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1 Introduction

The existence of periodic solutions has been an important subject in the qual-
itative theory of differential equations and dynamical systems in the last half
century, and it has also been an important area of applications in nonlinear
analysis and, in particular, in asymptotic fixed point and topological degree
theories.

Dissipati Isive syst; frequently arise in modeling real world prob-
lems mclndmgoontrol systems, electrodynamics, mixing liquids, neutron trans-
portation, and population models. Dissipativeness means that the system en-
ergy dissipates (because of friction, breaking, etc), and hence all trajectories or
orbits eventually enter and remain in a bounded set of the phase space. Repul-
siveness, however, is in some sense the opposite of this property: trajectories
eventually go away from a given set of the phase space. A dissipative-repulsive
system has a combination of the above properties: dissipative with respect to
some state variables and repulsive with respect to the remaining set of state
variables. It has been long conjectured in the international community of re-
searchers in the area that such a dissipative-repulsive system does admit a
periodic solution.

*2000 M. ics Subject classification. Primary 34K15.
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The present exposition is to discuss the methods developed to solve this
problem and the progress having been made. It is only introductory in nature
and is not intended in any way to be a review of the area.

The problem has its roots in the theory of ordinary differential equations.
Consider, for example, the linear system

o' = A(t)z + f(t) (1.1)

where A(t) is an n X n matrix and p: R = R", R = (—o00, +00). Both A and
p are continuous and T-periodic on R for some 7' > 0. If z = 0 is the only
solution of

z' = A(t)z (1.2)

which is bounded on R, then (1.1) has a T-periodic solution. The result can be
broken into the following three illustrative cases. First, let us recall the Floquet
theory (see Burton (3, p.52]) which states that there exists a nonsingular, 7-
periodic, and continuous n x n matrix P(t) and an n X n constant matrix J
such that Z(t) = P(t)e’! being a fundamental matrix of (1.2).

Case 1. If all characteristic roots of J have negative real parts, then the
periodic solution of (1.1) is

a(t) = /_ ‘ P(t)e’ ) P~1(s)f (s)ds.

Case 2. If all characteristic roots of J have positive real parts, then the
periodic solution of (1.1) is

+o0
ey - /‘ P(t)e’ =) P=1(s) f(s)ds.

Case 3. If some roots of J have positive and some roots of J have negative
real parts, then a periodic solution is of a form analogous to a combination of
Case 1 and Case 2. See Burton (3, p.68] for discussion on these cases when A
is a constant matrix.

This is the simplest example of a dissipative-repulsive system. However,
proving that a nonlinear dissipative-repulsive system has the same periodicity
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property p a significant chall to the i ig since neither the
linear property nor the technique developed for (1.1) can be applied. In the
next two sections, we will discuss how to extend Case 1-3 to fully nonlinear

systems.

2 Dissipative Systems

In 1944 Norman Levinson [25] initiated the study of a second order system of
ordinary differential equations

a' = f(t,x) (2.1)

with the property that solutions all entered a ball and remained there for all
large t. Such a system is called dissipative; that is, there exists a constant
r > 0 such that

limsup |z(t, to, zg)| < r
t-r4o0

where z = z(t, ty, 7o) is any solution of (2.1) with z(tg, to, zo) = 9. He posed
a problem which grew into the following notion. Let f : R x R" — R" be
continuous and locally Lipschitz in z. Denote by | - | the Euclidean norm on
R". Throughout the paper, if a function is written without its argument, we
mean the argument is ¢.

Definition 2.1. Solutions of (2.1) are uniformly bounded (UB) if for each
B, > 0 there exists By > 0 such that

[to € R, |zo| < Byt > to] imply that |z(t,to,2o)| < Ba.
Definition 2.2. Solutions of (2.1) are uniformly ultimately bounded for
bound B (UUB) if for each By > 0 there exists K > 0 such that
[to € R, |zo| € B3, t > to + K] imply that |z(t,to,z¢)| < B.
In search for periodic solutions of (2.1), ¢y is almost always taken as zero
and one asks for UUB at ty = 0. UB and UUB are different concepts. However
UUB does imply UB if f(¢,z) in (2.1) is periodic in ¢ (see Yoshizawa [33, p.64]).

