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1. Introduction

Since the additive group R* of a ring R is abelian, a connection between
abelian groups and rings is implicit in the definition of a ring. Two dual general
problems arise from this connection.

Problem 1. Given & class of abelian groups, determine which rings R have
additive group R belonging to the class.

Problem 2. Given a class of rings, determine which abelian groups are additive
groups of rings belonging to the class.

A solution to Problem 2 for a class of rings, can yield ring theoretic informa-
tion about the class, as will be shown in the application at the end of this survey.
A problem which is often easier to solve than Problem 2 is the following: Given
a class C of rings, describe the abelian groups G for which every ring R with
Rt = G belongs to C. A survey of some of the results on these questions will be
given in this note. A more detailed treatment of this topic may be found in [10]
and (11].

2. Abelian Groups

All groups in this note are abelian, with addition the group operation. An
element a in a group G is a torsion element if a has finite order, and is & torsion
Jfree element if o has infinite order. If every element in & group G is a torsion
element, then G is a torsion group. If every non-zero element in & group G is
torsion free, then G is torsion free. A group G possessing both torsion, and
torsion free non-zero elements is a mized group. For G a group, G; = {a € G [ a
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is a torsion element}, is a subgroup of G, the torsion subgroup of G. For p a prime,
Gp ={a € G| |a| = a power of p} is a subgroup of G, the p-component of G. It
is well-known that G¢ = ®p a primeGp) [14], Theorem 8.4.

For n an integer, and G a group, nG = {na | a € G}, and G[n] = {a € G |
na = 0} are subgroups of G. If nG = G for every positive integer n, then G is a
divisible group. The additive group of integers, and the additive group of rational
numbers will be denoted by Z, and @, respectively; and Z(n) is a cyclic group of
order n. For p a prime, the Prufer group, Z(p*), is (Q/Z)y; it is isomorphic to the
subgroup of the multiplicative group of complex numbers C, consisting of all p-th
power roots of unity. A group G is divisible if and only if G ~ ®@,Z(p*°) ® ®pQ,
with o and 8 cardinals, [14], Theorem 23.1. If D is a divisible subgroup of a
group G, then D is a direct summand of G, [14], Theorem 21.2. A group which
does not possess a non-zero divisible subgroup is a reduced group. Every group is
a direct sum of a unique maximal divisible subgroup, and a reduced group, (14],
Theorem 21.3.

Let G be a torsion free group. The cardinality of a maximal subset of G,
linearly independent over Z, is called the rank of G, and is denoted 7(G). The rank
of G is the dimension of Q@ G, viewed as a vector space over Q. Let p be a prime,
and let a € G. If there exists an integer n > 0, such that a € p"G \ p**1G. then
a is said to have p-height, hy(a) = n. If a € p™G for every positive integer n, then
hp(a) = co. The height, or height sequence of a is the sequence h(a) = (hy, (@))52;,
with (p;)22,, the sequence of primes ordered in increasing magnitude. Two height
sequences (2;)$2, and (y:)52, are equivalent if the set of indices 7, such that z; # ¥i,
is finite, and @; = y; whenever @; = co. This equivalence is indeed an equivalence
relation. The equivalence class t(a) of h(a) is called the type of a, and is often
identified with h(a). A torsion free group G is homogeneous of type t(G) = 7 if
all its non-zero elements have the same type 7. Rank 1 torsion free groups are
homogeneous. A type 7 is idempotent if it possesses a height sequence with all
its components either 0 or co. Let 2 = (2:)2; and y = (y:)2; be two height
sequences. The relation 2 > y means z; > y; for all positive integers i. Two types
7,0 satisfy 7 > o, if 7,0, respectively, possess height sequences z,y satisfying
a > y. The relation > is similarly defined. Let z,y be height sequences as above.
The sum z +y is the height sequence (z; +4;)2;. If 7, 0 are types possesing z,,
respectively, then 7 + o is the type possesing the height sequence z + y.

3. Ring Multiplications on Groups

A ring multiplication on a group G is bilinear, (the distributive laws), and
therefore factors through the tensor product G®G. Conversely, if f: G®G — G
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is a homomorphism, then the products ab = f(a @ b) for all a,b € G induce a
non-associative ring structure with additive group G. Let Mult(G) denote the
set of (non-associative) ring multiplications on G, and let %1, *g,€ Mult(G).
Define a(*1,+*2)b = (a *1 b) + (a *2 b) for all a,b € G. It is readily seen that
(%1 + *2) € Mult(G), that Mult(G) is a group under this operation, and that
Mult(G) ~ Hom(G ® G,G) ~ Hom(G, E(G)), where E(G) is the group of
endomorphisms of G.

Determining the rings R with Rt belonging to the class of cyclic groups is
trivial. Let G = (a) be a cyclic group generated by a. If * is a ring multiplication
on G, then a * a = ka for some integer k. Conversely, for any integer k, the
product a *¢ a = ka induces the ring multiplication (na) *x (ma) = nmka for
all na,ma € G. If |a| = oo, then the map Z — Mult(G) via k — #x is an
isomorphism, i.e., Mult(G) ~ Z. If |a| = n, then the above map has kernel nZ,
and Mult(G) ~ Z/nZ. All rings R with R* cyclic are associative.

