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Introduction 

1'he e.xisle.nce of periodic solutions has been an important subject in tbe qual­
itotive theory of differential equations and dynamical systems in the last half 
century, a.nd it has also been a.n important area oí applications in nonlinear 
a.nalysis a.nd, in particular, in asymptotic fixed point and topological degree 
theories. 

Dis.sipative-repulsive systems frequently arise in modeling real world prob­
lcms inclucling: control systems, electrodynamics, mixing Jiquids1 neutron trans­
portation1 and population modela. Dissipativeness means that the system en­
ergy dissipates (because of friction 1 breaking, etc), and hence a li trajectories or 
orbits e\-e.ntually enter and remain in a bounded set of the phase space. Repul­
siveness1 bov.-ever 1 is in sorne sense the opposite of this property: trajectories 
cvenlually go a.way from a given set of the phase space. A d issipative-repulsive 
syste:m has a cornbination of the above properties: dissipative with respect to 
sorne state variables and repulsive with respect to the remaining set of state 
variaMes. lt has been long conjectured in the international community of re­
scarchers in the area that such a dissipative-repulsive system <loes admit a 
periodic solution. 
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Tbe present exposition is to discuss the methods developed to solve t his 
problem and the progresa having been made. It is on ly introductory in nature 
and is not intended in any way to be a review of the area. 

Tbe problem has its roots in the t beory of ord inary differential equations. 
Consider 1 for example1 the linear system 

x' = A(t)x + / (t) (1.1 ) 

where A(t ) is an n x n matrix and p: R -+ R'1, R = (-oo, +oo). Both A and 
p are continuous and T-periodic on R for sorne T > O. 1f x = O is the on ly 
solution of 

x' = A (t)x (1.2) 

which is bounded on R, t hen (1.1 ) has a T-per iodic solution. T he result can be 
broken into the fo llowing t hree illustrati '\!e cases. First, Jet us recall t he F' loquet 
theory (see Burlan [3, p.52)) which states t hat t here exists a nonsingula r, 7'· 
periodic, a nd continuous n x n matrix P(t ) and an n x n constant mat.rix J 
such t bat Z (t) = P( t)eJt being a fundamental matrix of (1.2) . 

Case l. If ali character ist ic roots of J have negat ive real parts, t.hen the 
periodic solu t ion of (1.1 ) is 

x( t) = ¡~ P(t)eJ(t- •) P- 1(s )f(s)ds . 

Case 2. If ali characterist ic root.s oí J have posit ive real parts, t hen the 
period ic solut ion oí (1.1 ) is 

l +oo 
x(t) = - , P( t)eJ(i-.) p - ' (s )f (s )ds. 

C ase 3 . lf sorne roots of J have posit.i ve and so rne root.s of J have negati ve 
real parts, t. hen a periodic solut. ion is of a fo rm analogous t.o a combinat.ion of 
Case 1 and Case 2. See Burt.on [3, p.68J fo r d iscussion on t.hese cases when A 
is a const.ant. matrix . 

This is t. he simples t. example oí a diss ipath•e- repulsi ve system. However, 
proving that a non linear d iss ipati ve- r pulsive system has t he same per iodicity 
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propc.rly prescnts a significant challenge to the investigators since neit her the 
linear property nor the technique developed for (1.1) can be applied. In t he 
nexl t1,1ro sections, we will discuss how to extend Case 1-3 to fully nonlinear 
ayalems. 

2 Dissipative Systems 

In 1944 1 orman Levinson [25J initiated t he study of a second order system of 
ordinary diffc.rcntia l equa tions 

x' = / (t,x) (2.1) 

with thc. property t hat solutions a li ente.red a ball and remained there for a li 
large t uch a system is called dissipative¡ tbat is1 there exists a. constant 
r > O such Lha t 

lim sup lx(t, to , •o)I < r 
t-++co 

where .r = z(t, to, :z:o) is any solut ion of (2. l ) with :z:(to, to, :z:o) = xo. He posed 
a problem which grew into t he fo llowing notion. Let f : R x R" 4 R" be 
contmuous a.nd locally Lipschitz in x. Denote by 1-1 the Euclidean nonn on 
Ir . 1'hroughout the paper 1 if a function is wrilten without its argument , we 
mean the a.rgument is t. 

