qp. Qp
is the algebraic completion of Q.

Fix a k-th root of unity €(e # 1) with k relatively prime to p. Zj is the set
of invertible elements in Z, and a + p”Z, is the set of z in Z;, which maps to
& in Z/p™Z under the natural projection from Z, to Z/pNZ. Define

N v €
pe(0 +9"Zp) = T

and

ula+ PNZp) = z pela+ pNZp).

A=1,e£1
Also for any continuous function f : Z, — Q,, we define
[ @) = Jim, S f@uta+"2,).
Zy ® 0<a<p¥
Proposition 2.2 For any positive integer m, one has
/ 2™ Ydu(z) = (1 - k'”)b.
Z, m

Proof. For each t in Q, with 1,(t) > 1/(p — 1), the exponential function
' defined by the power series

"

24
t!

L}
g
]
Ms

is a continuous function on Z,.
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Hence we have

tx

1- " er™t
limy e
N-co 1 — €P 1—eet

1
T 1-eet’

since e#* — 1 as N — co. It follows that
1 k 1
/ o R P T vt g
z, A=1e#1

Comparing the coefficients of ¢™ !, we get

B
/zpz"'-'dp(z) = (1-km)2m

Note that
/Im-'d,,(x)=/ z"‘"du(z)—/ 2™ 1du(z)
z; Zy PZy

and

[ amtduta) =i - mZm
2y m

by a similar calculation as in the proof of the previous proposition. Thus we
obtain the following.

Proposition 2.3 For any positive integer m, one has

[ 2 tduta) = =gy - kmy e,

4

Now the application of Proposition 5 to congruences of Kummer type is
clear. By Proposition 5, we have the identity
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r

fem-ramtanta) = [ (j)(—l)"'z'"“'"@(z)

( )(_1)r-l(1 mM—l) T:,ll( - km+ul)'

Clearly
(¥ =1)"=0 (mod p*)
it z is relatively prime to p. This implies

/z.(:t“ —1)’a™ 'du(z) =0 (mod p).
r
It follows that
= (r B,
—1)l = prtwi=1y Dmbwl o pmsaly — ery.
gz‘(,)( i1 = gty Bmted (| _mssty =0 (mod p77)

On the other hand, Lemma 1 implies that

r

Z (7)(—1)"'1—_—:’;;] =0 (mod p).

1=0
Therefore,
i T (_1)r—l(l __pm-t—ul)m =0 (mod p")
i\ m+wl v
by applying Theorem 1 in [5], which we restate as follows.

Proposition 2.4 Theorem 1 of [5]). Let p be a fized prime and let {an},
{by} B¢ two sequences of rational numbers that are integral (mod p). Suppose

that
Z( ) '( )""l+=(n 1a; =0 (mod p). (2.1)
and
Z( ) st ( ) syt =0 (mod p). (2.2)
#=0
Jor all m > r > 1. Then the same type of congruence is true for {cn} =
{ambm}.
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3 Congruences of Kummer type for Bernoulli poly-
nomials

Congruences of Kummer type for Bernoulli polynomials were first considered
by the authors (3] in 1997. Again we begin with a simple rational function

T2

(T = 7=

For a prime number p relatively prime to k, there exists an integer j such that
atkj=pB, 0<j<p.
Thus it follows that

70 08 1
=W =k =k De, 19

=i 2 T

smathl
o<iepN+1
Gp)=1

From the above with a similar argument as in Proposition 2, we have the
following

Proposition 3.1 Let p be a prime number and m a positive integer such that
p—11s not a divisor of m. Suppose that k is a positive integer relatively prime
to k and a, are non-negative numbers such that a + kj = pB, 0 < j < p.
Then for any nonnegative integer N,

1

Bu() =" B}

(m=1)(N-+1)
e )
& m Z B’"( N+l)
Jeakkt
0<tepN+1
1 )= 1
= SRl ym—1 N+l
T mkmpNH1 z 7 2km—1 Z i (mod p™*1).
okl el
oStanhL ogrep¥ 4t

)=t Uah=t
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In summing |
= T ifg
o%(,)N;&I
)=

we note that in general j does not range over a set of representatives of
(2/p¥*'Z)*. Suppose that

Ji = ga + e(G2)pV !

with 0 < j2 < p¥*1 and €(j2) € Z, then

L om _omy = (ym-1 N+1
m—pNTi(Jf" - 8") = €(j2)i5* " (mod pNFY).