For G a direct sum of cyclic groups, G = @;c(a;), it is not difficult to describe
the non-associative rings R with Rt = G. For each pair of indices 4,7 € I, let
bij € G, with |b;;| | |a ® a;|. Then the products a;a; = b;; induce a ring
structure on G. Conversely, all rings R with R* = G are obtained in this manner.
Describing the associative rings R with Rt = G is more difficult, see (2], or (25].

Another class of groups for which the rings with additive group belonging to
the class can be completely described, is the class of rank 1 torsion free groups.
Let G be a rank 1 torsion free group, and let ¢(G) = 7. It is easily seen that
G @ G is also a rank 1 torsion free group, with ¢{(G @ G) = 27. Therefore if
7 is not idempotent, then #(G ® G) > t(G). Let R be a ring with R = G.
There exists ¢ € Hom(G ® G, G) such that ab = @(a @ b) for all a,b € R. Since
tlpla@b)] > tla®b) = 27, and t(z) = 7 < 27 for all z € G. 2 # 0, is follows
that ¢(a ® b) = 0. Therefore R is the zero-ring, i.e.. ab = 0 for all a,b € R. If
t(G) is idempotent, and P is the set of primes p for which non-zero elements of
G have infinite p-height, then, up to isomorphism the only ring R with additive
group G, other than the zero-ring, is a ring isomorphic to the subring of the field
Q generated by {1/p|p € P}. These result were obtained by Redei and Szele,
{20}, and independently by Beaumont and Zuckerman, (8. The rings with rank
2 torsion free additive group were studied by Beaumont, Pierce, and Wisner, [6],
7).

The above discussion of rank 1 torsion free groups G suggests the definition
of two classes of groups. A group G is a nil group if the only ring with additive
group G is the zero-ring. If was seen above that if G is a rank 1 torsion free
group, and t(G) is not idempotent then G is a nil group. A group G is quasi-nil
if there are only finitely many non-isomorphic rings with additive group G. The
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rank 1 torsion free groups are quasi-nil.

4. Nil groups

Let G be a divisible torsion group, and let R be a ring with Rt = G. For
a,b € R, b # 0, there exists ¢ € R such that a = |ble. Thus ab = (|ble)b =
¢(|b]b) = 0. Therefore every divisible torsion group is nil. If a torsion group
G is not divisible, then G = (a) ® H, with (a) a cyclic group of finite order n,
[14], Corollary 27.3. The direct sum of a ring isomorphic to Z/nZ, with additive
group (a), and the zero-ring with additive group H is a ring R with Rt = G.
Since R is not a zero-ring, it follows that a torsion group is nil if and only if it
is divisible. If G is a mixed group then G is not nil. It is known, [14]. Corollary
27.3 that a mixed group G has a direct summand Z(p*) with k a positive integer,
or k = oco. If k is a positive integer then there is a ring R with Rt = G, and
Z/p*Z is a ring direct summand of R. If k = oo, then Z(p™) is a direct summand
of G. For a # 0 a torsion free element in G, the subgroup (a ® a) of G & G is
infinite cyclit, so there exists a non-trivial homomorphism ¢ : (a ® a) — Z(p>).
Since Z(p™) is inyective in the category of abelian groups,[14], Theorem 21.1,
there is an extension of ¢ to a homomorphism ¢ : G ® G — Z(p*>). The ring
R with R = G, and multiplication defined by oy = ¢(z @ y) for all z, y € R,
is not a zero-ring. The classification of torsion free nil groups remains an open
problem. An argument similar to that used above in the rank 1 case, shows
that every homogeneous torsion free group with non-idempotent type is nil. A
group G is associative nil if the only associative ring R with Rt = G, is the
zero-ring. A torsion group is nil if and only if it is associative nil. There are no
mixed, associative nil group. It is an open question whether or not there exists
an associative nil torsion free group which is not nil. The investigation of nil
groups was initiated by Szele, [22].

5. Quasi-nil groups

The quasi-nil groups were introduced by Fuchs, [13]. He showed that a torsion
group is quasi-nil if and only if it is the direct sum of a finite group and a divisible
torsion group. He also proved that a ring with torsion, quasi-nil additive group
is associative. Investigations of Fuchs, and Borho, [13], (9], reduce the problem of
classifying quasi-nil groups, to the problem of classifying torsion free nil groups.
A torsion free group G is the additive group of precisely two non-isomorphic rings
if and only if G >~ Q. Both rings are of course associative. A torsion free group G
the additive group of precisely three non-isomorphic associative rings if and only
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if G = Q® H with H a rank 1 torsion free group whose type is not idempotent.
Every other torsion free group is either nil, or is additive group of infinitely many
non-isomorphic associative rings. A mixed group G is quasi-nil if and only if
either G >~ B ® H with B a finite group, and H a torsion free quasi-nil group,
or G~ B@®D®H with B a finite group, D a divisible torsion group satisfying
D, = {0} for all but finitely many primes p, and either H ~ @, or H is a nil rank
one torsion free group, satisfying pH = H for all primes p such that D, # {0}.

