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1. Introduction

In the present survey paper, we are willing to give an overview of the so-called
wave packets methods in PDE. These methods were revived in western mathe-
matics by the papers [CF],[U], although they go back actually to a long tradition
initiated by Berezin [Be| in the Soviet Union. The same type of transformation
was used in [La] to handle PDE in infinite dimension. We are using here the
name Wick quantization as a reminiscence of the so-called Wick symbols as they
are described in the book [Sh|.

In section 2, we start from scratch and we give a self-contained introduction
to Fourier analysis, using as an essential feature the wave packets transformation.

* Key words and phrases. Poisson formula, Wave Packets, Fourier transform, Gabor wavelet,
Wick symbol, FBI transform, Energy estimates
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To illustrate the versatility of this tool, we provide a simple proof of the Pois-
son summation formula. Section 3 describes more systematically various positive
quantizations which are widely used, sometimes implicitely, in the Physics liter-
ature under the generic name of coherent states. Some composition formulas for
these quantizations are given along with their proofs, since we believe that they
are original and quite simple and were useful to proving various a priori estimates
for PDE. In section 4, we recall the remarkable fact that the regularity of a func-
tion can be read on its wave packets transform, for the Sobolev regularity as well
as for the Gevrey regularity. The investigation of the analytic regularity via the
Fourier-Bros-lagolnitzer transformation [BI] has a now long history and is closely
related to our approach. Section 5 opens the wide topic of energy estimates; we
show on two typical theorems how the Wick quantization can be useful to proving
a priori estimates.

2. Elementary Fourier analysis via wave packets

Let u be a function in the Schwartz class of rapidly decreasing functions
S(R™): it means that u is a C* function on R such that for all multi-indices!

a,

sup [2%0Pu(z)| = Cap < o0.
zERn

o X . —|zI? " v
A simple example of such a function is e=1#I*, (|z| is the Euclidean norm of ) and
more generally if A is a symmetric positive definite n x n matrix the function

(2.1) va(z) = e~™(A=)
belongs to the Schwartz class. The Fourier transform of u is defined as
(2:2) (€)= / e~ A€y (z)de.

Rn

It is an easy matter to check that the Fourier transform sends S(R") into itself
t. Moreover, for A as above, we have

ta = (ai,...,an) € N*,z% = 2% ...a4", B € N", 08 = 881 ... 9%x.
#Just notice that

" olla(€) /e 2inz€ 92 (2 (z)dz(2im) '~ (-1) "

a0\
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(2.3) DA(E) = (detA)=1/2e==(A7'e8),

In fact, diagonalizing the symmetric matrix A, it is enough to prove the one-
dimensional version of (2.3), i.e. to check

/ e-Rinat g=mat g / e~ EHE? fpg—mEli o—ne?

where the second equality can be obtained by taking the &-derivative of [ ¢ 7+

dz. Using (2.3) we calculate for u € S(R™) and € > 0, dealing with absolutely
converging integrals,

ulz) = / ¥ ()e=me el g

- // e?iﬂ’xfe—wt’|£|7u(y)e—2my£dyd£

Il

[utemeevenay

(u(@ + ey) — u(z)) e~ dy + u(z).
RI TR AT

with absolute value<e|y|||u’||

Taking the limit when ¢ goes to zero, we get the Fourier inversion formula

(2.4) u(z) = / e*=Eq(€)ds.

So far we have just proved that the Fourier transform is an isomorphism of the
Schwartz class and provided an explicit inversion formula. This was devised to
refresh our memory on this topic and we want now to move forward with the
definition of our wave packets. We define for z € R”, (y,1) € R x R"

(2.5) Py(@) = 2"/ te=m(E-1) gRin(z—v)m an/Ag-m(z-y=in)g=mn’
where for ¢ = (G1,...,(n) € C*, we set
P 2
(2.6) ¢t="3 G.
1<j8n
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We note that the function @y, is in S(R™) and with L? norm 1. In fact, ¢,
appears as a phase translation of a normalized Gaussian. The following lemma
introduces the wave packets transform as a Gabor wavelet.

Lemma 2.1. Let u be a function in the Schwartz class S(R™). We define

W u(y,n) = (U Pypdrz ey = 274 / u(z)e~"@9? g=2imGE=v) gy

(2.7) :2"/"/u(a;)e'"“"“""‘)zda:e'"qg.

For w € L*(R™), the function Tw defined by
(Tw)(y + in) = ™ Wy, —n) = 2/ / w(z)e"WHT== gy

is an entire function. The mapping u — Wu is continuous from S(R™) to S(R*™)
and isometric from L*(R™) to L*(R?"). Moreover, we have the reconstruction for-

mula

(2.8) u(z) = / / Wu(y, n)ey,q(z)dydn.
RnxR?