So if we let j range over a set of representatives of (Z/p*1Z)* in the sum-
mation, it will cause a perturbation in the term

DI

Jmatkl
0<lepN b1
Gip)=1

If we proceed as in the proof of Proposition 3, we obtain

Proposition 3.2 Let p be an odd prime and m be a positive integer such that
p— | i not a divisor of m. Suppose that k is a positive integer relative prime
to p and a,8 are non-negative integers such that a + kj = pp,0 < j < p.
Then for any positive integer v and w, a multiple of (p —1)p°~?,

r a mepwl—1 8
Z(f)(—l)"' [qu-wl(x)_li Brost®)] _ o (1mod ).

ot m + wl m+ wl

4 Congruences of Kummer type for generalized Bernoulli
polynomials

Let f be a positive integer and x a primitive character of conductor f. The
generalized Bernoulli polynomials BY are defined by

i it %
e e 2%
= Lo &
J§=‘x(1)e,,_1 "§=an"!. i<
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In terms of Bernoulli polynomials, we have
- i
By = /" o x()Ba(3).
i=1
In particular, if x is a nontrivial character, then
1 i
BL= 7 > ixG).
i=1

Generalized Bernoulli polynomials are used to give the values at negative
integers of the L-series defined by

b
L(s,x) =Y x(n)n~", Re s>1.
n=1

Indeed, L(s, x) has a meromorphic continuation in the whole complex plane
and for each positive integer n,

Bn
Ll =n,x) = ——X.

Congruences of Kummer type for generalized Bernoulli numbers can be
obtained as a simple application of those for Bernoulli polynomials, see Ernvall
[5], Eie and Ong (3)].

Theorem 1. Suppose that x is a nontrivial character with conductor f > 1.
Let m,n be positive integers, and p be an odd prime such that p — 1 is not a
dwisor of m and p is not a divisor of f. Then we have

By 1By N
(1= x@P™ )2 = (1 - x@p* )X (mod p"*)
m n

ifm=n (mod (p— 1)pV).

Proof. For each j with 1 < j < f, there exists an unique j with 1 < j < f
and

J+uif=p;

for some p; with 0 < p; < p— 1. Hence, by the Kummer type congruence for
Bernoulli polynomials, we have

= {Bm(1> B} =2 {B..(§> ~p"*‘B"(§)} (mod p*1)

(T

e
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ifm=n (mod (p—1)p").
Consequently,

fml !
Zx )— e IZXJ)Bm( )

j=1
s i i i
=t Zx(k)Bn(;)—p”“IZx(j)Bn(f) (mod p"+)
=1 7=1

ifm=n (mod (p— 1)p").
Note that for any positive integer k,

§ = i -
D xBHD) = DX+ wif)Bu(F)
j=1 J'? {
L X(P])Bk(f)
j=1
—X(P)Zx Bk( Ly
j=1

Finally we have
By

1= 2@ 2L = (1= )2 (mod 5

ifm=n (mod (p— 1)pN). ]
As a simple application of Proposition 8, we have the following extension
of Theorem 1.

Proposition 4.1 Suppose that x is a non-trivial character with conductor
f > 1. Let m be a positive even integer, and p be an odd prime number such
that p— 1 is not a divisor of m and p is not a divisor of f. One has for any
positive integer 7 and w, a multiple of (p — 1)p*~?,

T Bm+wl

s
=1 =1 1= mtwl—1y —x = LA
2 (1)t xorm 2 =0 mea )
As a final application of our general procedure to produce congruences

of Kummer type, we shall mention here a new identity resulting from the
observation that

-
a2 = (%) (mod p) so that [a(P‘I)/z - (%)] =0 (modp"),
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where p is an odd prime number, a is an integer relatively by prime to p and
( %) is the Legendre symbol defined by

a) _ 1, if a is a quadratic residue modulo p,

p) | -1, otherwise.

Theorem 2. Let p be an odd prime number and x the character defined by

Bl C 2 z
= (5), ifais r'elatlvely prime to p,
0, otherwise.

Suppose w = (p — 1)/2 and m is a positive even integer such that (p — 1)
is not a divisor of m. Then for any positive even integer 7,

T B 7\ Byt
(1—pm+wl*1)m—+”5 () X (modp').
I1=r “(mod 2) I=r=1 (mod 2)

The authors would like to thank an unknown referee for suggestions im-
proving the presentation of the results in this paper.
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