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Abstract 

This nrtJicle describes sorne uspecLs of lineariscd t.be0ry 0f waLer wnws 
in t he contexb 0f cunr.ent reseurch intercsts in this aren. After u brief int.rn­
duct.ion, t he busic C(;Jtrnbi0ns in t hc li nea.rised t.heory of w¿i,tJer wuves along­
\~1it.h t.heir genernl so!utions, concepts of scattering and radiati0n 1~roble111s, 

breakwat.ers u.ad fürn!lly t rupped waves are presented wiUhout going t hrough 
lhe details of malihemuiticul analysis involved in t.hese prnb!ems. This may 
mot.ivu.te tibe reuders Oo feel interested in water wa"e problems. 

l. Introduction 

The phenomena of wave prnpagation are encountered in al11iROSt nll branches of 
mathemat.ical physics sweh as continuum mechanics, quantum mecha.nics, ac0us­
tics, elecLromagnetic tll1e0ry ehc. IL is somewhaL difficul t LO give a precise clefi­
niLion of whaL consbibube a wave1 but Lo cover Lhe whole raiijge of phenomenon 
wiLhouL being restrictive, it can be stated int.ui t i vely tihat wave is a recogniizable 
ignal Lhat is Lransfen1ecl füiom one part of the medium LO anot,.her par t wit h a rec~ 

ognizable veloci ty of ¡!>It©pagation. T he signa! may be any fea.ture of cl isturbance 
which is clearly Pec©gBizal:>le and its locat.ion 8L any Lime can ©e determine<l. 

According Lo the farn0us t.heoret.ical physicisL A. Somerfeld 1 'ever since waves 
werc tudied1 water wa·ves luwe servecl the natural scientist as a model for wave 
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theory in general' (cf. Segcl(l977) p 299). Consequent,ly Lhc wave phcnomcna in 
water wit.h a free surface undcr gravity havc atLracted t.he au cnlion of a number 
of famous mathematicia ns and physicists such as A. L. Cauchy (1759-1857), S. 
D. Poisson ( 1781-1840), J. L. l,agrangc (1736-1813), G. B. Airy ( 1801-1892), G . 
G. Stokes ( 1 19-1903), Lord Kelvin (Si r W illiam Thomson) (1 824-1907), J. H. 
~ilichell {1836-1921) and many others. This has resulted in a syst.emat.ic develop­
mcnt. of thc theory of water waves from thc latter hal f of thc cightecmh ccnLUry. 

This theory has providcd a background for a somewhat rich devclopmcnL o f sorne 
important ma themat.ica! concepts and tcchniqucs and consec1uently it has becomc 
a n imporlant bra nch o f appliecl mathematics as well as mathcmatical physics. 
Thc theory of water waves is most varied and is a fascinating subject 1 it incluclcs a 
wide rangc of natural phenomena in oceans, ri vers and lakes. T hc rescarch act iv­
i t ies in lhis area accelcratcd aftcr the sccond world war due to exptosive growth 
in occan-rclalcd indusLrics such as offshorc drill ing for oil production, construc­
lion of offshore strucLures, cxtraclion of wavc cncrgy from occan wavcs, dcsign 
and manufocLuring of largc ships, oil tankers, breakwaters LO prot.ecL ports, sea 
rcsorts from thc impact of rough sea, etc. lntcrcst in wavc intcracLion wiLh fixed 
»nd floating stucturcs was somcwhat stimulatcd aftcr the unsuccessful ancmpts 
to uti lizc pon ablc and ftoating brcakwat.crs in thc surprisc amphibious landing 
at :\ormancl.r. l·'rancc, during t.hc sccond world wfü·. 
Fioat ing docks, brcakwatcrs, burgcs, ships, oil Lankcrs, submersiblcs supporting 
oil drilling rigs, vcry largc floaLing sLructures (VLPS) cLc. are ali sLucLurcs which 
are uscful in thc ocean-rela.ted industries. Safcty and performance of these sLn1c­
Lurcs depend on how Lhey respond LO ocean waves, par t icularly when the occan is 
rough during a storm. In a calm ocean these sLructurcs are in stat.ic cquilibrium. 
1 lowcver, if thc ocean is rough, then the wavcs are bcing diffracted by a sLrucLure 
prcscnt in thc ocean and the structurc is bcing subject.cd to considerable thrust. 
produccd by ocean waves ancl Lhus oscillat.es, and furt.her radiat.es wavcs, and 
expcrincccs addit ional t.hrnst from thc surrounding íluid. Thus invcstigation oí 
problcms on interaction of water wavcs and st.ructures is vcry imporLant.. Prorn 
the Lime of Lord l<elvin and J. H. Michell intcract.ion of water waves wit.h float.ing 
or submerged bodies (or st.ruct.ures) has been an acLive area of research in fluid 
mechanics. lnvcst.igation of problems 011 wave intcraction with largo sLrucLures 
necdecl for oil exploration in high seas has become very significanL during thc 
last. few decades. Thesc investigaLions are obviously concerned wi th dcveloprncnt 
of analytical and computational techniqucs to predict. hydrodynamic intcraction 
of wavcs with float.ing or submergecl structurcs. Thc lh1eari.sed Lheory of water 
w;wcs is gencrally uLilizcd in Lhe maLhcmatical analysis for most cAscs although 
1 lir free surface boundary condition produces severc oomplication. Thc prob-
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lems are usually ta.ckled by ju<llicious combina.tion of analytical and numerical 
techniques. 