It is obvious that UUB is a concept of uniform dissipativeness.

Levinson’s problem can be formulated in the following way. For history
and details, we refer the reader to Burton [3, p.142], Burton and Zhang [11].
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Problem 1. Suppose that there exists a constant 7' > 0 such that
f(t+T,z) = f(t,z) for (t,z) € R x R".

Prove that if solutions of (2.1) are UB and UUB at to = 0, then (2.1) has a
T-periodic solution.

This problem was solved for n = 2 independently by Cartwright [13] and
Massera [29] in 1950. But it had to wait until 1959 and the asymptotic fixed
point theorem of Browder [2] for a proof for general n. Such a proof can be
found in Yoshizawa (34, p.158].

Attention then turned to the finite delay system
@'(t) = f(t,ze) (2.2)

where z¢(s) = z(t+3) for —h < s <0, h > 0is a constant, and f : RxC — R"
is continuous with f(T'+t,¢) = f(t, ¢) and is locally Lipschitz in ¢. (C, ||-||) is
the Banach space of continuous functions ¢ : [—h,0] — R™ with the supremum
norm. For each (to,¢) € R x C, there exists a unique solution z = (¢, to, ¢)
of (2.2) with a4, = ¢ (see Hale [16, p.42]). Definitions of UB and UUB are
extended to (2.2) by merely replacing g by ¢ and |zo| by [|¢]|. Note that in
these new definitions, It is still the R™ norm on solutions x(t, tg, ¢). While the
norm makes no difference here, it is crucial for infinite delay systems.

Problem 2. Show that problem 1 is true for (2.2).

Hale and Lope [17) used the asymptotic fixed point theorem of Horn [20]
to solve Problem 2.

Fixed Point Theorem ([20]). Let Sy C Sy C S be convex subsets of a
Banach space X with Sy and S, compact and S; open relative to S;. Let
S3 — X be a continuous function such that for some integer m > 0,

(@) P’S1cSp 1<j<m-1
(b) PiSicSy, m<j<am-—1.
Then P has a fixed point in Sp.

As mentioned earlier, UUB does not in general imply UB. In fact, Kato
[23] showed that even when (2.2) is autonomous and completely continuous,
then UUB does not imply UB. Investigating the same problem for an infinite
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delay system, Burton and Zhang [9] in 1990 solved Problem 2 using UUB
alone; that is without asking UB. Makay [26] continued and showed that if
system (2.2) is dissipative, then it has a T-periodic solution without asking
UUB.

We shall sketch the proof of the following theorem whose general version
can be found in [9] to illustrate the use of Horn’s theorem without UB.

Theorem 2.1.([9]) Suppose that f(t,$) takes bounded sets of R x C' into
bounded sets of R". If solutions of (2.2) are UUB at t; = 0, then (2.2) has a
T-periodic solution.

Proof. Since solutions of (2.2) are UUB for a bound B and f(t, $) takes
bounded sets into bounded sets, there exist N > 0 and Lp > 0 such that

[#€C, |4l <2B, t > N] imply |z(t,0,¢)| < B
and |f(¢,¢)| < Lp for all t > 0 whenever ||¢|| < 2B. Now define
So={9€C: gl <2B, |p(u) - $(v)| < Lalu~vl, u,v € [-h,0]}
and for each ¢ > 0 define P, : C = C by P,(8) = z(t + 6,0, ) for 0 € [~h,0].
‘ Then P, is continuous and Sy is compact. Thus, there exists By > B such
that
¢ € Sy implies |z(t,0,9)| < By (2.3)

for 0 < t < N. Since |2(t,0,¢)| < B for t > N, we have |z(t,0,¢)| < B for
allt>0.

Next let By = B+ By and find L > Lp such that |f(t,¢)| < L for all £ > 0
and ||¢|| < B;. Define

S2={6€C: |9ll < Ba, 9(w) - $(v)| < Liu—v], u,v € [~h,0]}.
By UUB, there exists K > 0 such that
[¢€C, |l¢ll < B, t > K] imply |z(t,0,¢)] < B.

