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1. Introduction

The goal of this article is to show how convolutions are used as a tool for
constructing spaces of generalized functions. We provide all details of the con-
struction but do not develop further properties or applications. References are
provided for the interested reader.

What distinguishes generalized functions from ordinary functions is that they
do not always have values at points. If F' is a generalized function, then it may
not make sense to ask what is the value of F" at . Of course, it may happen that a
generalized function has a value at a point. For example, all generalized functions
that correspond to ordinary functions have values at points. The difference is that
while an ordinary function is defined by its values at points, & generalized function
is not.

What does then define a generalized function? This question does not have a
simple answer. It depends on the approach to a particular theory of generalized
functions. In this article we concentrate on theories of generalized functions
that use convolutions. Roughly speaking, these generalized functions are objects
that can be convolved with some functions and the convelutions are continuous
functions.

The guiding principle in any theory of generalized functions is the expecta-
tion thdt differentiation can always be performed. In particular, we expect that
continuous functions will have generalized derivatives of any order. The most
common approach to generalized functions is based on the following simple ob-
servation. For an arbitrary smooth function ¢ with compact support, the right

AT



198 Piotr Mikusiriski

hand side of the formula
[ repee-- [ fop@i M

makes sense even if f is not differentiable. Thus, even though we cannot say what
the value of f/(z) is, we can say what the value of the integral f_“; fl(z)p(z) da
is. If we think of ¢ as a probability density concentrated around some point
2o, then the integral can be interpreted as the average value of f’ around .
Writing [ f'(z)¢(x) dz is an obvious abuse of notation, because if f’ is not a
function, the integral is meaningless. For this reason we will write (f/, o) instead.
In general,

(00 = 17 [ ) o) do.
—o0

In the case of functions defined on RY we have

Dg0) = 0 [ 1D,

where a = (ki, ..., ky) is a multi-index and |a| = ky + -+ + kn.

This idea leads to the following approach to generalized functions: First we
choose a space 7 of smooth test functions and we equip this space with a topology
(or a convergence). Then we define a space of generalized functions as the space
of all “objects” F such that (F,¢) is well-defined (as a number) for every p € 7

and that the following two conditions are satisfied:
(a) For any a,b€ RV and any ¢,% € 7 we have

(Fyap -+ b9) = a(F, @) + b(F, ¢).

(b) If ¢ — @ in 7, then (F, n) — (F, p).

By choosing different spaces 7 we obtain different spaces of generalized func-
tions (see, for example, [3], [4], [10], [11], [30], [31]). The most common choice is
the space considered by L. Schwartz in his pioneering work [31]. It is the space
of all smooth functions with compact support in RY, usually denoted by D. A
sequence ¢, € D is said to converge to some ¢ € D if the following two conditions
are satisfied:

(i) There exists a compact set K C RY such that all ¢,’s and ¢ vanish outside
of K.
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(ii) D%pn — D%p uniformly for every multi-index a.

The obtained space of generalized functions is denoted by P'. Elements of D' are
called Schwartz distributions (or simply distributions).

In every construction of a space of generalized functions it is necessary to
describe how ordinary functions are identified with the defined objects. In the
case of this approach a locally integrable function f on RY is identified with the
distribution ' whose “action” on a test function ¢ is defined by

(F,p) = A N f(@)p(a) da.

The purpose of this note is to describe theories of generalized functions based
on the convolution product of functions. The constructions presented in the
following sections produce spaces that are different from spaces of generalized
functions obtained by the method described above. Before we discuss those con-
structions, we would like to mention a rather striking result of R. A. Struble.