Proof. For u in S§(R™), we have

Wuly,n) = Xm0 (1,y)

where Q' is the Fourier Lmnsforgm with respect to the first variable of the S(R*")
function Q(z, y) = w(z)e~"(==*2%/4. Thus the function Wu belongs to S(R").

It makes sense to compute

2-2(Wu, W) p2(men) =
lim / (@ Ja(wa) e~ =D K0 =22 gy gy iy

Now the last integral on R'™ converges absolutely and we can use without shame
the Fubini theorem. Integrating with respect to 7 involves the Fourier transform
of a Gaussian function and we get ¢~"e~™ “(=1=72)* Since

2zy — )? + a2 —y)? = (@1 + 22— 2)* + (@1 — 22)°,

integrating with respect Lo y yields a factor 2-7/2, We are left with
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(W, Wu) 2zam) = lim / u(@1) Wag)e "1 =2 R nemm =)’ gy gy,
=0,
Changing the variables, the integral is

lim / w(s + et/2) (s — et/ 2 dtds = |[ul 2z

by Lebesgue’s dominated convergence theorem: the triangle inequality and the
estimate |u(z)| < C(1 + |z|)~""" imply, with v = u/C,

|u(s + €t/2) B(s — et/2)| (1+ |8 +et/2])~" (1 + |5 +et/2])~ ™!

=
< (1+|s+et/2] +|s —et/2])~ "1
< (1+2s))™ .

Eventually, this proves that

.(2*9) ”Wu”%,n(x:n) 7 ”“Hi?(gn,
1Le

W:L*R") — L*(R?™)  with  W'W =ida(gn).

Noticing first that Wu(y, n)¢yndydn belongs to L*(R™) (with a norm smaller
than ||Wul|z1(z2n)) and applying Fubini’s theorem, we get from the polarization
of (2.9) for u,v € S(R"),
(w, V) pamny = (Wu, Wo)pagam)
Wu(y, n)(@y,n: v) r2zmydydn

- < [ wuwnreydvan, u>
L2(Rn)

yielding the result of the lemma u // Wu(y, n)ey.qdydn.
The following lemma is in fact the Poisson summation formula for Gaussian
functions in one dimension.

Lemma 2.2. For all complex numbers z, the following series are absolutely con-
verging and
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(2.10) Z e—m(ztm)? _ Z g—mm? gRinms
meL meZ

Proof. We set w(2) = Ymez € "**™”. The function w is entire and 1-periodic
since for all m € Z, z — e~"(=+™)” is entire and for R > 0

sup |e—7r(z-|-m)2l < sup |e—x;"e—m762w|m|n € ll(Z)'

|sl<R Jsl<R

Consequently, for z € R, we obtain, expanding w in Fourier series §

1
w(z) = Zemk;/ w(@)e iy,
0

keZ

We also check, using Fubini’s theorem on L'(0,1) x (*(Z)

1 1
/ M(E)E—Ziﬂk;cdz o Z / e—x(x»rm)?e-zi,rkzdm
0 0

meL

m+1 2
s Z/ ot g2imkt gy
=

meZ

—t? ik —k2
) /ewlemrkl:eﬂk.
R

So (2.10) is proved for real z and since both sides are entire functions, we conclude
by analytic continuation. (]

It is now straightforward to get the n-th dimensional version of lemma 2.2:
for all z € C", using the notation (2.6), we have
(2.11) Z e—w(z-l»m)’ & Z e—ﬁm')e2im-:'

mezn mezn

Theorem 2.3. The Poisson summation formula Let n be a positive integer
and u be a function in S(R™). Then

SNote that we use this expansion only for a C* 1-periodic function. The proof is simple and

requires only to compute 1+ 2Re Y, ¢ €2 ™ = 22ZENLUX Then one has to show that for

a smooth 1-periodic function w such that w(0) = 0,
i ! sin Az

lim =

A=too fo sinmz

w(z)dz = 0,

1
which is obvious since for a smooth v (here we take v(z) = w(z)/sin n).|/ v(z)sin Azdz| =
o

O(A™") by integration by parts.

Va0
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(2.12) > ouk) =3 alk),
kezn kezn

where i stands for the Fourier transform (2.2).