Since Py is continuous on the compact set Sy, it is uniformly continuous; thus,
there exists § > 0 (§ < B) such that

(61,62 € 83, I¢1 — 2| < 0] imply s [(t,0,¢1) — z(t,0,¢2)| < B/2. (2.4)
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In view of (2.3) and (2.4), ¢y € So, ¢ € Sa, ||¢ — || < &) imply

sup |z(t,0,¢)| < sup [a(t,0,¢0)| + sup |z(t,0,6) —z(t,0,¢0)| < By + B/2 < B,
0<t<K 0<t<K 0<t<K

Define
Q= {peC:llp-anll <6}

$Po€So

and S} = Q1 N Sy. Then Sy C Sy C S, are all convex subsets of C' with S
and S, compact and S; open relative to Sy. Define P : S; — C' by

P(¢) = Pr(¢) = z1(,0,0) for ¢ € S
or
P(¢)(0) = o(T +6,0,0) for 6 € [~h,0].

Then PJ(S;) € S, for all j = 1,2, - -. Choose m > 0 such that mT' > K + 7.
Then P?(S;) C Sy for j > m. By Horn’s theorem, P(¢) has a fixed point
¢* € Sp; that is P(¢*) = ap(:,0,¢") = ¢*. Since z(¢,0,¢*) and z(t + 7,0, ¢*)
are both solutions of (2.2) with the same initial function, by uniqueness, they
are equal. Thus, z = x(t,0, ¢*) is a T-periodic solution of (2.2), and the proof
is complete.

We turn now to the infinite delay system
a'(t) = F(t,z) (2.5)

where z4(s) = z(t + 8) for —oo < s < 0and F : R x X — R" with F(t +
T,¢) = F(t,¢). Here X is the Banach space of bounded continuous function.
¢: R™ — R", R~ = (—o00,0], having the supremum norm || - ||. Define UB
and UUB for (2.5) just as for (2.1) replacing zo by ¢ and |zg| by ||¢||.

Problem 3. Prove that if solutions of (2.5) are UUB, then there is a
T-periodic solution.

When we attempt to follow the construction of S; and P for (2.5), several
things go wrong.

(a) Sy and S, are not compact,

(b) P?(S;) is never contained in Sy because of the “tail” is never translated
out of the initial function space,

T
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(¢) P is not necessarily continuous in (X, || - ||), where P,(8) = z(t + 0,0, $)
for6€ R™.

Speaking for an infinite delay system, Seifert [31] showed that a necessary
condition for UUB is that F(t,¢) has some kind of a fading memory. Such an
idea suggested to Arino, Burton, and Haddock [1] that it may be feasible to
use initial functions ¢ having the property that |¢(s)| — +oo as 8 = —oo. Let
(i denote the set of continuous and non-increasing functions g : (—00,0] —
[1,+e0), 9(0) = 1, g(r) = +00 as r = —oo. Then for each g € G, (Xg,| - |g)
is the Banach space of continuous functions ¢ : (00,0} — R" for which

|plg = sup |¢(s)|/g(s)
—00<s<0

exists. In Burton (3, p.282), it is shown how g can always be chosen from F'
when (2.5) is an integrodifferential equation. To this end, we define g-UB and
¢-UUB by replacing zo by ¢ and |zo| by |$|, and modify S;. Those basic sets
are similar to

S={d€X,:|¢(s) < BVa(e), |#(u) - 6(v)] < Llu—v]}.

Then S is compact in (X, |-|;) and P?(S) C S for large j. These constructions
allowed Arino-Burton-Haddock (1] to show that if solutions of (2.5) are g-
UB and ¢-UUB, then (2.5) has a T-periodic solution. The Problem 3 is not
solved completely here since g-UB, g-UUB, and the continuity of solutions
with respect to the initial functions ¢ € X, are much stronger than those in
terms of (X, || - ||).

The key to the problem of continuity of z(t,0,¢) with respect to ¢ and
of the compactness of S when h = +00 seems to lie in the aforementioned
counterexample of Seifert [31). A fading memory is required for UUB. The
fading memory, together with continuity of F(t, ) in the supremum norm and
the requirement that F' takes bounded sets into bounded sets will yield the
continuity of z(t,0,¢) in ¢ with respect to a norm | - |; and the compactness
of S in (X, |- |;). Burton and Feng [8] achieved this goal.