The convolution of two functions f and g on RY, if meaningful, is defined by

(f+)o) = [ I@)ata =)z,

If f is a locally integrable function and ¢ is a test function with compact support,
then the convolution f ¢ is well defined. Moreover, if f is differentiable, we have

D(fxp)=Df xp=fxD%

(Note that this is a version of (1).) As in the case of (1), f* D%y is well defined
even if f is not differentiable. This suggests a possibility of defining generalized
functions as objects that can be convolved with test functions. Obviously, we
need to assume more than that. Struble in [32] shows that surprisingly little is
necessary. It turns out that if we consider all mappings A from D into the space
of continuous functions such that

Alp*9) = A(p) x¢  for all ,9 € D, (2)

then we obtain a space isomorphic to D’. Note that not only no continuity of A
is assumed, but we do not even need a topology on D. Moreover, linearity of A
is not assumed, it is a consequence of (2).

Struble’s idea can be used to define other spaces of generalized functions
mentioned above. All we need is to specify the space of test functions (see [25]).
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2. Mikusinski’s Operational Calculus

Now we turn to the Operational Calculus of Jan Mikusiniski. The main
idea appears first in Hyperliczby (Hypernumbers), a little booklet published in
Poland in 1944. Publication by Poles was forbidden at that time. The work was
handwritten by Jan Mikusiriski on X-ray film and printed with homemade ink.
Only seven copies were made. The complete theory was first published in Polish
in 1953 [12]. The first English translation was published in 1959 [13].

Consider the space of continuous complex-valued functions defined on [0, 00).
This space will be denoted by C. The convolution in C is defined by

(f *g)(x) = [ f(@ —y)g(y)dy

Note that the convolution of any two functions from C exists and is an element
of C. Moreover, C with ordinary addition of functions and convolution is a com-
mutative ring. From a theorem proved by Titchmarsh [33] it follows that C is an
integral domain, i.e., f+g = 0 only if f = 0 or g = 0. This allows us to construct
a quotient field. This field will be denoted by M and its elements will be called
operators.

An element of M can be represented as 5 where f,g € C, g # 0, and the
quotient indicates “division with respect to convolution”. In other words,

ﬁ:é if and only if  fi*g2 = fo*g;.
9 92

The operations in M are defined in the usual way:

fiyfo_firgthra
91 92 g1 * 92
and
o) ety 4l
Qg2 @rge

The zero of the field M is the operator % and the unit of the field is the

operator f where f is any nonzero element of C. One can easily see that in both
cases the choice of a particular f is irrelevant. The inverse of a nonzero operator
ﬁ is 5 The product of an operator ﬁ by a complex number a is defined as Eg[.
A function f € C can be identified with any quotient of the form 17;-'1, g#0.
In fact, any locally integrable function f vanishing to the left of some real number
a can be identified with an operator. If a > 0 then we can use f—;-‘l, where g is any

nonzero function from C. Now consider the case when a < 0. Note that, for any
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continuous function g vanishing to the left of —a, the convolution f * g is in C.
Thus f can be identified with L;-‘l, where g is any nonzero element of C vanishing
to the left of —a. Following the standard convention for quotient fields, we will
identify a function f € C with the corresponding operator. For example, we will
write 6 * g = [ which is a clear abuse of notation.

The constant function 1 (or the characteristic function of [0, c0)) is not the
unit of the field. Actually, the unit of M is not a function. Since it can be
interpreted as the Dirac delta distribution, we will adopt the notation ¢ = § It
is important to remember that the inverse of a function f is not %, at least not
if 1 is interpreted as a constant function. Obviously, % is the inverse of f since
5 * [ = 0. However, % is not a representation of the inverse of [ as a quoLiun, in
M because ¢ is not an element of C. We can represent the inverse of f by +% /_q,
where g € C is any nonzero function, but this is somewhat artificial. If necessary,
we will use the notation f~! to indicate the inverse of f in M. More generally,

we will write :
(l)“ 08
g il

It is convenient to identify a complex number a with the operator ad or %,
where f is any nonzero function from C. The advantage of this identification is
that there is no necessity to distinguish between multiplication by a scalar and
the convolution.

At this point it may still be unclear why M can be called a space of generalized
functions. We will address this issue now. We need to show that every continuous
function has well defined derivatives of all orders which are operators.