Proof. We write, according to (2.8) and to Fubini’s theorem

> uk=% / Wy, n)gy.q(k)dydn

kezn kezn
(2.13)
= [[Wuwn) ¥ cunhidyar.
kezn
Now, (2.11), (2.5) and (2.3) give

Doy (KE D PamlE)s
kezn kezr
so that (2.13), (2.8) and Fubini’s theorem imply (2.12). O
It is a simple matter to introduce at this point the dual space of the Fréchet
S(R™), that is the space S'(R™) of tempered distributions (the continuous linear
forms on S(R")). We can define the Fourier transform on §'(R") by duality¥:

(2.14) (T P)s@m).s@n) = (T, @) s/(rn),S(R")»

so that the inversion formula (2.4) still holds for 7' € S'(R") and reads

T=T; with (T,0)=(T,¢), ¢(@)=p(-2)

Using duality, it is a matter of routine left to the reader to give a version of
lemma 2.1 for tempered distributions. Now theorem 2.3 can be given a more
compact version saying that the tempered distribution Dy = 3 4czn 6k is such
that l‘)\o =Dy,

We shall need as well a parametric version of wave packets, and we state here
a lemma analogous to lemma 2.1, whose proof is left to the reader. We define for
z€R", (\,y,7) €R} xR" xR",

YIn the formula below, we deal with real duality, so that, if T, are in
L*R), (T, @) s'omy, sy = (T2 9) 12y
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(215) @) (@) = (2\)/1e=mAa—)? gRin(a=u)m — (@A) Ae-mMz—y= ") g=mA T,
We note that the function Ap;}n is in S(R™) and with L? norm 1.

Lemma 2.4. Let u be a function in the Schwartz class S(R™). We define, for
(\y,n) €ERY xR™® x R?,

WAU(, 1) = (UPfin) acgmy = (A / 2@)eataie Aty

(2.16) = (2)\)"/“/u(a:)e"'*(”“rl”")zdze‘"’vl”a‘
For w € L*(R"), the function Txu defined by

(2.17) (Thu)(y +in) = )\‘"/"e"’\”QWAu(y, —\n) = 2n/4 /u(z)e"‘*(y""”_‘)kda:
is an entire function. The mapping u — Wu is continuous from S(R™) to S(R*")

and isometric from L*(R™) to L*(R?*). Moreover, we have the reconstruction for-
mula for each positive X,

(2.18) (@) = / / Wau(y, n)ey (@) dydn.
Rn x Rn
In the next section, we shall clarily the role played by the Gaussian functions
in these formulas.
3. A family of non-negative quantizations

A few facts on classical and Weyl quantizations. Let a(z,€) be a classical
Hamiltonian defined on R™ x R™. The Weyl quantization rule associates to this
function the operator a" defined on functions u(z) as

(3.1) (a%u)(z) //ez""(“”"‘ a(I’;’ Y &) uly)dyde.

For instance we have (2 - €)Y = (2 - Dy | Dy - 2)/2, with D, = % f; whereas
the classical quantization rule would map the Hamiltonian = - € to the opera-
tor # - D,. A nice feature of the Weyl quantization rule, introduced in 1928
by Hermann Weyl in [Wy], is the fact that real Hamiltonians get quantized by
(formally) self-adjoint operators. Let us recall that the classical quantization of
the Hamiltonian a(z, €) is given by the operator Op(a) acting on functions u(z) by
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32) (©Op(an) (@) = [ ¢ a(a,6) a(e)ds.

In fact, introducing the following one-parameter group J' = exp2imtD, - D,
given by the integral formula

()@, &) = ™ [[ e rata + y,¢ + myan,
we see that
O @) - [ / W€ (1 — 1)z + ty, E)u(y)dyde.

In particular one gets a" = Op(J'/?a). Moreover since (Op(a))* = Op(Ja) we
obtain

()" = Op(J(J72a)) = Op(J"/*a) = (@)"",
yielding formal self-adjointness for real a. Formula (3.1) can be written as
33) (@u,0) = [ ate €)@ o,
where the Wigner function H is defined as
(3.4) H(u,v)(z, €) — /u(z 1 g)v(z— %’)e*""vfdy.
The mapping (u,v) — H(u,v) is sesquilinear continuous from S(R") x S(R") to

S(R*") so that a® makes sense for a € S'(R?") (here u,v € S(R™) and S* stands
for the antidual):

(a"u, V) s+ (wm),5(Rm) = (@ H(1, ) 5(m2m) s(R2M)-

The Wigner function also satisfies, since H(u,v) is the partial Fourier transform
of the function (z,y) — u(z + y/2)v(z — y/2),

[IH(w, v) || 2wany = [lullp2@m)l1vllL2ggn),

(3.5) H(u,v)(z,€) = 2™(0z U, V) L2(R7),

with (02 gu)(y) = u(2z — y) exp —dim(z — y) - §,
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2
2
2

and the phase symmetries ox are unitary and selfadjoint operators on L*(R™).
We have also (|U], [Wy]),

(3.6) e / a(X)2"oxdX — / (=) exp (2nE - M)dE,
Rin Ran

where =- M = &- 2 + & - D, (here E = (&,€)). These formulas give in particular

(3.7) [la®[|z(z2y) < min (2|al| L2 ey, |[@]] 22 z2n))s

where £(L?) stands for the space of bounded linear maps from L*(R™) into itself.