Dcllnition 2.1. Solutions of (2.1) are uniformly bounded (UB) if for each 
81 > O there exists 82 > O such that 

!lo E R, l• ol S 8 1, t <'. to] imply that lx(t, to.xo)I < 8,. 

De.f\nilion 2 .2. Solut ions of (2. 1) are uniformJy ultimately bounded for 
bound 8 (UUB) if for each 8, > O t here exists K > O such t ha t 

lto E R, l•ol S 8,, t <'. to+ K ] imp\y that lx(t, to, zo)] < 8 . 

In search for periodic solutions of (2. l ), to is almost a lways taken as zero 
and one a.sks for UUB a t l.o = O. UB and UUB are different concepts. However 
U 8 does 1mply B if f (t , x) in (2. l ) is periodic in t (see Yoshizawa 133, p .641). 
ll i.s ~·ious tha1. UUB is a conccpt of uniform dissipativeness. 

1Av1nson's problem can be formulated in the following way. Por history 
and dt1.ails, 'ol.1! refer the rcader to Burton (3, p.142)1 Burton and Zhang ¡u ¡. 
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Problem l. Suppose that there exists a constant T > O such that 

J(t+T,x)=J(t,x) for (t,x)ERxR". 

Prove tbat if solutions of {2.1) are UB and VUB atto= O, t hen (2.1) has a 
T-period ic solution. 

This problem was solved for n = 2 independently by Cartwright j 13J and 
Massera 129] in 1950. But it had to wait until 1959 and the asymptotic fixed 
point t heorem of Browder [2] for a proof for general n . Sucb a proof can be 
found in Yoshizawa [34, p.158]. 

Attention then turned to the finite delay system 

x'(t) = f(t ,xt) (2.2) 

where Xt(s) = x(t+s) for -h ::; 8 :-::; o, h > o is a constant , and J : R x e-+ Rn 
is continuous with f(T +t, </J) = f(t , ,P) and is locally Lipschitz in </J. (C, 11 · lll is 
the Banach space of continuous functions 4> : !-h, OJ -+ Rn with the supremum 
norm. For each (to, <P) E R x C, there exists a unique solution x = x(t, ta, 4>) 
of (2.2) with x 1, = </J (see Hale [16, p.42]). Delinitions of UB and UUB are 
extended to (2.2) by merely replacing xo by ,P and [xo[ by 11</Jll . Note that in 
t hese new definitions 1 It is stiU the R" norm on solutions x( l, to , <P). While the 
norm makes no difference here, it is crucial for infinite delay systems. 

Problem 2. Show that problem 1 is true for (2.2). 

Hale and Lepe [l 7] used the asymptotic fixed point theorem of Horn [20] 
to solve Problem 2. 

Fixed Point Theorem ([20]). Let So e S 1 e S2 be convex subsets of a 
Banach space X with So and S2 compact and S1 open relat ive to S2. Let 
S2 --+ X be a continuous function such that for sorne integer m > 01 

(a) pis, cs,, I S j S m - 1 

(b) P'S1 e So, m S j S 2m - l. 

Then P has a fi:x ed point in So. 

As mentioned earlier 1 UUB does not in general imply UB. In fact, Kato 
{23) showed that even when (2.2) is autonomous and completely continuous, 
then UUB does not imply UB. lnvestigating lhe same problem for nn infinite 
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delny syalem, Burton and Zhang 19) in 1990 salve<! Problem 2 using UUB 
&Jone¡ lhat. is wiLhout asking UB. Makay l26J contioued and showed that ií 
8ystem (2.2} is dissipe.tive, then it has a T-periodjc solution without asking 

UUB. 

\Ve shall sketch the proof oí the following theore.m whose general version 
cnu be íound in 19] to illustrate the use of Horn's theore.m without UB. 

Theorem 2.1.(19J) Suppose lhat / (t, .¡,) takes bounde<I set s of R X e into 
bounde<I sets of R". lf solutions of (2.2) are UUB al !<) = O, then (2.2) has a 
'J'-periodic solution. 