Following [13] we will denote by { the characteristic function of [0, 00). Note
that for any f € C we have

uwm#%?ww

Since the result is the integral of f, the operator associated with this function
is called the integral operator. Following our convention, we will use the same
symbol [ to denote the function and the operator. Denote by s the inverse of [,
i.e, s = [~'. Obviously, s x! = § and s * (I * F) = F for any F' € M. For this
reason it is natural to call s the differential operator. If f € C, then

J'=s%f~-f(0)

This formula should be interpreted with caution. Since this is an equality of

operators, f’ represents the operator L—-‘i and f(0) the operator /—(0)—"
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In general, for any positive integer n, we have
FO = 5™ x f =" a £(0) — 8" 2 £1(0) — -+ — s f72(0) — f77(0).

The right hand side of this formula reminds us of the familiar formula for
the Laplace transform of a derivative. This is not a coincidence. Mikusiriski’s
operational calculus provides a justification for Heaviside’s operational calculus
different from the Laplace transform approach. The main advantage of this ap-
proach is that there are no restrictions on the rate of growth of functions. It is
also simpler, because it is based on the familiar algebra of quotients.

We will not proceed any farther with the development of the theory of Mikusiriski's

operational calculus. For the most complete presentation of the theory see [14]
and [15].

Before we move to the next topic we would like to mention two modifications
of the definition of operators. Let

Co={f€Cand f™(0)=0foraln=012,...}

It turns out that if we use Cp instead of C, then the constructed quotient field M
is the same. It suffices to note that if f € C and g € Cy, then f x g € Cp. Thus,
an arbitrary element of M represented by a quotient = with f,g € C, can also
be represented by % where h is any nonzero function from Cp.

Note that while in the Introduction the convolution was defined as an integral
from —co to oo, in this section it was defined as an integral from 0 to @. This
difference is not essential. If C is defined as the space of all complex-valued
functions defined on R that vanish on (—c0,0) and are continuous on [0, 0),
then both definitions are equivalent.

From the above remarks it should also be clear that we could start the con-
struction from the space of all continuous functions with the support bounded
from the left.

3. Boehmians on RY

One of the major limitations of the operational calculus is the restriction
on the support. Functions whose support is not bounded on the left cannot be
identified with operators. Boehmians were introduced in [16] as a modification
of the construction of operators that allows functions (and generalized functions)
with supports unbounded on the left while preserving the nature of operators as
convolution quotients.
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In order to understand better the origin of Boehmians we first discuss regular
operators introduced by T. K. Boehme in [5]. Mikusiriski’s operators are defined
globally. For a general operator it does not make sense to talk about the support.
It is also meaningless to ask whether two operators are equal in a neighborhood
of a point. Boehme’s motivation was to identify a subclass of operators which
exhibit local properties. Regular operators have a well defined support and can be
compared locally. In order to define them we need the notion of a delta sequence.

By a delta sequence we mean a sequence of smooth functions ¢1,ps,... € C
satisfying the following conditions:

(a) ¢n 20 foralln €N,
(b) [¢n=1foralln €N,

(¢) For every & > 0 there exists an ng € N such that suppyn C [0,¢] for all
n>ng.

An operator F' € M is called a reqular operatorif there exists a delta sequence
©1,%2,... and functions fy, fa,... € C such that

Pl et i e
©P1 2 ¥3

Clearly, any function f € C is a regular operator. Indeed,

fzf*(ﬂl s (e i

P1 2 ¥3
The same representation works for Schwartz distributions with support in [0, co).
Boehme shows in [5] that there are regular operators that are not distributions.
However, since regular operators are defined as a subclass of operators, they
inherit the restriction on the support.

There are two basic reasons for the restriction on the support in the construc-
tion of operators. First, it ensures that the convolution is well-defined. Second,
we have Titchmarsh’s theorem which makes the construction of the quotient field
possible.