As shown below, the symplectic invariance of the Weyl quantization is actu-
ally its most important property. Let us consider a finite dimensional real vector
space [ (the configuration space R?) and its dual space E* (the momentum space
R{). The phase space is defined as & = E@ E*; its running point will be denoted
in general by a capital letter (X = (@,£),Y = (y,7n)). The symplectic form on &
is given by

(3.8) (@, €), (g, )] = (& Y)ee . — (0, @) > By

where (-,-)g- g stands for the bracket of duality. The symplectic group is the
subgroup of the linear group of ® preserving (3.8). With

L ( —I:(E) Id(oE') ) :

we have for X,Y € ®,[X,Y] = (06X, Y )¢+ ¢, so that the equation of the symplec-
tic group is A*cA = 0. One can describe a set of generators for the symplectic
group Sp(n), identifying ® with R? x RE: the mappings

(i) (2,8 — (Tz,!T~'¢), where T is an automorphism of £,
(i) (@k,&) — (& ,—xx), and the other coordinates fixed,
(iii) (z,€) — (2,€ + Sz), where S is symmetric from £ to E*.

We then describe the metaplectic group, introduced by André Weil [Wi]. The
metaplectic group Mp(n) is the subgroup of the group of unitary transformations
of L*(R™) generated by

(i) (Mru)(z) = |det T|~"/?u(T~'z) , where T' is an automorphism of £,

(jj) Partial Fourier transformation, with respect to zx for k = 1,... n,
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(i) Multiplication by exp(im(Sz,x))) where S is symmetric from B to £*.
There exists a two-fold covering (the 71 of both Mp(n) and Sp(n) is Z)

m: Mp(n) — Sp(n)
such that, if x = m(M) and u,v are in L*(R™), H(u,v) is their Wigner function,

H(Mu, Mv) = H(u,v) o x~".
This is Segal formula [S] which could be rephrased as follows. Let a € &'(R*")
and x € Sp(n). There exists M in the fiber of y such that
(3.9) (aox)¥ = M*a*M.

In particular, the images by 7 of the transformations (j), (jj), (ijj) are respectively
(i), (ii), (iii). Moreover, if X is the phase translation, x(z,&) = (2 + @0,€ -+ &),
(3.9) is fulfilled with M = T,.¢,, the phase translation given by

(Ten o) (¥) = u(y — zo) 2™ W=30),

If y is the symmetry with respect to (zo,&), M in (3.9) is, up to a unit factor,
the phase symmetry o,,¢ defined above. This yields the following composition

formula a“b® = (afb)” with

(afb)(X) = 2% / / e~ N =YX =Zlo(y)6(Z)dY dZ,

with an integral on R*" x R?". We can compare this with the classical composi-
tion formula,

Op (a)Op (b) = Op(aob)
(¢f.(3.2)) with

(@o0)(@) = [ e ala.& + bty + 2, dydn,

with an integral on R™ x R™. It is convenient to give an asymptotic version of
these compositions formulae, e.g. in the semi-classicall case. Let m be a real
number. A smooth function a(,&, \) defined on RZ x Rf x [1,+00) is in the

'We have developed a taste for using a large parameter A instead of a small Planck constant
h. writing A = 1/h will give back the more familiar picture.
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symbol class ST if

(3.10) Sup(z gyerin a21|1 D2 Da(z, € M)A HPI < oo,
Then one has for a € S and b € Say the expansion
il Sl
(3.11) (@)@ = > 27 3 “pa-DEora Dedtb+ra(ab),

0Sk<N  lalHIBl=k
with ry(a,b) € 574 +™2=N. The beginning of this expansion is thus ab+ 3:{a, b},

where

{a,b) = > 0,0 0,,b— 0 8,b
1<jsn
is the Poisson bracket and ¢ = 2mi. The sums inside (3.11) with k even are
symmetric in a,b and skew-symmetric for k& odd. This can be compared to the
classical expansion formula

T o 1
(aob)(z,&) = > ~jD8a 02b -+ tn(a,b),
la|<N

with ty(a,b) € STFm2N,

Definition and first properties of the Wick quantization. Let I' be an
Euclidean norm on R?"| identified with a 2n x 2n symmetric matrix ; we define

I'® = ¢*I''o, where 0 = 01 16' . We shall say that I' is a symplectic
=din
norm whenever I' = I'?. The basic examples of symplectic norms that we are
going to use are
)
9 B G e (A T
(3.12) Ty = A|da|* -+ 5 0 A, )

where )\ is a positive parameter. Our construction of the Wick quantization
could be carried out for any symplectic norm, however, for simplicity, we shall
limit ourselves to the norms (3.12). The following definition contains also some
classical properties.