Proof. Since so\utions of (2.2) are UUB far a bound 8 and /(t, 4') takes 
bounded sets into bounded sets, there exist. N > O a.nd La > O s uch that 

14' E e, 11 .Pll $ 28, t ~ N I imply Jx(t, o, .P)J $ 8 

and l/ (t,,P)I $ Lo far al\ t ~ O whenever 114'11 $ 28. ow define 

So= {,PE G: 11</Jll $ 28, l</J(u) - </J(u)I $ Lo Ju - uJ, u, u E 1- h, OJ) 

nnd for each t ~ O define P,: G --> G by P1(9) = x(t + B,O, ,P) far O E 1- h,OJ. 
Then P1 is continuous and So is compact. T hus 1 there ex ists 8 1 > 8 such 
thlU 

.¡,E So implies Jx(t , O, ,P)J $ 81 (2.3) 

for O$ t $ N. Since lx(t,O, </J)I $ 8 far t ~ N , we bave lx(t,O,,P)I $ 81 far 
a\11 ~O. 

'en \et 8 2 = 8 + 81 and find L > Lo such t hat J/ (t,,P)I $ L far al\ t ~ O 
nnd l\IU $ 8 2. Define 

S, = {4' E G: 114'11 $ 8,, l</J(u) - ,P(u)I $ LJu - uJ , u, u E 1- h, OJ}. 

By UB, there exists J( > O such that 

14' E C, 114'11 $ 8 ,, t ~ KJ imply Jx(t,O,,P)I $ 8. 

ince PI< is continuous on the compact set S2, it is uniformly continuous; thus, 
there exisLs ó > O (ó < 8) such t hat 
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Iu view of (2.3) and (2.4), [<Po E So, </>ES,, li</>- <Poli< óJ imply 

sup Jx(t,O, </>)I S sup lx(t,O,</>o)I + sup lx( t,O,</>)- x( t,O,</>o)I S B, + 8 /2 < B, 
0$t:SK O:S! :S K 0$1'.S K 

Define 

Q, = U { </> E C ' 11</> - </>oli <ó} 
4>oESo 

and S1 = Q1 n S2. Then So e S1 e S2 are ali convex subsets of C with So 
and S2 compact and S1 open relative to S2- Define P : S2 -t C by 

or 
P(<,?)(8) =x(T+O, O,,P) for 8E [-h,OJ. 

Then Pj(S¡) E S2 for a.ll j = 11 21 Choose m > O such that mT > K + T . 
Then Pi(S1) e So for j 2'. m. By Horn 's theorem, P(</>) has a fixed poinl 
.¡,· E So; lhat is P(<P") = xr(-,0,,P") = ¡p·. Si nce x( t ,O,,P") a nd x(t+T,O,</>" ) 
are both solut ions of (2.2) with the same initial function , by uniqueness 1 they 
are equal. Thus1 x = x(t, O, q;•) is a T-periodic solution of (2.2) 1 and the proof 
is complete. 

We turn now to the infinite delay system 

x'(t) = F(t,x 1) (2.5) 

where xi(s) = x(t + s) for -oo < s :S O and F : R x X -+ R11 with F(t + 
T, </>) = F(t, </>). I-Iere X is the Banach space oí bounded continuous function~ 

<P ' R- --> R" , R- = (- oo, OJ, having the supremum norm li li· Define UB 
a nd UUB for (2.5) justas for (2.1) replacing xo by <P and lxol by 11</>ll· 

Problem 3. Prove thaL if solutions of (2.5) are UU B, then there is a 
T-per iod ic solution. 

When we a i.tempt to follow the const.ruction oí S, a nd P for (2.5), severa! 
t hings go wrong. 

(a) So and S2 are not compact, 

(b) PJ( 1) is never contnincd in o becnuse of lhe "tail 11 is never Lranslated 
out of t he init ial fun cL ion space 1 
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(e) P, is not necessarily continuous in (X, 11 · ll), where P,(O) = x(t + 0,0,4>) 
for 8e n - . 
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peaking for an infinite delay system, Seifert 131) showed thnt a necessary 
condition for UB is t hat F(t, tjJ) has sorne kind of a fading memory. Such an 
idcn suggested to Ari110 1 Burton, and Haddock !lJ that it may be feasible to 
use initaal fonciions ti> having thc property that lq,(_,)I -+ + ns .'J -+ -oo. Let 
G denote the set oí continuous and non-increasing funcLions g : (-oo, OJ 
ji,+ }, g(O) = 1, g(r) -+ +oo as r -+ - . Then for eJICh g E G, (X 9 , 1·19) 
1s the Banach space of cont inuous functions tjJ: (- 1 0]-+ R" for which 