All of the work discussed here is based on translation of map P, and is
highly dependent on the uni of solutions with respect to the initial
functions. Unlike ordinary differential equations, uniqueness in (2.5) does
not imply the continuity of z(t,0,4) in ¢ (see Burton and Dwiggins (5] and
Kaminogo [22]).
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Definition 2.3. Let 2 C X. We say that P, is continuous in (2, G) if
there is a g € G and if for each {¢ € Q, J > 0, u > 0} there is a § > 0 such
that {y € Q, |¢ — 9|y < &} imply |Ps(¢) — Ps(¢)l, < p.

Definition 2.4. Equation (2.5) has a weakly fading memory in Q C X if
for each [J > 0, D > 0, pu > 0] there exists K > 0 such that

{6 €Q, |Igill £ D, i=1,2, ¢1(s) = ¢2(s) on [-K,0], 0 < t < J}
imply that |F(t, ¢1) — F(t, ¢2)| < p-

Burton and Zhang [9] dropped the UB requirement and solved Problem 3 in
the sense that F(t,$) has a fading memory. Note that Burton-Feng’s theorem
[8] reduces condition (iii) below to conditions on the supremum norm.

Theorem 2.2. ([9]) Suppose that F(t + T, ¢) = F(t,) for some T > 0
and all (t,¢) € R x X and for each ¢ € X there is a unique solution z(¢, 0, ¢)
of (2.5) on [0, +00). Suppose also that

(1) solutions of (2.5) are UUB in the supremum norm,
(ii) for each M > 0 there exists L > 0 such that
[¢€ X, ol <M, t=>0] imply |F(t,¢)| <L,

(iii) for each bounded (in the supremum norm) set € X, P, is continuous
in (2,G).

Then (2.5) has a T-periodic solution.

A variant of Theorem 2.2 was proved by Burton, Dwiggins, and Feng [6]
with the additional assumption of UB. When (2.5) is linear in ¢ then much
less is required, as may be seen in the work of Hino and Murakami [19] and
Makay [27). It is also shown in Makay 28] that (2.5) has a T-periodic solution
if F(t,¢) is continuous in R x X, and locally Lipschitz in ¢ in the g-norm,
and solutions of (2.5) are dissipative with respect to a compact set in X;. By
introducing a space Cj,, Huang and Wang [21] showed that if solutions of (2.5)
are h-UB and h-UUB, then (2.5) has a T-periodic solution.

3 Dissipative-Repulsive Systems

All of the work discussed in Section 2 is highly dependent on the dissipativeness
of the system. When such a property is absent, however, the problem showing

(T
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the existence of a periodic solution is extremely difficult and has been a central
subject of modern research in the area.

It is obvious that the method used in the previous section will not work
for with repulsi To overcome such a difficulty, inves-
tigators turned to degree-theorehc method which often relies on an a priori
bound on all possible periodic solutions to a family of differential equations
associated with the original one, but it does not require all solutions to be
bounded. Therefore, it is possible to apply the method to non-dissipative sys-
tems for which Horn's theorem is not applicable. It is now even clear that
dissipativeness is merely a sufficient condition for the existence of a periodic
solution.

The degree theory many investigators have used is that of Granas (14, 15]
who calls it the method of continuation of Poincaré and later refers to it as a
topological transversality method. The approach of Granas explicitly avoids
the calculation of Leray-Schauder degrees and thus allows investigators to
study the periodicity problem in a much simpler way.

Consider system (2.5) and a companion to it
a'(t) = Fa(t,z) (2.5))

where 0 € A < 1, Fy\(t+T,¢) = Fi(t,¢), and Fi(t,¢) = F(t,¢) if A= 1.
We construct a homotopy h(A, ¢) or hy(¢) on [0,1] x Pr to Pp, where Pp is
the Banach space of continuous 7T-periodic functions ¢ : R — R". The theory
of Granas is applied in the following way:

(a) An a priori bound B is found for all possible T-periodic solutions of
(2.5,).

(b) Aset X C {¢€ Pr: |¢|l < B} is constructed with the property that
Ay : X = Ppis compact and each fixed point of hy satisfies (2.5)). This
implies that all fixed points of hy are bounded by B.

(€) Ay has a fixed point ¢y € X \ OX.