Definition 3.1. Let Y = (y,n) be a point in R?® and A > 0. We define first the
operator
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(3.13) ) = [2ne= 2TV,
This is a rank-one orthogonal projection: using the notations (2.15-16), we have
(3.14) Bhu= (W) (V) = (4 93) pazmy -

Let a be in L*(R®"). The Wick()\) quantization of a is defined as

(3.15) a YN / a(Y)Lydy.

Ran
To check (3.13), starting from (3.14) is an easy exercise on the Weyl quantization
left to the reader.

Proposition 3.2. Let A be a positive number and a be in L®(R?"). Then
(8.16) aWViek) = Wrarwy, 1WIKY) = Idya(pe

where Wy, is the isometric mapping from L*(R™) to L*(R*") given in (2.16), and
a* the operator of multiplication by a in L*(R*"). The operator my, — WAW} is
the orthogonal projection on a closed proper subspace Hy of L*(R*™). Moreover,
we have

(3.17) [1laVIkD)| | 1 pagny) < llallzee(zany +
(3.18) a(X) = 0 =gV} >0,
(3.19) 1233l cqramnyy < 2" e FA0=2),

Proof. Here we assume that A = 1 and omit the indexation by A. The calculations
are analogous for other positive values of A. The first properties and (3.18)
are immediate consequences of lemma 2.4. The operator my is an orthogonal
projection on its range, which is the same as the range of W and the latter is
closed since W is isometric. On the other hand, 7 is not onto, otherwise 7y
would be the identity of L2(R?") and for all u € S(R™), we would have

Il 2y = 2Re(Dz,u, i1u) pagn) = 2Re(€)V"*u, i2YV%u) 12 gn)

= 2Re(& Wu, imyay Wu) 2zom) = 2Re(§ Wu, iz Wu) 2z = 0.
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Now, with L*(R") dot-products, we have

1(a™'*¥*u, v)|

/ a(Y)(Byu,v)dY
Rin

IA

e I P P

172 1/2
Hallaon (| Ivullzanay) ([ ||>:yu||i=(p,dv)
A: fid

[Jal| 00 @am) ||ull L2gm) 1] L2gn)

IA

yielding (3.17). For Y,Z € R?" a straightforward computation shows that the
Weyl symbol of £y-X7 is, as a function of the variable X' € R setting ['(T) =
|71

e~ 53IY-2|? o= 2in(X-¥\X=Z|gn —2m| X LZZ |2
Since for the Weyl quantization, one has |[a®||z(z2@ny) < 27|allzi(gan), we get
the result (3.19). (]

Remark: The positivity property (3.18) is not satisfied for the Weyl quantization
since the Wigner function H(u, u) (see (3.4)) is not always non-negative, although
it is actually positive if u is a Gaussian function. We leave to the reader the
computation of H(uy,u;)(z,€) which is negative in a neighborhood V of the
origin in R®" for the choice u(z) = a:,e‘"lIF. Now, choosing a non-negative
a(z,€) € CZ(V) and using (3.3) we get (@“uy,uy) < 0.

Proposition 3.3. Let m be a real number and p(z, &, \) be a symbol in ST; (see
(3.10)). Then

(3.20) pWick () pw | (o),

with r(p) € S™" so that the mapping p — 7(p) is conti Moreover, r(p) = 0

scl
if p is a linear form or a constant.

Proof. From the definition 3.1, one has PWick() = p_ with

(321)  pX) = / PX +Y) e~ TaM2ndy
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1
= p(X)+ / / (= 0)p"(X +6Y)Y2e 2 "Mgngydp,
0JR

r(p)(X)
We note now that the estimates (3.10) of ST on p are equivalent to
PPEOTH < CA™ETNT)E or pB(X)r, < CA™E

Thus we get
PO, < O™ [ my@)e s tr-iay,
RIn

and since det(I'y) = 1, the integral above is a constant and this implies that
rE S:l". The last point in the proposition follows from the formula (3.21)
showing that r(p) depends linearly on p”. (]

Remark. For further understanding of our results, it would be better to use
symbol classes defined by a metric in the phase space, as introduced in chapter
18 of [H1]. As we have seen above,

ST =8N ATITY),

that is symbols such that

a®(X)T* < (@A™ 5TA(T)3,
or more accurately, for all k£ € N,
() = sup  [a®(X)THA"™HE < foo.

XeR™m\>1,
TER™ I'\(T)=1

Proposition 3.4. Let a € L°(R*),b € S}

scl

be real-valued functions. Then

‘ 1 Wick(\)
(3.22) Re (aWickA)pWick(A)) [ab— e a'()’)-b'()')] IS,

where ||S||c(z2zny) < dnllal|z=y2(b). Here v2(b) is a semi-norm of b in S}, and
dy, depends only on the dimension.