14>1, = sup 14>(>)1/g(•) 
- <1SO 

ex1sts In Burton 13, p.282], it is shown how g can always be chosen from F 
wh n (2.5) is an integrodifferent ial eq uation. To this end, we define g-UB a nd 
g· UB by replacing xo by 4> and lxol by 14>19 and modify ,. T hose basic sets 
ar similar to 

= {4> e X,: 14>(•)1$B/9W,14>(u)- 4>(v)I $ Llu - vj). 

Then is oompact in (X9 , l ·19 ) a nd P'(S) C S for large J· These construct ions 
ollo~-.d Arine>-Burton-1-laddock [!J to show that if solutions of (2.5) are g-

B and g-U B, Lhen (2.5) has a T-periodic solution. The Problcm 3 is not 
solved completely here since g-UB, g-UUB 1 and the continuity of solutions 
witb respec:L t.o the init ial functions </>E X9 are much stronger t ha n t hose in 
lcrms of (X , ll · 11). 

The key to t.he problem of continuity of x(t, 0, 9) with respcct to tjJ a nd 
of the compact.ness of S whcn h = + seems to lie 111 the aforemcntioned 
counltr~x mple of eifert [31 J. A fading rncmory is required fo r UUB. T he 
fadmg mcmory, together wit h continuity of F(t, 9) in thc supremum norm and 
tht rtquirement that F takes bounded sets into boundcd sets will yicld thc 
conhouuy oí z(t, O, tjJ) in tjJ wit h respect Lo a norm l · 11 and the compactness 
oí m ' X1 , 11). Burton and Feng j J achieved this goal. 

All of the work discussed here is based on translMion of map Pt and is 
h1ghly dependent. on t he un iquen ss of solutions with respect to t he initial 
funt:ttons nlike ord inary d ifferential equations, uniqueness in (2.5) docs 
"º' imply the continuity oí x(t, O, </>) in ti> (see Burlon and Owiggins {5] and 
K m1nogo j22J). 
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Deflnition 2.3. Let n e X. We say thaL P1 is continuous in (O, G) if 
tbere is a g E G and if fo r each {4> En, J > O, µ > O} there is a ó > O such 
t bat {\11E 11, 1<1>-.P I, < ó) imply IP,(q'¡) - P¡(\11)1, < µ . 

D efinition 2.4. Equat ion (2.5) has a weakly fading memory in n e X if 
fo r each fJ > O, D > O, µ > O] there exisls K > O s uch that. 

{q'¡; E 11, ll<f>•ll $ D, i = 1, 2, <f> 1(•) = <h(•) on 1-K, O), O$ L $ J) 

imply that ¡F(t, <!>1) - F(l, <!>2)1 < µ . 

Burton and Zhang [9] dropped the UB requ irement a nd sol ved P roblem 3 in 
the sense that F( t , <P) has a fading memory. Note that Burton· Feng1s theorem 
[BJ reduces condition (iii) below to condi tio ns on the sup remum norm. 

Theor em 2.2. (19)) Suppose that F(L + T , 4>) = F(L, q'¡) for sorne T > O 
and ali (L, 4>) E R x X and for eacb q'¡ E X there is a unique so lution x(L, O, ql) 
of (2.5) on ¡o, +oo) . Suppose a lso t hat 

(i) sol utions of (2.5) a re UUB in t he sup remum norm 1 

(ii) fa r each M > O there exists L > O such thal 

[<f> E X, 11<1>11 $ M , L ~ O[ imply ¡F(t,4>)1 $ L , 

(i ii) fo r eacb bounded (in t he supremum norm) set n E X, Pt is conti nuous 
in (11,G). 

Then (2.5) has a 1'-period ic solut ion. 