Then Granas' theorem yields that h, has a fixed point ¢, in X. Thus, ¢; is
a T-periodic solution of (2.5). The idea is to deform the fixed point z( of hg
1o a fixed point 2 of hy through h, since h(), ¢) is fixed point free on 9X. It
turns out that constructing such a homotopy is a very difficult task as can be
seen below.
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Burton, Eloe, and Islam (7] studied the equation

)= Dol /‘ (S O S0) @.1)

with a view of extending Case 3 mentioned in Section 1. Here C' is an n x n
matrix of continuous functions which are in L'[0, +c0), D is an n x n constant
matrix, p: R = R" is continuous and 7- periodic.

Let (P, |- ||) denote the subspace of Pp with ¢ € P2 if ¢ € Pp and if the
mean value of ¢ is zero:

T
m($) = 1/7) [ ols)ds =0.
0
To each ¢ € Pp we associate the function :;5 € P}' defined by
£ T
30 = 90 - /1) [ ole)as (32)
0

having the mean value zero and the consequential property that fnl $(s)ds €

Pr.

Consider the family of equations
t
() = A[D=(t) + / Ot~ )z(s)ds + p(t)] (3.13)
—00

where 0 < A < 1.

Theorem 3.1. ([7]) Suppose that p € Pj and there exists a constant
By > 0 such that [|zx|| < By for every solution zy € Pp of (3.1,) for every
A € (0,1). Then (3.1) has a solution in P{..

The proof of Theorem 3.1 relies on the construction of the following ho-
motopy. Define hy : [0,1] x Pr — Pp by

m(8)(0) = A[#(0) + n/ﬂl Heyan /u'/un GO 8 la) ot /ﬂt,,(,)as]

for each A € [0,1] and ¢ € Pp, where & is defined in (3.2).
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It is easy to check that hy is compact, hx(¢) € Pr,
- t -
GO0 =A[i0) + [ o~ 9 +20)]

and, consequently, if ¢ € Py is a fixed point of hy, then ¢'(t) = JJ’(t) so that J)
is a solution of (3.1)) and, by hypothesis, ||¢|| < By. This implies there exists
B > 0 such that ||¢|| < B. Since the fixed point of hy is 0 € X \ 8X, X =
{¢ € Pr: ||¢|l < B}, Granas' theorem implies that h; has a fixed point ¢y
which is a T-periodic solution of (3.1).

It is noticed in (7) that if p € Pp, if p € PR, and D + [(° C(u)du is
nonsingular, then a translation y = z +d, d is constant, can be defined so that
(3.1) becomes an equation with a forcing function having mean value zero.

Example 3.1. ([7]) Consider the two dimensional system
t
#(t) = A[Da(t) + / C(t— $)z(s)ds +p(t)] (3.3)

with D = diag(1,~1), C is continuous with —1 + [;"™|C(u)|du < 0, and
p € P. Then (3.3) has a T-periodic solution for A = 1.

Using a Liapunov function instead of a functional here, we obtain an
a priori bound for all possible periodic solutions and eliminate the condi-
tion fﬁ”lC(u)ldudt < oo used in [7). Define V(z) = zTEz, where
z = (z1,7;)7and F = diag(—1,1) so that |[E| = 1. Let = = x(t) be any
T-periodic solution of (3.3). Then

t
Vi(z(t)) < —2)\z|* +2)|z| /_ |C(t = 8)l|z(s)|ds + 2A|z||p(t)]

IA

—2\|z|? + ,\/ooo |C(w)|du |z|* + ,\/_' 1C(t — 8)||z(s)[*ds + 2\|z|||p|




342 Bo Zhang
Let & = 1 — [{°|C(u)|du and integrate from 0 to T to obtain

V(T)-Vv(0) < ~2/\/T|z(3)|2ds+/\/m |C(u)|du/T |2(s)[2ds
)\/ u)ldu/ z(t —u)|?dtdu + Aa/ |z(s)[2ds + AT|p||%/a

+

i
~ax/ [z(s) ds + AT!pl[2/cx
0
Since z(t) is T-periodic, we have V(T) — V(0) = 0. This in turn yields
oy i 12
[ tatelias <72 [ ja(o)fas] " < Tl
0 0

for A € (0,1]. An integration of the equation yields foT |z'(s)|ds < 7. It follows
from Sobolev’s inequality, there exists a constant By > 0 such that [|z[| < Bi.
By Theorem 3.1, equation (3.3) has a T-periodic solution for A = 1.