Proof. We omit in the proof below the superscripts . We have
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WickpWick / a(Y)U(Z) Sy BydYdZ
= / alY) [B(Y) + B (Y) - (Z = Y)| By DzdYdZ
+ //a(}') [/nl(l — O (Y +0(Z — Y)) dO(Z — ¥)?| By Bpdydz
/ a(V)b(Y) Sy Y / / a(Y)B(Y) - (Z - Y)ByEzdYdZ + R,
with
e // oY, 2)(Z - Y)? TySz dYdz,

where the norm of the quadratic form a(Y, Z) is less than ||a||z=<72(b); here 72(b)
is a semi-norm of the symbol b. We need now to use the celebrated Cotlar’s
lemma in a version given in the paper (BL|(lemme 4.2.3') (see also [H1],[U]).

Lemma 3.5 (Cotlar’s lemma). Let (2, M, ) be a o-finite measured space
where j is a positive o-finite measure and let H be a Hilbert space. Let w— Ay
be a weakly measurable mapping from §) into L(H). We assume that

M~ maz (supcn [ 1142401120, supaca [ ||Ad.4:,-||”3du<u')) < +oo.
o o

Then the operator A = [, Aydp(w) is bounded on H with norm less than M.
From (3.19) and lemma 3.5, using

EyXzEyiBy = (ByEz)(223y) (ByEz0),

one gets that

(1Rl e(2any) < Cn)]]all L2 (b),

where ('(n) depends only on the dimension. We check now the second term in
the expression of a™V'*™* Wik yusing definition 3.1,

will give 0
(:r.'n/ V(YY) (Z-Y) Xy dZ =b(Y). [/(z-x X = ¥)2Ne #TX-2) 47| =

B(Y)- LY,

where Ly is the (vector-valued) linear form X — Y. Note that, from proposition
33, L™ ~ L™*_ We get then
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(8.25) Re(aWikpWick) = (aB)Wick + / a(Y)¥(Y) - Re(LYEy)dY + ReR.

Now, since Ly is a real linear form, we have
(326)  Re(LyEy) = (X - V)2re-2T-1]" = Lub(zy)
An integration by parts, in the distribution sense, gives what we expect in propo-
sition 3.4, except possibly for

1
(3.27) T / a(Y)Trace(b”(Y))EydY + ReR.
The estimate of R in (3.23), a € L®,b € S(A\,A™'T) and the estimate of [|aW'¥||
in (3.17) applied to the integral in (3.27) prove the statement on S in proposition
3.4, whose proof is now complete.
Remark. Under the assumptions a € L™(R*"),b € SL,, we have actually proved
that

1 Wick(A)

(3.28) aWikpWIck() = (g — L a/(Y) - ¥(Y) + m(a,b] + 8,
where ||S||¢(z2@ny) < dnllal|r=y2(b).

The Wick and Berezin-Wick quantization. A typical problem in the anal-
ysis of PDE is to deal with a Hamiltonian a(z, &) which is homogencous with
respect to &. This is the reason which led to the study of the most classical class
of pseudo-differential operators: a smooth function a defined on R*" belongs to
the class S™ (m is a given real number) whenever

(3.29) ((628¢0) (=, €)] < Cas(1 + lg)™-1A.

A very nice tool to study the properties of this class of operators is the so-called
Littlewood-Paley decomposition, which reduces the problem to a semi-classical
one. We give here a short integral version of this tool. Let 0 € C°((1,2),R,)
such that _[(,'°°0(1/)\)d)\//\ 1. For xo € C=({|€| < 2}), identically equal to 1
in the unit ball, w = 1 — xo,a € S™ we have

foo ¢ d
a(z,§) = a(@,§)xo(§) + /0 0 ("TI) »(E)a(m,E)T)‘-
Now, setting ax(z,€) = a(m,{)u(5)0(|§l), we see that

a € Sy, suppay C {A<|f| <2\} and

too d\ o
(3.30) a(z,€) »/; a,\(:c.{)T b x(€)a(x,&) where x € CZ({[¢] < 2}).
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Now, we can set-up, with 0) € C§°((2".22).R+),0‘ =1on (1,2),
(3.31) on(@6) = 0(@)«»(5)- Ya(z,€) = 0:(@)(»({).
so that we have ity 0 N
(3.32). .a= / ax— -+ xa =/ Palaxiva— + S,
1 A 1 A
with S~ = NperS™.

As a matter of fact, since ¥ = 1 on the support of ay, we have, with r; € S,
2
uataatyn = Pall (axa +m1) = ¥iax + 12 = ax +r2.