Another generalization of nil groups due to Szele, [22], is the following: Let
n be a positive integer. A group G has nilstufe n(G) = n, if there exists a
ring R with R* = G, such that R® # {0}, but every ring R with Rt = G
satisfies R™*1 = 0. If no such positive integer exists, then n(G) = co. For every
positive integer n, Szele constructed torsion free, and mixed groups G. satisfying
n(G) = n. If a group G has finite nilstufe, then clearly every ring R with Rt = G
is nilpotent. If G is a torsion free group with finite rank 7(G) = n, and R is a
ring with Rt = G, then for positive integers k < [, if R properly contains
R!, then r(R*t) > r(R'). Therefore every associative nilpotent ring R with
R' = G satisfies R" = {0}, and every, not necessarily associative ring R with
Rt = G, satisfies R?"~! = {0}. This yields that a finite rank torsion free group
has finite nilstufe, if and only if every ring R with R* = G is nilpotent. As
was shown above, if a torsion group G is not divisible, then there exists a ring
R with RY = G, having a ring direct summand isomorphic to Z/nZ for some
positive integer n. Clearly R is not nilpotent. Therefore for G a torsion group
the following conditions are equivalent: i) G is divisible, ii) G has finite nilstufe,
iii) every ring R with Rt = G is nilpotent. Wickless, [26], reduced the problem
of determining the groups G satisfying: every ring R with Rt = G is nilpotent,
to the torsion free case. He showed that every ring R with Rt = G is nilpotent if
and only if G = D@ H with D a divisible torsion group, and H a reduced torsion
free group such that every ring with additive group H is nilpotent.

6. Other Classes of Rings

For n a positive integer, the subgroups G|n|, and nG of a group G, are ideals
in every ring R with R* = G. Therefore the following conditions are equivalent:
i) G is the additive group of a field, ii) G is the additive group of a division ring,
iii) G is the additive group of a simple ring, iv) G =~ &,Q, or G ~ ®Z(p), with
p a prime, and a a cardinal.

A ring R is semiprimitive if its Jacobson radical, J(R) = {0}. A torsion group
G is the additive group of a semiprimitive ring if and only if there exists a set
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of primes P such that G ~ @pep ®a, Z(p) with a;, a cardinal for each p € P. A
rank 1 torsion free group is the additive group of a semiprimitive ring if and only
if either G >~ @, or ¢(G) is idempotent, with infinitely many components equal
0. The finite rank torsion free additive groups of semiprimitive rings have been
explored using two different methods in [3], and in [19].

A ring R is a radical ring if J(R) = R. For any group G the zero-ring with
additive group G is a radical ring. The groups G which are additive groups of
radical rings R satisfying R? # {0} have been studied by Haimo, [17].

Investigations of Beaumont and Pierce, [4], [5], [18], have yielded much infor-
mation about rings with finite rank torsion free groups. Considerable background
material on subrings of algebraic number fields, and on finite rank torsion free
abelian groups is necessary in order to describe their results. Therefore this im-
portant topic is not being presented in this short survey. This theory of finite
rank torsion free rings has been developed in a different way in [1].

Additive groups of principal ideal rings have been studied in [12]. Let G' be
a torsion group. G is the additive group of a (an associative) principal ideal ring
if and only if G is bounded, i.e., nG = {0} for some positive integer n. Every
(associative) ring with torsion additive group G is a principal ideal ring if and
only if either G is cyclic, or G ~ Z(p) ® Z(p), with p a prime. If a mixed group
G is the additive group of a principal ideal ring, then G; is bounded, and G /G,
is the additive group of a principal ideal ring. Conversely, if G; is bounded, and
G/Gy is the additive group of a principal ideal ring with unity, then G is the
additive group of a principal ideal ring.

A ring R is Artinian if every non-empty set of left ideals of R has a minimal
element. Fuchs and Szele, [24], have shown that a group G is the additive group
of an Artinian ring if and only if G ~ ®.Q ® GfniteZ(p°) @ (B[;Z(p;‘), with a, #
cardinals, p;, p; primes, pf’ |m, and m is a fixed positive integer.

7. An Application

The structure of the additive groups of Artinian rings was given in the pre-
vious paragraph. The following two purely ring theoretical questions were solved
by Fuchs, Halperin, and Szele. The answer to both questions depends entirely
on the additive groups of Artinian rings.

Question 1. When can an Artinian ring be embedded in an Artinian ring with
unity?

A ring R is Noetherian if every non-empty set of left ideals of R has a maximal

element.
Question 2. When is an Artinian ring Noetherian?
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The answer to both questions is the same. Let R be an Artinian ring. The
following are equivalent: i) R can be embedded in an Artinian ring with unity,
i) R is Noetherian, iii) Rt ~ GBO,Q(B(B;;Z(p;’), with a, 8 cardinals, pi, pj primes,
p;“ |m, and m is a fixed positive integer, i.e., R, is reduced.
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