If the equation has a linear part, for example,
z'(t) = Daz(t) + F(t,x1) (3.4)
where D is an n X n matrix, then a companion system is
2'(t) = Dz(t) + AF(t,z4) (3.45)

where A € [0, 1]. If all characteristic roots of D have negative real parts, then
a homotopy for (3.4)) may be defined as

t
WOV =3 [ ePOIF(e,g)ds
—o0
for ¢ € Pp. Now suppose that D = diag(Dy, D>) where D; is a k x k matrix
whose eigenvalues have positive real parts and D, is an (n — k) x (n — k)

matrix whose eigenvalues have negative real parts, 0 < k < n is an integer. If
F(t, ) = (Fi(t, $1), Fa(t, 1)) ", then the homotopy is

00 t
s@0 =A(= [T PR s, [ PR (s g)as)

-(1- /0 |C(w)\du /0 o(s)Pds + A /O |o(s)[2ds + ATp|[%/c
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The idea of such a construction for h(), ¢) comes from expressions for periodic

1 in Case 1-3 di d in Section 1. Many good theorems are obtained
using such approach (see [10],(32],[36]). Systems discussed there are in general
forms including abstract, partial, and neutral functional differential equations.
The technique of adding growth conditions on F to obtain periodic solutions
was also developed. We refer the reader to the work of Hatvani and Krisztin
[18] and references contained therein.

Wu, Xia, and Zhang [32] summarize Granas’s theory to a useful principle
for topological transversality.

Theorem 3.2. ([32]) Let Y be a convex subset of a Banach space, X C Y’
be closed, p € X\0X,and N : X — Y be a compact map. If H : [0,1]xX = Y
is compact such that H(0,¢) = p and H(1,¢) = N(¢) for all ¢ € X, then
either
(i) N has a fixed point in X \ 9X, or

(ii) there exists € X and A € (0, 1] such that z = H(\, ).

Burton [4] used a direct fixed point technique and extended the method
of homotopy construction in Theorem 3.1 to that of nonlinear systems. He
applied a fixed point theorem of Schaefer [30] which is a variant of the nonlinear
alternative of Leray and Schauder degree, but much easier to use.

Theorem 3.3. ([30]) Let V be a normed space , H a continuous mapping
of V to V which is compact on each bounded subset of V. Then either

(i) the equation z = AHz has a solution for A = 1, or

(i) the set of all such solutions z, for 0 < A < 1, is unbounded.

Using the direct fixed point mapping, Burton and Zhang [12] are able
to link the homotopy to the right-hand side of the equations directly and
avoid many difficulties encountered previously. The technique is a significant
improvement of that for (3.1). Let us exam the problem we might face when
writing the differential equation as an integral equation which then defines a
mapping, the homotopy; if the mapping has a fixed point, then it is a solution
of the differential equation. We write (2.5) as an integral equation

t
z(t) = zo +/ F(s,zy)ds.
to
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This is used to define a mapping P by
t
(PO =20+ [ Fls,8.)ds
to

on the space (Pr, || - ||). There are several things go wrong.
(a) We do not know how =z is to be chosen.
(b) P will not map Pp into Pr unless F(t, $;) has a mean value zero.

(c) If any fixed point theorem, say Schauder’s, is to be used, then P must
satisfy P: K — K for a closed, convex set K in Pp. In general, P does
not satisfy this condition.

To overcome such difficulties, we consider a different mapping. Instead of
writing the differential equation as an integral equation, write the solution as

an integral equation

t
®(t) =z +/' @(s)ds.

Then define a mapping P by

(Pe)(t) = F(t, 1)
for ¢ € Pr. In order for P to map Pr into Pp, we must carefully choose z
so that F(¢,®;) has a mean value zero. We state a simple version of Burton-
Zhang’s theorem [12].