Since r satisfies Ia?t"?wl < Copnmin([g]~N=1#1 A=N=171) we get that f]"“’ rad\/A €
S, We can now modifly (8.32) to get the Berezin-Wick quantization of a symbol
a€S™:

foo
! w0 Wi wdA
(3.33) ORLs / Uiay ""mv"{T
1
From (3.32) and proposition 3.3, we get that
Yy Oy — gyl e
with by, € .‘:‘:'l"; it is an easy exercise Lo prove that fl'm Yaibm— 1 YN/ A
belongs to S™'. This implies that

(3.34) aP¥ = ¥ | Op(S™ 1) i= a1 by with i ST

and since the Wick quantization is positive, we get at once the standard Garding
inequality. Let a € S' be a non-negative symbol; then, with an operator Rt €
Op(S9), we get

g ; =R dA 2
(3.35) (a™u, u) 2 (zny / (ay "M u, Yi'u) = t(Ru, u) > =Cllull7aggn)-
1 —

>0

Of course formula (3.34) can be iterated so that for any a € S™, there exists
a € S™ such that a—a € S™ ! and

¥ =aBW 4 with reS—=.

Remarks. It is interesting to notice that the Wick and the Berezin-Wick quanti-
zation could be defined in a much more general framework, involving classes of
pseudo-differential operators defined by metrics as in chaper 18 of [H1]. In fact,
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following the presentation in [BL], one can write for a symbol in the class S(m, g)
that

a= / apydY.
Rin

Using the metric gy, one can define a symplectic metric I'y such that

gy STy =T§ < gf.

‘Then changing slightly our notations, we can define the Wick quantization for
the symplectic metric I'y;, denoted by Wick(I'y-). Then the formula

0 = [ Uap) W updy

provides a positive quantization of the symbol a, assuming that the symbols ¢y
are uniformly in S(1, ) and supported in an neighborhood of the support of ¢y-.
On the other hand, the difference a® — a® has a Weyl symbol in S(mh, g).

A different and more elementary question is to understand to which extent
Gaussian functions play an important role in the definition of the Wick quanti-
zation. As observed in the proof of Theorem 18.1.14 in [H1], the regularization
of the symbol by the Wigner function of a Gaussian of the configuration space
(which is also a Gaussian function of the phase space) can be replaced by reg-
ularization by ®f® where ® is even with L?*(R?") norm 1. Definition 3.1 gives
that the Weyl symbol of aV'(V) is the convolution

a*2"exp — 21r(/\|:t|7 f ,\"IEI’) as»HM(p,p).

In fact the sole virtue of this mollifier is to correspond to a non-negative
operator, here a rank-one projection whose Weyl symbol is the Wigner function
H(, @), where ¢ is a Gaussian function. Nonetheless ¢ could be replaced by any
even (or odd) function, but in fact ®fd would be an appropriate substitute for
H(g,¢). It seems that the fact that the computations with Gaussian functions
can be made rather explicit is the only explanation to the popularity of Gaussian
mollifiers for positive quantization.

As a final remark in this section, one could also say that the more refined
lowerbounds given by the Fefferman-Phong inequality are out of reach of the
tool introduced here. The microlocalization involved in this inequality use a
Calderdn-Zygmund decomposition, which depends heavily on the symbol under
scope. However, the strength of the wave packets method relies on the fact that
it provides a non-negative quantization.
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4. Regularity of Functions

Going back to lemma 2.4, we recall that with Wiu defined in (2.16) and v,o'v‘_,,
given in (2.15), we have for any positive \, and u € §'(R"),

4.1) u / Wauly, m)e)qdydn,  (Tau)(y +in) = A=/ 4e™ 7 Wyu(y, —An)
R2n

in such a way that 7} is an entire function. Now the function Wyu is defined on
the phase space R®™ and appears as a good representative of the function u at
the frequency A. In fact, using the Berezin-Wick quantization of section 3, we
have

Foo h d\
u= / yr:{‘d»xv“k(”t,/"'\”uj\— +C™.
J1

The following proposition is proved in [G] (see also [D]), using the operators
Ty.
Proposition 4.1. H* regularity. Let s be a real number, Q be an open set of
R" u € D'(Q) and (z0,&) € 2 x (R™\{0}) = T*(2). Thenu € Hy  iff there
exists a neighborhood Vo of (w0, &/|&|) such that for all x € C2(m1(Vo))

s 2 BN
(12) / //Km(% WA () (2, ) dade X" < oo
1 o T

(o, fy)EVD

N.B. In fact, the left-hand-side of (4.2) appears as the H* norm of a“yu, where
a is a symbol in S whose essential support is included in Va.