A 'ra.riant of T heorcrn 2.2 was pi-ov d by Burton , Dwiggins, and F'eng !6J 
wit.h the add itional assum pt.ion of UB. When (2.5) is linear in rJ> t hen mu h 
less is requi rcd , as mny be scen in the work of Hino and Murakami j19] and 
Makay [27J. ll is a lso shown in Makay [28) that (2.5) has a T-periodic solu tio n 
1í F(t,4J) is cont inuous in R x X9 nnd locall y Lipschit.z in rJ> in t.he g- norm, 
and solu tions of (2.5) are diss ipative with respccL to a com pact set in X9 . By 
introducing a spacc C11 , H uang and Wang ¡2 1 J showed t.hat. if solut. ions of (2.5) 
are h- 8 and h-UU B, then (2.5) hn.s a T-p riodic solut.ion. 

3 Dis ipative-Repu ls ive Systems 

All oí Lhe work cliscussed in ection 2 is high ly dependenl on t. h diss ipat iv . ncss 
of thc system. Wh n such a prop rt.y is absent , h v r, the problcm showing 
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the e:xisttnce oí a periodic solulion is extremely difficult a nd has been a cent ral 
subject oí modern rescarch ín t he a rca. 

h iJI ob"ious that t he mcthod used in the previous section will not work 
for system.s with repulsive components. To overcome such a difficul ty, inves­
ugators turned to degree-theoret ic method which often relies on an a priori 
bound on ali possib le periodic solutions to a íamily of different ia l equations 
n.ssoc.iated with the original one, but it <loes not require ali solutions to be 
bounded Thereíore, it is possible to app ly the method to non-dissipative sys­
tcms for which llorn 's t heorem is not applicnble. h is now ven clcar thaL 
dis!UPftlÍ\'eness is merely a su íl1cient condition for tbe existence of a per iodic 
10lullon 

The degree theory many investigntors have used is that of Granas [14 1 J5] 
who caJl.1 1t the method oí conti nuntion of Poincaré and later refers to it as a 
topologtcaJ transversnlity method. The approach of Crana.s explicitly avo ids 
the calculat1on of Leray- chnuder degrces and thus allows invcst igators to 
study the periodicity problem in a much simpler way. 

Cons1der system (2.5) and a companion to it 

x'(t) = F, (t, x 1) (2.5,) 

wh<rt O 5 .\ 5 1, F,(t + T,</>) = F,(t,</>) , and F,(t,</>) = F(t,</>) if >. = l. 
Wt coiu1ruc1 a homotopy h(>. , </>) or h, (<J>) on ¡o, 1J x Pr lo Flr, where Pr is 
the BanACh space of ont inuous T-periodic functions tP: R--¡. R11 • The t heory 
or Granas IS applied in the fo\lowing way: 

(R) Ao priori bound 8 is found for a li possible T-periodic so\utions oí 
2 51) 

(b) A l X C {</> E Pr : 11<1>11 5 B) is constructed with the property that 
h,,, X -+ Pr is compact and each fixed poinL of h,,, satisfics (2.5,,,). This 
tmpbes lhal ali fixed poinls oí h,,, are bounded by 8. 

(e) h~ hM a fixed point </Jo E X \ 8X. 

Ttw-n Granas' theorcm yiclds thal h 1 has a fixed poinl t/>1 in X. Thus 1 tf; 1 is 
" T-penodJC 90lu tion of (2.5). The idea is to deform the fixed poi nt xo of ho 
lO a fixed poml Z¡ OÍ/¡ 1 through h:A, SillCC h()., tf;} j5 fixed point free 0 11 fJ)(. Jt 
tunu out tha.l const ructi ng such a homotopy is a very difficu lt ta.sk as can be 
.... b<io.. 
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Burlon, Eloe, and lslam [7] studied the equation 

x'(t) = Dx( t) + l~ C(t - •)x(•)ds + p(t ) (3. l ) 

with a view of extending Case 3 menLioned in Section l. Here e is an n X n 
matri.x of continuous functions which are in L1{0, +oo), D is an n x n constant 
matri."< , p : R-> Rn is continuous and T- periodic. 

Let (P~, 11 · 11) denote the subspace of Pr with 4> E P~ if 4> E Pr and if the 
mean value of 4' is zero: 

m(4>) = (1 /T) J.T 4>(s)ds =O. 