Theorem 3.4. ([12]) Suppose the following conditions hold:
(i) for each ¢ € P, there is a constant kg € R such that fOT F(t, ®;)dt =0,
where ®(t) = kg + fnl ¢(s)ds for each t € R,

(ii) E: P) — Pr defined by E(¢)(t) = ®(t) in (i) is continuous and for each
a > 0, there exists a constant L, > 0 such that |ky| < L, whenever

il < e

(iii) F : R x Pr — R" is continuous and maps bounded sets into bounded
sets,

(iv) there exists a constant B > 0 such that ||z|| < B whenever z = z(t) is a
T- periodic solution of

Z'(t) = AF(t,z0), A€ (0,1).

(T
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Then Eq.(2.5) has a T-periodic solution.

Proof. Define the homotopy as Hy(#)(t) = AF(t,®:). It follows from
(i)-(iii) that Hx(¢) € P2 and is compact. By (iii), there exists a constant
L = L(B) such that |F(t,®;)| < L whenever ||®|| < B. If ¢ is a fixed point of
Hy, then ¢(t) = ®'(t) = AF(t,®:). By (iv), we have ||®|| < B. This implies
ll¢|l < L. Applying Schaefer’s theorem, we conclude H) has a fixed point ¢
for A = 1. Thus, ® is a T-periodic solution of (2.5). The proof is complete.

Example 3.2. ([12]) Consider the two dimensional nonlinear system
t
()= dg(e() + [ Clt—o)ala()ds + (0 (3)
-

WEGTGA = diag(1, -1), C(t) = (ci(t))2x2, 9() = (a},23), @ = (21,22)7, p €
. If

00
/0 (Jexg ()] + le2j(s)|ds)ds < 1, j =1,2 (3.6)
then Eq.(3.5) has a T-periodic solution.

The key to apply Theorem 3.4 is to verify condition (i). Let F(¢, z;) denote
the right-hand of (8.5). For ¢ = (¢1,¢2)T € P-?‘ and k € R, we define

il t
Q(k) = /0 (® +/0 ¢1(s)ds)’dt.
Since the quadratic function
T
Q'(k) = 3/0 (k+ /: 1(s)ds)’dt > 0

with limg 100 @(k) = %00, there exists a unique k14 € R such that Q(k1g) =
0. Similarly, there exists kz4 € R such that

7 ¢
/ (Ka2g + / ¢2(s)ds)3dt =0.
0 0

If ky = (k1) k2g)T and B(t) = (Ql(t),%(t))T = ky + [ §(s)ds for each
¢ € PY, then

T T
/ ) =) e / F(t, 8,)dt = 0.
0 0
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Thus, (i) is satisfied.

Finally, for the conjecture that a dissipative-repulsive system admits a pe-
riodic solution, Kupper, Li, and Zhang [24] give a positive answer for ordinary
and finite delay equations. Consider a system of ordinary differential equations

</(t) = £(¢,2(8)) 37)

where f : R x R® — R" is continuous and locally Lipschitz in & with f(¢ +
T,z) = f(t,) for all t and some T > 0. Denote by z(t,zo) = z(t,0,z¢) the
unique solution of (3.7) with (0, zg) = zo. If m and [ are nonnegative integers
with m + [ = n, we denote z = (y,2), y € R™, z € R".

Definition 3.1. Eq.(3.7) is said to be dissipative-repulsive if there exist
possitive constants B, ag, by, and a continuous T-periodic function g : R — R
with |g(t)] < bp for all t € R such that for any a > ag, b > by, There are
by = by(a,b) > by and K = K(a,b) > 0 such that the following conditions
hold for all |yo| < a:

(i) |y(t,z0)| < B, whenever ¢t > T and |zo| < by;

(ii) |2(t,z0) — g(t)| > 0, whenever 0 < ¢ < T and b; < |zp| < by + b;
|2(¢,20)| > b1, whenever ¢t > T and b; < |2zg] < by + b.

Theorem 3.5. ([24]) If system (3.7) is dissipative-repulsive, then it admits
a T-periodic solution.

The proof is based on a modular degree theorem of Zabreiko and Kras-
nosel’skii [35] by constructing two homotopies and using the dissipative-repulsiveness
property of the system. It is a direct generalization of the corresponding result
for dissipative systems discussed in Section 2 (if m = n). A similar result for
functional differential equations with finite delay is also obtained in [24]. Much
remains to be done concerning the existence of periodic solutions to infinite
delay systems of dissipative-repulsive type.
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