When dealing with operators as convolution quotients it is not necessary to
convolve the numerators unless one wants to work with inverse operators. It is
necessary to convolve denominators with denominators and denominators with
numerators. If we restrict the functions used in denominators to test functions
with compact support and give up the possibility of inverting all nonzero op-
erators, then it is no longer necessary to restrict the support of functions in
the numerators since the convolution of an arbitrary continuous function on R
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with a test function with compact support always exists. However, Titchmarsh’s
theorem is no longer true. Indeed, consider f(z) = sinz and ¢ equal to the
characteristic function of the interval [0, 2x]. If 4 is a nonzero test function with
compact support, then ¢ %1 is a nonzero test function and f * (¢ 1) = 0. It
turns out that we can overcome this difficulty by replacing quotient of functions
by quotients of sequences of functions.

The name Boehmians is used for any space obtained by the construction
presented below. The minimal structure necessary for the construction is the
following:

I A nonempty set X,
IT A commutative semigroup (S, ),

IIT An operation ® : X x & — X such that for every & € X and s3,52 € S we
have z © (s * $2) = (2 @ 81) @ s2,

IV A nonempty collection A € SN such that

(i) If2,y € X, ($n) €A, and 2 © 8, =Y © 8y, for all n € N, then z =y,
(ii) If (8n), (tn) € A, then (8, *tn) € A.

Sequences in A are called delta sequences.

If these ingredients are available, then the construction of a space of Boehmi-
ans is possible. First we define a collection A of all pairs (2, Sn) such that 2, € &,
(8n) € A, and 2, © Sm = Ty, © Sy for all m,n € N. If (25, Sn)s (Yn, ln) € A and
L O lm = Ym © S, for all m,m € N, then we write (Zn,5n) ~ (Yn,ln). The
relation ~ is an equivalence in A. The space of Boehmians B(X) is the space
of equivalence classes in A. To simplify the notation, the equivalence class of
(@n, 8n) will be denoted by 22.

There is a canonical embedding of & into B(X):

T OSn
G

T —

The operation © can be extended to B(X) x S:
Zn ot = w
Sn Sn

Now by taking different spaces X, S, different operations * and ®, and dil-
ferent families of delta sequences A, we obtain a variety of spaces of Bochmians.
In the most important applications, X and S are function spaces. Sometimes

Yaaiam = &Y
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different choices of & produce the same space of Boehmians. Roughly speaking,
the choice of & is responsible for the “rate of growth”, while the choice of A is
responsible for regularity (or irregularity) of Boehmians.

In the standard example we take X = C=(RY) (the space of smooth functions
on RY), 8§ = D(RN), and the ordinary convolution on RY for both  and @.
Finally, for A we take the collection of all sequences of functions @1, 2, - € D
satisfying the following conditions:

(A) ¢n =0 forall €N,
(B) [¢n=1forallneN,

(€) For every & > 0 there exists an ng € N such that ¢, (2) = 0if [|2]| > € and
n > ng.

The obtained space of Boehmians B(C*) contains all Schwartz distributions
and all regular operators. lnclcccl if 7is a distribution, then F ¢ € C®(RY) for
any test function ¢. Thus, —"’A represents a Boehmian, for any delta sequence
(2n)- Now, if F is a xggulm opcmtox, then there exists a delta (¢n) sequence

such that =Lt = L — L8 — _If fi, f5, f3, ... € C=(R), then we identily 7
with {—" If fi, fa, fa, ... are not all in C2(RY), then we use f%%

The space B(C®) is essentially larger than the space of distributions D', For
instance, there are Boehmians of infinite order with a single point support (see [5]
and [17]), which is impossible in D’. All ultradistributions defined by Beurling or
Romieu can be identified with elements of B(C*) (see [18]). An unusual property
of B(C*), in comparison with other spaces of generalized functions, is that there
are non-harmonic solutions of the Laplace equation in B(C*) (see [19]).

If we choose for X the space of all continuous functions on RV or the space
of all locally integrable functions on RY and leave the other components un-
changed, we obtain a space of Boehmians isomorphic to B(C*). However, the
space becomes larger if the family of delta sequences is defined as follows:

(1) fon=1foralneN,
(2) The exists a constant M such that [ |¢,| < M for all n € N,

(3) For every € > 0 there exists an ng € N such that ¢n(2) = 0 if ||z]| > € and
n > ng.