To each 4' E Pr we associate the function ~E P!J. defined by 

~(t) = 4>( t ) - (1/T) J.T 4>(s)ds (3.2) 

bavi ng the mean value zero and the consequential property that J~ ~( s)ds E 

Pr 

Consider the family of equations 

x'(t) = >.[Dx(t) + l~ C(t - s)x(s)ds + p(tl] (3. l;) 

where O $; A :S l. 

Theorem 3.1. ([7]) Suppose that p E P!J. and there exists a constant 
81 > O such that !lx;ll < B, fo r every solu tion x; E Pr of (3. 1;) for every 
), E (O, l]. T hen (3. 1) has a solu t ion in P!J.. 

The proof o í T heorem 3.1 relies on the construction of the íollowing ho­
motopy. Defi ne h; , IO, 1J x Pr -+ Pr by 

for each ), E IO, 1J and </> E P.,., whcre ~ is defined in (3.2). 
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ll is casy to check thal h, is compact, h,(.p) E flr, 

ond, conse<1uently, if </JE p.,. is o fixed point of h,. then <P'(t) = ~'(t) so that ~ 
is a solution oí (3.1>} and, by hypothesis, 11~11 < 8 1• This imp\ies there exists 
8 >O such that 11</Jll < B. Since Lhe fi xed point of h,¡ is O E X\ 8X, X = 
{~ E Pr : 11.Pll S B), Granas' t heorem implies that h1 has a fixed point </J1 
which is n T -pe.riodic solut.ion of (3. 1 ) . 

ll 15 noticed in [7] that ií p E Pr, ií p ~ f1., and D + f0"' C(u)du is 
nonsmgular, Lh na Lranslation y ::::; x +d, d is constant,, can be defined so t.hat. 
(3 1) becomes an equat.ion wit.h a forcing funcl.ion having mean value zero. 

Example 3.1. (\7]) Consider t.he t.wo dimensional syst.em 

(3.3) 

wíth D = diag( l,-1), C is continuous with - 1 + J0+"' 1C(u)ldu < O, and 
p e f'!/.. Then (3.3) has a 1'-periodic solution for >. = 1. 

Using a Liapunov funct.ion insLead of a functional here, we obt.ain an 
n prlor-i bound for ali poi;isible periodic so\utions and eliminat.c t.he condi­

llon J;' f. IC(u)ldudt < oo used in [7]. Define V(x) = xT Ex, where 
< (z1oz2)Tand E = diag(- 1, 1) so that IEI = l. Let x = x(t) be any 
T-period1c solution oí (3.3). T iten 

l"'(<(t)) S - 2>.lxl' + 2>.lxl l IC(t - •)llz(>)ld• + 2>.lxllp(t)I 

S - 2>.lxl' +>. J. IC(u)idu lxl2 + >. l JC(t - s)llx(s)l2ds + 2>.lxl llPll 
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Let ex= 1 - J000 IC(u)ldu and integrate from O to T to obtain 

V(T) - V(O) S -2.\ J.T lx(s)l2ds + .\ J.00 IC(u)ldu J.T lx(s)l2ds 

+ .\ J.00 IC(u)ldu J.T lx(t - u)l 2dtdu +.\ex J.T lx( s) l'ds + >.TllPll2 /ex 

- 2>.( 1 - J.00 1c(u)ldu) J.Tlx(s)l2ds +.\ex J.T lx(s)l2ds + .\Tllpll2 /ex 

-ex.\ J.T lx(s)l2ds + .\Tllpll 2 /ex. 

Since x(t) is T-periodic , we have V(T) - V(O) = O. This in turn yields 

{T {T ]1/2 
Jo lx(s)lds S T 112 ¡10 lx(s)l2ds S TllPll/<> 

for .\ E (O, !]. An integration ofthe equation yields ¡;{ lx'(s)lds S -y. l t follows 
from Sobolev's inequality, there exists a constant B 1 > O such that Uxll S B1. 
By Theorem 3. 1, equation (3.3) has a T-periodic solution for ,\ = l. 

