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Abstract

The subject of fractional calculus (that is, calculus of integrals and
derivatives of any arbitrary real or complex order) has gained importance
and popularity during the past three decades or so, due mainly to its demon-
strated applications in numerous seemingly diverse fields of science and engi-
neering. Indeed it provides several potentially useful tools for solving differ-
ential, integral, and integro-differential equations, and various other prob-
lems involving special functions of mathematical physics as well as their
extensions and generalizations in one and more variables. The main pur-
pose of this expository article is to provide a rather brief introduction to the
theory and applications of fractional calculus

1. Fractional Calculus: A Brief Historical Introduction

The concept of fractional calculus (that is, calculus of integrals and deriva-
tives of any arbitrary real or complex order) seems to have stemmed from a
question raised in the year 1695 by Marquis de I'Hopital (1661-1704) to Gottfried
Wilhelm Leibniz (1646-1716), which sought the meaning of Leibniz's (currently
popular) notation

oy

dzn
for the derivative of order n € No := {0,1,2, ...} when n = 3 (What if n = 17).
In his reply, dated 30 September 1695, Leibniz wrote to 'Hopital as follows:
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“.. This is an apparent paradow from which, one day, wuseful
consequences will be drawn. ..."

Subsequent mention of fractional derivatives was made, in some context or
the other, by (for example) Euler in 1730, Lagrange in 1772, Laplace in 1812,
Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in 1847, Greer in
1859, Holmgren in 1865, Griinwald in 1867, Letnikov in 1868, Laurent in 1884,
Nekrassov in 1888, Krug in 1890, and Weyl in 1917. In fact, in his 700-page
textbook, entitled “Traité du Calcul Différentiel et du Calcul Intégral” (Second
edition; Courcier, Paris, 1819), S.I. Lacroix devoted two pages (pp. 409-410) to
fractional calculus, showing eventually that

i 2o
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In addition, of course, to the theories of differential, integral, and integro-
differential equations, and special functions of mathematical physics as well as
their extensions and generalizations in one and more variables, some of the areas
of present-day applications of fractional calculus include

. Fluid Flow

. Rheology

. Dynamical Processes in Sel(-Similar and Porous Structures
. Diffusive Transport Akin to Diffusion

. Electrical Networks

. Probability and Statistics

. Control Theory of Dynamical Systems

8. Viscoelasticity

9. Blectrochemistry of Corrosion

10. Chemical Physics

N oo s w

and so on (see, for details, [4] and [17]).

The first work, devoted exclusively to the subject of fractional calculus, is the
book by Oldham and Spanier [16]. One of the most recent works on the subject
of fractional caleulus is the book by Podlubny [17]. The latest (but certainly not
the last) work on the subject of fractional calculus is the volume edited by Hilfer
{4}, Indeed, in the meantime, numerous other works (books, edited volumes,
and conference proceedings) have also appeared (see, e.g., [3], [6], 8], [9], [10],
(0nf [12), [13), [18], [19], [20], [21], and (27]). And today there exist at least
WO international journals which are devoted almost entirely to the subject of
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fractional calculus: (i) Journal of Fractional Calculus and (ii) Fractional Caleul
and Applied Analysis.

Here, in this expository article, we aim at presenting an introductory overview
of the theory of fractional calculus and of some of its applications.

2. The Riemann-Liouville and Weyl Operators of Frac-
tional Calculus

We begin by defining the linear integral operators 7 and K by

(z/)(z)::/; fd @1)

and

®n @ - [ Y rwa, 22)

respectively. Then it is easily seen by iteration (and mathematical induction)
that

1 “ n-1 [ >
(I"f) (x) = o ])'A (@—0)"' f(t)dt (n€N) (2.3)
and

1 i n-1 >
KN@ -t [ s 0d men, @)

where, and elsewhere in this presentation,

N:={1,2,3,...} = No \ {0}.

With a view to interpolating (n — 1)! between the positive integer values of n,
one can set

(n=1)!'=T(n) (2.5)

in terms of the familiar Gamma function. Thus, in general, Equations (2.3) and
(2.4) would lead eventually to the Riemann-Liouville operator R* and the Wey!
operator W* of fractional integral of order u (4 € C) , defined by (cf., e.g., Erdélyi
et al. (1, Chapter 13])
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®N@ =55 [ -0 Ok @W>0 (@)

and

W@ = is [ G-ap fOd Be>0, @)

T ()
respectively, it being assumed that the function f(t) is so constrained that the
integrals in (2.6) and (2.7) exist.