For special applications we can also take X to be the space D and obtain
Boehmians with compact support, or the space of integrable functions and obtain
integrable Boehmians, or the space of tempered functions (bounded by polyno-
mials) and obtain tempered Boehmians, and so on. One of the advantages of

AT
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using smooth functions in the definition of Boehmians is the simplicity of the

definition of the derivative of a Boehmian. In order to differentiate a Boehmian

it suffices to differentiate the functions in the numerator, i.e., D* (il Qf—
For more detail and some applications of different spaces of Boehmnans see

for example [1], [2], [6], [8], (9], [20], (23], [26], [28], [29], [34].

4. Boehmians on manifolds

In the definition of Boehmians it is necessary that (S, *) is a commutative
semigroup. In all cases considered in the previous section * and ® denoted the
ordinary convolution on RY. Since this convolution is commutative, we never
encounter any problems with that requirement. In this section we will consider
some examples where the situation is more complicated. We first define Boehmi-
ans on the sphere SS9 where d > 2, and then on more general manifolds. Since
there is no natural convolution on S%, we need some technical preparations.

et = (D) ) 0,1) € RN, We shall refer to ey as the north pole of S¥=1,
the unit sphere in RV, Let 7 denote the set of all real orthogonal N x N matrices
of determinant one. Note that if T € 7, then T corresponds to a rotation of S¥~1,
We will use freely the same symbol to denote the matrix and the corresponding
transformation of R". Let £ = {Z € T | Zey = ey}. By a zonal function we
mean a function that is invariant under all rotations Z € Z. The collection of all
zonal functions will be denoted by A:

A={peL>(SN"") [poZ=pforall Z€ Z}.

Let f € L'(S¥=1) and ¢ € A. For € S¥=1, we define
() @) = (f ) Trew) = [ S (1512) d,
SN-1

where T: € 7 is such that Tyey = @. It turns out that this operation is well
defined. Indeed, if f € L'(S¥=1), ¢ € A, T,R € 7, and Tey = Rey, then one

prove that
/, (e (T7'z) ‘"-/ f(2)e (R7'2) dz,
SN gN-=1

(see [24]). It can also be shown that (A, ) is a commutative semi-group. The
family of delta sequences A is defined as the collection of all sequences ¢y, @2, . .. €
ANC(SY¥=1) such that the following conditions are satisfied:

(8) o >0 foralln€N,
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(b) fon-1n=1 allneN,

(c) supp ¢n — ey as n — o9, i.e., for every neighborhood V of ey there exists
an ng € N such that supp ¢, C V for all n > nq.

This gives us all the necessary ingredients for a construction of Boehmians.
For more detail of this construction and some other properties of Boechmians on
the sphere see [24].

Note that in this example, as well as in any other construction considered
so far, S is a subspace of X and * and © are the same operation. We will now
take another look at the construction of Boehmians on the sphere S¥=1. In this
approach S is not a subspace of X'. Actually, functions in § and in X are defined
on different spaces.

We first note that 7 is a compact group (with respect to composition). We
denote by I the identity of the group, by ST the product of S and 7" in 7', and
by S~ the inverse of S in 7.

We denote by C(7') the space of continuous complex-valued functions on 7.
The convolution of ¢, € C(7) is defined by

(o +¥)(T) :/Tgc(S)u-(s-'T) ds,

where dS is the normalized Haar measure on 7. Since 7 is compact, the Haar
measure is bi-invariant. C(7') is an algebra under the defined convolution, but it
is not commutative. Since commutativity in S is necessary for the construction,
we will use the center of C(7) for S. Thus ¢ € S if and only if ¢ * ¢ = 1 x ¢ for

all y € C(T).
ForpeC(T) and f € C(SN=1), we define the ®-convolution as follows:

YoR@ = [ fr-memr.
Then f ® ¢ € C(S¥~'). Moreover, for any f € C(SV=') and ¢,% € S, we have

folpxy) =(fop) oy

Finally, A is defined as the collection of all sequences of functions ¢, € S for
which the following conditions are satisfied:

(i) [r@a(T)dT =1 forallneN,
(ii) There exists a constant M such that f., ln(T)|dT < M foralln €N,
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(iii) For every neighborhood V of I there exists an ng € N such that supp ¢, C V
for all n > ng.