If the equation has a linear part 1 for example, 

x'(t) = Dx(t) + F(t, x1) (3 .4) 

where D is an n x n matrix, then a companion system is 

x'( t ) = Dx(t) + .\F(t,x,) 

where A E [O, l j. If ali characteristic roots of D have negative real parts, then 
a homotopy for (3.4;) may be defined as 

for <PE Fr. Now suppose that D = diag(D1 , D2) where D1 is a k x k matrix 
whose eigenvalues have positive real parts and D2 is an (n - k) x (n - k) 
matrix whose eigenvalues have negative real parts, O :::; k $ n is an integer. If 
F(t , .p,) = (F1(t,,Pt),F2( t,.p,)f , then the homotopy is 
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The idea of such a construction for h{A, </>) comes from expressions far periodic 
solutions in Case 1-3 discussed in Section l. Many good theorems are obtained 
using such approach (see [10],[32),[36]). Systems discussed there are in general 
forms including abstract1 partial, and neutral functional differential equations. 
The technique of adding growth conditions on F to obtain periodic solutions 
was also developed. We refer the reader to the work of Hatvani and Krisztin 
[l8J and references contained therein. 

Wu1 Xia, and Zhang [32] summarize Granas1s theory to a useful principie 
for topological transversality. 

Theorem 3.2. ([32]) Let Y be a convex subset of a Banach space, X e Y 
beclosed, p E X\iJX, and N: X-+ Y be acompact map. If H: [O, l]xX-+ Y 
is compact such that H(O,,P) = p and H (I,,P) = N(,P) for ali <PE X, then 
either 

(i) N has a fixed point in X\ iJX , or 

(ii) there exists x E iJX and >.E (O, l ] such that x = H(>.,x). 

Burton [4] used a direct fixed point technique and extended the method 
of homotopy construction in Theorem 3.1 to that of nonlinear systems. He 
applied a Bxed point theorem of Schaefer [30) which is a variant of the non linear 
a\ternative of Leray and Schauder degree, but much easier to use. 

Tbeorem 3.3. ([30]) Let V be a normed space , H a continuous mapping 
of V to V which is compact on each bounded subset of V. Then either 

(i} the equation x:;; >..Hx has a solution far)..:;; 11 or 

(ii) the set of all such solutions x 1 for O<)..< 1, is unbounded. 

Using the direct fixed point mapping, Burton and Zhang [12] are able 
to link the homotopy to the right-hand side of t he equations directly and 
avoid many difficulties encountered previously. The technique is a significant 
improvement of that for (3.1). Let us exam the problem we might face when 
writing the differential equation as an integral equation which then defines a 
mapping, the homotopy; if the mapping has a fixed point, then it is a solution 
of the differential equation. We write (2.5) as an integral equation 

x(t) = xo + J' F(s,x,)ds. ,, 
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This is used to define a mapping P by 

(P,P)(t) = xo + f' F(s, .p,)ds 
},, 

on the space (Pr, 11 · lf). There are severa! things go wrong. 

(a) We do not know how xo is to be chosen. 

(b) P will not map Pr into Pr unless F(t , <Pt) has a mean value zero. 

(e) If any fixed point theorem, say Schauder's, is to be used, then P must 
satisfy P: K --t K for a closed, convex set K in Fr. In general , P <loes 
not satisfy this condition. 

To overcome such difficulties, we consider a different mapping. Instead of 
writing the differential equation as an integral equation, write the solut ion as 
a n integral equation 

~(t) = xo +J.' ,P(s)ds. 
to 

Then define a mapping P by 

(P,P)(t) = F(t , ~,) 

for <P E Pr. In order for P to map Pr into Pr, we must carefully choose xo 
so that F(t , 4't) has a mean value zero. We state a simple version of Burton­
Zhang's theorem 112). 

Theorem 3.4. (112)) Suppose the following conditions hold' 

(i) for each .p E P~, there is a constant k0 E R such that J[ F(t, ~,)dt = O, 

where ~(t) = k0 + J; .p(s)ds for each t E R , 

(ii ) E ' P~ -> Pr defined by E(,P)(t) = ~(t) in (i) is continuous and for each 
o > O, there exists a constant L0 > O such that lkiti! ~ L0 whenever 

11.Pll ~ " · 
(iii ) F : R x Pr ~ Rn is continuous and maps bounded sets into bounded 

sets, 

(iv) t here exists a constant B > O such that Jlx l/ < B whenever x = x (t) is a 
T· periodic solution of 

x'(t) = >.F(t , x 1), >. E (O, ! ). 
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Then Eq.(2.5) has a T-peri0o!ic s0luti0n. 