There are operators of fractional derivatives D, and D%;c of order p (i € C),
which correspond to the fractional integral operators R¥* and W¥, respectively,
and we have

(Pof) ) = o (R7=21) (2)

(m—1SR(p) <m; meN), (2.8)
and

(DL f) () = (W'" 1) (@)

(m—1SR(p) <m; meN), (2:9)

There also exist, in the considerably vast literature on fractional calculus,
numerous further extensions and generalizations of the operators R*, WH, DL,
and Dk, each of which we have chosen to introduce here for the sake of the
non-specialists in this subject.

3. Unified Investigations of Initial-Value Problems by
Using Fractional Calculus

Define, as usual, the Laplace transform operator £ by

L{f@hshi= /om e f (t)dt =: F(s), (8.1)

provided that the integral exists. Then, for the Riemann-Liouville fractional
derivative operator Dy of order u, we have




Fractional Calculus and its Applications 37

c{(Dho 1) @): 8} = #F (5) - T (pia*") s
k=0

=0
m—1SR(u)<n; neN). (3.2)

Such initial values as those occurring in (3.2) are usually not interpretable
physically in a given initial-value problem. This situation is overcome at least
partially by making use of the so-called Caputo fractional derivative which arose
in several important works, dated 1969 onwards, by M. Caputo.

In many recent works, especially in the theory of viscoelasticity and in hered-
itary solid mechanics, the following ( Caputo’s) definition is adopted for the frac-
tional derivative of order @ > 0 of a causal function f(t) (i.e., f(t) = 0 for
t<0):

F™ (t) if a=n€ N,

do
-— f(t):= t (n) (3.3)
dee 1 S () e 73

T=alh (o dr ifn-1<a<n (neN),

where f(™ (t) denotes the usual (ordinary) derivative of order n and I' is the
Gamma function occurring already in (2.5), (2.6), and (2.7). We apply the above
notion in order to generalize some basic topics of classical mathematical physics,
which are treated by simple, linear, ordinary or partial, differential equations.

First of all, it follows easily from (3.1) and (3.3) that [¢f. Equation (3.2) and
Definition (3.3)]

o n-1

L{%f(l):s} =82F (8) = ) _ 8> 5118 (0+4), (3.4)
k=0

which obviously is more suited for initial-value problems than (3.2).

The basic processes of relaxation, diffusion, oscillations, and wave propagation
have been generalized by several authors by introducing fractional derivatives in
the governing (ordinary or partial) differential equations. This leads to superslow
or intermediate processes that, in mathematical physics, we may refer to as
fractional phenomena. Our analysis of these phenomena, carried out by means of
fractional calculus and Laplace transforms, leads to certain special functions in
one variable of Mittag-Leffler and Wright types. These useful special functions
are investigated systematically as relevant cases of the general class of functions
which are popularly known as Fox's H-function after Charles Fox (1897-1977)
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who initiated a detailed study of these functions as symmetrical Fourier kernels

(see, for details, Srivastava et al. [24]).
We choose to summarize below some recent investigations by Gorenflo et
al. [2] who did indeed make references to numerous earlier related works on this

subject.

I. The Fractional (Relaxation-Oscillation) Ordinary Differential Equa-

tion
d“u (o3 . =
T c* u(t;a) =0
(e>0; 0<as2), (8:5)

Case I.1: Fractional Relaxation (0<a <1)
Initial Condition: w(0+;a) = uo
Case I.2: Fractional Oscillation (1 < a £ 2)

w(0+; @) = ug

Initial Conditions: B0 @) =

with vy = 0 for continuous dependence of the solution on the parameter a also
in the transition from a = 1— to a = 1+-.

Explicit Solution (in both cases):

u(tia) = o Ba (= ()%,
where E, (z) denotes the familiar Mittag-Leffler function defined by (cf, e.g.,
Srivastava and Kashyap (25, p. 42, Equation II.5 (23)])

~ .
o 1 (0+) ¢ el
Ea(h)'_rgr‘(an-l-l)_ﬁ/_w ("—zdc

(a>0; z€C).
II. The Fractional (Diffusion-Wave) Partial Differential Equation

OZEuE O

2% = o2
(k>0; —co<z<o00; 0<B=S1), (3.6)
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where u = u (2, t; 8) is assumed to be a causal function of time (¢ > 0) with
u(Foo,t;8) = 0.
Case II.1: Fractional Diffusion (0<3<3)
Initial Condition: u(z,0+;8) = f ()
Case I1.2: Fractional Wave (1<pB<1)

u(z,0+;8) = f (z)

u(z,0+;8) = g (2)

with g (z) = 0 for continuous dependence of the solution on the parameter 3 also
in the transition from 8 = - to 8= 1+.