It is pretty remarkable that this tool could be used as well to describe Gevrey
regularity (the analytic case is o = 1).

Proposition 4.2. Gevrey (7 regularity. Let ¢ > 0, Q be an open set of
R" u € D/(Q) and (z0,&) € & x (R"\{0}) - T*(Q). Then u € G7, o iff there
exists a neighborhood Vo of (20,0 /|6|) such that, for all x € C=(m (Vo)) iden-
tically I near xg, there ewists p > 0 such that

(4.3) supaz1, A<lej<an, [Wa(xu)(@, §)lexp(pAl/?) < +oo.

(z,%)EV0

5. Energy estimates

Propagation estimates for micro-hyperbolic operators. Let us consider
a principal type properly supported pseudo-differential operator P of order m
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on an open set 2 of R and assume first that the principal symbol p(z,§) is
real-valued. Let I' = (7(t))r,<i<7, be a piece of bicharacteristic curve, that is an
integral curve of the Hamiltonian vector field of p,

p s39q0
@ O=HoW)  H= Y 55

The classical propagation-of-singularities result (see theorem 26.1.4 in [[1]) states
that if u € D/(Q) is such that

Pu € H{, u€ II:".,’.I")".
then

u e HIESL,

The same statement remains true if the imaginary part of p is non-negative. If
the imaginary part of p remains non-positive, the role of Ty and 73 should be
exchanged in the statement above. There are essentially two families of proofs
of these results. The first one deals with Fourier integral operators reducing the
problem to proving an casy estimate for operators of type

Dy, + ro(ar,2', D)

where ry is a pseudo-differential operator of order 0. The second type of proof is
more direct, but in fact equivalent, and consists of finding a zeroth-order “multi-
plier™ My to check
2Re(Pv, iMpv)
for a compactly supported v. Whenever the imaginary part of p is non-negative,
we choose a non-negative mg such that
Hyep(mo) = Yo — ¥

where ¢, are non-negative symbols in S° supported respectively near v(7}), j

1,2. Using (3.28), it is possible to give a very simple approach to this kind of
proof. The natural multiplier My is the Wick quantization of a non-negative
function mg(z, &) which is the characteristic function of an open set w such that

HRep(mo) = 8o — &y

where A; is a positive measure supported on an hypersurface ¥; 3 v(7) transver-
sal to Hyp,. The fact that mg is only L™ is not an obstacle to using (3.28).

Solvability estimates for a class of operators with complex symbols.
Although micro-hyperbolic operators are well-understood for quite a long time,

- /AT
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the situation for pseudo-differential operators with complex symbols is far more
complicated. We refer the reader to the surveys [H2],[L2]| for an overview on these
questions. However, we want to quote and comment in more details the result of
[L1]. Let us consider the operator

(5.1) L = Dy +ig(t,z, Dz)
where ¢ € R and g(t,2,€) is a first order symbol such that
(5.2) q(t,a,€) > 0 and s > t = g(s,2,£) > 0.

Condition (5.2) appears as the natural condition to get solvability for L*, the
adjoint operator of L: it is the so-called condition () on the symbol 7 —iq(t, z,£).
It is not known if this condition is sufficient for solvability of L*, although the
necessity is proved in [H1|(Corollary 26.4.8). In the paper [L1], we were able to
prove the following solvability result, supplementing (5.2) by an extra condition.

Theorem 5.1. Let g(t,x,&) € C%([~1, 1], C®(R? x RY)) be real-valued satisfying
(5.2) such that

(5.3) SUPj<1, (=) eron | 0208 (t @, O)[(1 + [E) TP < oo,

We assume that there exists a constant Co such that, for €| > 1,

<Gl (115) at g(t,2,§) =0

64 16~ S, m)] Il |gatn.0.6)
Then, there exist (wo positive cmwlants Cy, po suclx that, for all u(t,x) € C*®
vanishing when |t| > po,

(5.5) Cu| Ll | amn sy 2 ||ullg2ggess)-

The proof is too long and too technical to be reproduced here. However the
idea is pretty simple and quite naive, as a matter of fact. Condition (5.2) implies
that there is a function s(t, z,€) valued in {—1,1} such that

.
q(t,z,€)s(t,z,€) = |q(t,2,€)| and a—f is a non-negative measure.
The function s is somehow a good choice for the sign of g. Then we choose as a
multiplier the operator
Bt €) RS

and we use proposition 3.4 to handle some of the computations. The fact that
we deal with a non-negative quantization plays an important role, beyond the
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lowerbounds properties. Unfortunately, proposition 3.4 is not enough to get (5.5)
assuming (5.4), except if Cp is small enough. The argument gets more compli-
cated to tackle large constants Cp in (5.4) and we have to resort to the more
refined Beals-Fefferman partitions of unity.
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