Since we insist that delta sequences are formed from functions in S, it may not
be entirely obvious that such delta sequences exist. One can show that this is not
a problem (see [22]). We now have all the elements necessary for a construction
of Boehmians. We proceed as described in Section 3.

This second construction of Boehmians on the sphere is more complicated
and requires more abstract tools than the first one. The main advantage of this
approach is that it lends itself to generalizations. To this goal we will use the
framework of locally compact groups. This approach was already used in the
early work of D. Nemzer [27].

Let G be a locally compact group, e the identity element of G, and L'(G) the
convolution algebra of integrable functions with respect to the left Haar measure
on G. The convolution in L'(G) is defined by

(P + 1)) = /o PN(a) da. @)

By Z(G) we will denote the center of L'(G), i.e., ¢ € Z(G) if and only if f %@ =
@+ [ forall fe L'(G). As in the case of the sphere, A is defined as the collection
of all sequences ¢1, @2, ... € L'(G) such that

(A) ¢n€ 2(G) forallneN,
(B) ¢n >0 forallneN,

(C) Jgpn=1 forallneN,

(D) For every neighborhood V of e there exists an ng € N such that supp ¢, C V
for all n > ng.

One can show that conditions IV(i) and IV(ii) in Section 3 are satisfied. However,
we cannot expect that delta sequences will exist for an arbitrary group G. A
locally compact group G will be called a B-group if there exists a delta sequence
in L'(G). Clearly, every first countable locally compact commutative group is a
B-group. We can also show that every first countable compact group is a B-group
[21).

If G is a B-group, then we can take X - LY((), S~ Z(G), the convolution in
L'(G) for both ® and *, and A as defined above. Then all conditions necessary
for the construction of Boehmians are satisfied.

Now we are ready to describe a method of construction of Boehmians that
can be applied to a variety of manifolds.
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Let M be a o-compact manifold and let 7 be a locally compact group of
transformations on M such that:

(I) Every T' € 7 is a homeomorphism of M,
(I1) For every f € C(M) the mapping T+ f o T is continuous,
(I1I) For every @,y € M there exists a T' € 7 such that Tz = y.
For f € C(M) and ¢ € L(7) define

(0P = [ fraem)ar.
i
If f € C(M) and ¢,y € Z(T) we have

fo(pxy)=(fop) 0¥,

where » is defined by (3).

If 7 is a B-group, then the construction of Boehmians is possible for A’
C(M), § = Z(7), and * and @ as defined above. For example, if we can find
a locally compact group of transformations 7 on M that is first countable and
commutative or first countable and compact, then we can construct Bochmians
on M.

5. Other convolutions

We would like to close this paper with a brief description of the approach to
generalized functions defined by convolutions studied by I. H. Dimovski in [7].
The convolution introduced in Section 2, i.e.,

(ro@ - [ " f(@ - Wy,

(called the Duhamel convolution in (7)), is associated with the Volterra integration
operator

(L) = /0 " S dy

via the following property
Lf=Hxf,

where H is the characteristic function of [0, 00). Since the convolution product
is associative, we have

L(f*g) = (Lf)xg forany f,geC.
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This suggests the following generalization of the notion of the convolution:

A bilinear, commutative and associative operation *: X x X — X in a linear

space X is called a convolution of a given linear operator L: X — X if L(f*g) =

(Lf) * g holds for all f, g € X.
If certain technical conditions

re satisfied, one can construct an operational

calculus for such a convolution similar to the construction presented in Section

2.
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