Initial Conditions:

Explicit Solution(in both cases):
w@tih) = [ G fo-9d, 37

where the Green function G. (z,¢; 8) is given by

o

Tt (=2)" Sl :
|z|Ge (@, 8) = 2§nlm —5 5 = 7mei 0<A<1), @9
which can readily be expressed in terms of Wright’s (generalized Bessel) function
JY (z) defined by (cf., e.g., Srivastava and Kashyap [25, p. 42, Equation I1.5(22)])

)

T (==)"
Ji () "gnu‘(uw;m)' (a8

4. Operators of Fractional Calculus Based Upon the
Cauchy-Goursat Integral Formula

Operators of fractional integrals and fractional derivatives, which are based
essentially upon the familiar Cauchy-Goursat integral formula, were considered
by (among others) Sonin in 1869, Letnikov in 1868 onwards, and Laurent in 1884.

In recent years, many authors have demonstrated the usefulness of fractional cal-
culus operators (based upon the Cauchy-Goursat integral formula) in obtaining
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particular solutions of numerous families of homogeneous (as well as nonhomo-
geneous) linear ordinary and partial differential equations which are associated,
for example, with many of the following celebrated equations:

I. The Gauss Equation:

d’w
z2(l-z2 )W

II. The Kummer Equation:

+ = a+ﬂ+1)z]%1;”—aﬂw=0 (4.1)

d*w dw
2d7+ (7_Z)E —ow =0 (4.2)
IIT. The Euler Equation:
dw  dw
2L e 2 — 4.3
b e T (&

IV. The Coulomb Equation:

W dw
z2—— 1 (2)\ = 2) = + (w=XN)w=0 (4.4)
V. The Laguerre-Sonin Equation:

pd—A}—(al—l—z)—«}—)\w—vO (4.5)

VI. The Chebyshev Equation:

d
(= )‘Z—f—~%+/\2w=0 (4.6)
VII. The Weber-Hermite Equation:

v dw
2 = )= 4.
7%t 1w =0 (@7)

Numerous earlier contributions on fractional calculus along the aforemen-
tioned lines are reproduced, with proper credits, in the works of Nishimoto (cf.
[11) and [12]). Moreover, a rather systematic analysis (including interconnec-
tions) of many of the results involving (homoegeneous or nonhomogeneous) linear
differential equations associated with (for example) the Gauss hypergeometric
equation (4.1) can be found in the works of Nishimoto et al. ([14] and [15]).

e ——
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In the cases of (ordinary as well as partial) differential equations of higher
orders, which have stemmed naturally from the Gauss hypergeometric equation
(4.1) and its many relatives and extensions, including some of the above-listed
linear differential equations (4.2) to (4.7), there have been several seemingly inde-
pendent attempts to present a remarkably large number of scattered results in a
unified manner. We choose to furnish here the generalizations (and unifications)
proposed in one of the latest works on this subject by Tu et al. [30] in which
references to many earlier related works can be found. We find it to be convenient
to begin by recalling the following definition of a fractional differintegral (that
is, fractional derwative and fractional integral) of f(z) of order v € R.

Definition (¢f. [11], [12], and [29]). If the function f (%) is analytic and has no
branch point inside and on C, where

@ 5= e @k, (4.8)

C~ is a contour along the cut joining the points z and —oco + 4J (2), which starts
from the point at —oo, encircles the point z once counter-clockwise, and returns to
the point at —oco, C* is a contour along the cut joining the points z and co-+iJ (),
which starts from the point at oo, encircles the point z once counter-clockwise,
and returns to the point at oo,

Pw+1) [ _f(QdC

AL Rt =l B

(veR\Z7; 27 :={-1,-2,-3,...}) (4.9)
and
fal®)i= lim (L)} (nEN), (4.10)
where ¢ # z,
—rSarg((—2)Sm for (G (4.11)
and
0<arg(¢C—2) S 2m for SFEH (4.12)

then f, (z) (v > 0) is said to be the fractional derivative of f (z) of order v and
fu(2) (v <0) is said to be the fractional integral of f(z) of order —v, provided

that

Vo~ e
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|[fv() <0  (v€ER). (4.13)

Throughout the remainder of this section, we shall simply write f, for f, (2)
whenever the argument of the differintegrated function f is clearly understood
by the surrounding context. Moreover, in case f is a many-valued function, we
shall tacitly consider the principal value of f in this investigation.