Proof. Define the hom0t0py as H;(,P)(t) = >,F(t, '!>,). lt follows from 
(i)-(iii) that H>.(<P) E P!j. aind is c0mpact. By {iii) 1 there exists a ce:mstant 
L = L(B) such that IF(t, 'l>t ~·I < L whenever 11'1>11 :S B. If <Pis a fixecl point 0f 
fl,, then ,P(t) = 'l>'(t) = >,F(t, '1>1). By (iv), we have 11'1>11 < B. This implies 
ll<Pll < L. Applying Schaefer's theorem, we condude H; has a fixed point <P 

for ,\ == L Thus, ~ is a T-¡1leri0dic solution of (2.5). The pro0f is c0mplete. 

Example 3.2. ([12]) C0nsider the two dimensional nonlinear system 

x'(t) = Ag(x(t)) + loo C(t - s)g(x(s))ds + p(t) (3.5) 

where A= diag(l, -1), C(t) = (<;;;(t)),x,, g(x) = (x¡, xj)T, x = (x1, x2f, p E 
P~. If 

fu"' (lc1;(s)I + lc2;(s)lds)ds < 1, j = 1, 2 

then Eq.(3.5) has a T-peri0clk soluti0n. 

(3.6) 

The key to apply 'Dhe0>ern 3.4 is to verify condition (i). Let F(t, x ,) denote 
tibe right-hand 0f (3.5). For <P = ~,P1 , <P2)T E P~ and k E R, we clefi·ne 

Q(k) = fuT (k + l <P1(s)ds)3dt. 

Since tbe quadratic f.u.Roti0R 

Q'(k) = 3 fuT (k + l <P1 (s)ds)2dt ~ © 

with lim,~±oo Q(k) = ±oo, th<Fe exists a unique k1; E R such thM Q(k1; ) = 
O. Similarly, there exists k2rJi E R such that 

fuT (k2; + l <P2(s)ds)3dt =O. 

If k; = (k1;,k2;)i" ~ncl '!>(t) = (i1>1(t),'1>2(t)f = k; + Ji<P(s)ds for each 

<PE f1 , then 

loo- '1>3 (s)ds = © ancl fuT F (t , 'l>,)dt = Q. 
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T hus1 (i) is sat isfied. 

Finally, for the conjecture that a dissipative-repulsive system admits a pe­
riodic solution, Kupper, Li , and Zhang {24] give a positive answer for ordinary 
and finite delay equations. Consider a system of ordinary differential equations 

x'(t) = f(t,x(t)) (3.7) 

where f : R x R" --+ R" is continuous and locally Lipschitz in x with f (t + 
T,x) = f (t,x) for ali t and sorne T > O. Denote by x(t,xo) = x(t,O,x0 ) the 
unique solution of (3.7) with x(O, xo) = xo. If m and l are nonnegative integers 
with m+l = n, we denote x ::::: (y,z), y E Rm, z E R1• 

Definition 3.1. Eq.(3.7) is said to be dissipative-repulsive if there exist 
possitive constants B, ao 1 bo, anda continuous T-periodic function g: R--+ R1 

with lg( t)I < bo for ali t E R such that for any a 2: ao, b 2: bo , There are 
b1 = b1(a , b) 2: bo and K = K (a, b) > O such that the following conditions 
hold for ali IYol :S a: 

(i) ly(t,xo)I :S B, whenever t 2: T and lzol :S b, ; 

(i i) lz(t, xo) - g(t)I > O, whenever O :S t :S T and b, :S lzol :S b, + b; 
lz( t, xo )I > b1, whenever t 2: T and b1 :S lzol :S b1 + b. 

Theorem 3.5. ([24J) If system (3. 7) is dissipative-repulsive1 then it admits 
a T-periodic solution. 

The proof is based on a modular degree theorem of Zabreiko and Kras­
nosel'skii [35] by constructing two homotopies and using the dissipative-repulsiveness 
property of the system. It is a direct generalization of the corresponding result 
for dissipative systemS discussed in Section 2 (if m = n). A similar result for 
functional differential equations with finite delay is also obtained in [24]. Much 
remains to be done concerning the existence of periodic solu tions to infinite 
delay systems of dissipative-repulsive type. 
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