Each of the following general results is capable of yielding particular solutions
of many simpler families of linear ordinary fractional differintegral equations (cf.
Tu et al. [30]) including (for example) the classical differential equations listed
above [cf. Equations (4.1) to (4.7)].

Theorem 1. Let P(z;p) and Q (z;q) be polynomials in z of degrees p and g,
respectively, defined by

P
1CE ) = e (4.14)
k=0

.
=ao[[(z=2) (a0#0; peN)
j=1
and
q
Q)= br 277* (b #0; ¢EN). (4.15)
k=0

Suppose also that f—, (# 0) exists for a given function f.
Then the nonhomogeneous linear ordinary fractional differintegral equation:

P8l + LZ; () Petasn + ; (1)@ (z;q)} Bk ()

+<:>q! b0 $ugei (2) = /()

(1, v €ER; p,g €N), (4.16)

has a particular solution of the form:
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= [ (2) H(Z;qu)) —H(zip,q)
e ((P(Z;p)e ~
v—pt1
(R s A (4.17)
where, for convenience,
QG a)
H (&0, 0)k= o2 zeC Rzl 4.
Epa)i= [ pgd GEC\ {a . m),  (@19)

provided that the second member of (4.17) ewists.

Theorem 2. Under the various relevant hypotheses of Theorem 1, the homoge-
neous linear ordinary fractional differintegral equation:

P (2;p) du (2) + LZZ (Z)Pk (zp) + i (kﬁ 1)QH (:;q)] Bk (2)

k=1
14
-r(q)q! bo $u—q-1(2) =0 (4.19)

(1 v ER; p,g€N)
has solutions of the form:
5) = —H(zp,a)
d)(‘,)*K(e )u—,‘u'

where K is an arbitrary constant and H (2;p, q) is given by (4.18), it being pro-
vided that the second member of (4.20) ewists.

(4.20)

Next, for a function u = u (2,t) of two independent variables z and ¢, we find
it to be convenient to use the notation:
o tu
21OtV
to abbreviate the partial fractional differintegral of u (z,t) of order y with respect
to z and of order v with respect to ¢ (1, v € R). And we now state the following
general result (cf. Tu et al. [30]):

Theorem 3. Let the polynomials P(z;p) and Q(z;q) be defined by (4.14)and
(4.15), respectively. Suppose also that the function H (z;p,q) is given by (4.18).

Ve o\
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Then the partial fractional differintegral equation:

o[22 (v v oHhy
P(zp) 5z + [’; (k> Py (zp) + ; (k ¢ I)Qk——l (z14— 1)] e
OH—Py Hr—Pt2y gu-ptly
Yowr ~ owironz | ¥ osrron (421)
(kv €R; p,g €N)
has solutions of the form:
Zai(egilERa Sl S (02 0)

u(z,t) = (4.22)

K, (efH(zm,q—l))V_” i et (oi=\0; B70),
where K, and K, are arbitrary constants, o, (3, and v are given constants, and
(for convenience)

S \/.__- 2
g LEVELI0202 () and =120 (@m0, 6£0), (429

with
v
§i= ! ao, 4.24
(p)p ao (4.24)

provided that the second member of (4.22) ewists in each case.

We conclude this section by remarking further that either or both of the poly-
nomials P (z;p) and @ (z; ¢), involved in Theorems 1 to 3, can be of degree 0 as
well. Thus, in the definitions (4.14) and (4.15) (as also in Theorems 1 to 3),
N may easily be replaced (if and where needed) by Np. Furthermore, it is fairly
straightforward to see how each of these general theorems can be suitably spe-
cialized to yield numerous simpler results scattered throughout the ever-growing
literature on fractional calculus.
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5. Miscellaneous Further Applications

For the purpose of those readers who are interested in pursuing investigations
on the subject of fractional calculus, we give here references to some of the other
applications of fractional calculus operators in the mathematical sciences, which
are not mentioned in the preceding sections.

(i) Theory of Generating Functions of Orthogonal Polynomials and Special
Functions (cf. [26]);

(ii) Geometric Function Theory (especially the Theory of Analytic, Univalent,
and Multivalent Functions) (cf. [27] and [28]);

(iii) Integral Equations (cf. (3], [22], and [23]);
(iv) Integral Transforms (cf. [6] and [8]);

(v) Generalized Functions (cf. [8]);

(vi) Theory of Potentials (¢f. [19]).

A remarkably significant number of publications are emerging regularly in
many of these additional areas of applications of fractional calculus as well;
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