Below we present briefly the basic equations of the lú1earised t.heory of water 
waves and the form of general solut ions1 concepts of wat.er wave scat.tering and 
radiation problems, breakwat.ers and trapped waves. The mathemaLical analysis 
is kept. at. a rn inimum leve! to creat.e interest in the t.opic t.o a reader wiLhout 
having any background knowledge on water waves. 

2 Linrearised Theory of Water Waves 
l3as1c Bqual'ions 

The basic equa.t ions in the linearised Lheory of wat.er waves are rernMkably 
simple. T hese are derived uncler assumpt.ions that. water is an incompressible1 

inviscid and homogeneous fluid and Lhc mot.ion in iL is under t.he act.ion of gravit.y 
nncl is assumed to be irrota.L ional and small. The assumption on smallncss of 
rnot.ion mea.ns t.hat. t.he vclocity componenLs Logether wit.h t.hcir part ial derivati vos 
are c¡uami l ies of fi rs t. arder of smallness so t.hat thei r product.s, squares and higher 
powcrs can be neglect.ed. J\ lso there is a free surface which is horizontal whcn thc 
fluid is at rest. When a rno~ ion is set up1 the free surface dcvia.tcs smoothly from 
its horizonlal position and Lhis deviat ion is small compa.recl Lo sorne physical 
length. The assumption of smallness of t.he velocit.y components ancl thc free 
surface devia t.ion (elevaition or clepression above or below the inean horizorMd 
leve! of the free surface when aL rest) toget.her wiLh t.heir part.ial derivati vcs allow 
us lO linearise t he various equations of íluid mechanics and t.hus consLilut.e t hc 
ha is for the linearisecl lheory of water waves. 

\Ve choose a rectangular carLesian co-ordinat.e sysLem in which t,he y-axis is 
taken vertically downwards1 xz- p!ane is the position of Lhe undisturbed free 
surface so t.hat. water occu¡¡:iies t.he half space y ;::: O if ii, is in finiLely decp or t he 
region OS y S h i f iU is of Anibe clepLh h. We will assume h uo be constanL in our 
cliscu ion here. However, for wa.tcr of variable dept.h, h is generally a funct ion of 
x and :.. l f Lhe irrouaotional mol.ion in water is describe<! by Lhe velocity potenlial 
•l>(x, y,.:, !)1 where l is ~he t ime, t.hen the equation of conUinuity produces 

'V'r<P = O in the fluid region ( 1) 

where 'V! is the three dimensional Laplacian operator1 and the lincarised form of 
thc BcrnoulWs equation is 

(2) 
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where p is thc presure and p is thc densit.y oí water. 
Let y = r¡(x1 z, t) denote t he free suríace depression below t.he plane y = O, 

Lhen r¡ together wi th i ts partial derti vat ives are smooth funcLions and quant.ities 
of first order of sma llness, so that on thc free surface y = r¡, t he cond ition (2) 
gives ri se to 

él<P = gr¡ on y = O 
élt 

(3a) 

since pis constant on thc free surfacc (the at.mospheric pressure) a nd can be t.aken 
to be zero by suitablc choice of t.hc pressure sca lc. The equat.ion (3a) is in fact. 
thc linearised dynamica.l condiüon al the free smface. The lúieari.sed kinematical 
conditiou at lhe free stuface is 

él<I> = l!!J. on y = O 
élt élt 

(3b) 

wh ich is obtained from t. he fact t.hat t. hc vcloc ity of thc fluid particles at t.hc free 
surface normal to it must be equal to t.hc vclocity of t he free surface al that poinL. 

Eli minaLion of r¡ bctwccn (3a) and (3b) produces ihe Unearised free smface 
cond'ition 

The cond iLion of no moLion at the boLtom givcs 

(5) 

if Lhe \valer extcnds infinitcly downwards. l-lowever, if thc water is of un iform 
ñni te dcpth h below t he mean free su rfacc, t hen 

º'~ - = Oon y = h. 
ély 

(.5') 

Thus thc basic equ.alions of Lhc lincarisccl theory of wa ter wavcs are describcd 
by the pa r tial differemial equation (1), t he free sur face cond iL ion (•1) and t hc 
bottom condition (5) or (5') . As ment ionccl ear l ier, these are quite simple in 
their appearances. 

Por simple harmonic motion with angu lar frequcncy a . we may assurnc cf) (x, y1 

.:,l) to be of t he form ne{<jJ(x, y, z)e-iº 1 }, t hcn the complex valucd funcLion 
</>(x, y, z) satisfies 

\1~</J = O in thc fluid region1 (6) 

the free surface condition 

(7) 
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where /( = u2/g(> O), and the bottom condition 

íor infinit.ely deep water, ar 

'i11r/J- O on y -

iJj_ = O on y = h 
&y 

íor water OÍ uniíorm fini Le clepth h. 

277 

(8) 

(8') 

The ec¡uaLions (6), (7) and (8) or (8'), may also be regarded as Lhe basic 
equations oí the l inearised Lheory of water waves. 

l t may be noLed th&t one can introduce the effect of surface tension at the 
free suríace. In t his case the free suríace condit.ion (7) modifies to 

(9) 

whcre M = T/pg, 7' being the coefllcient oí surface tension. lt is imeresling to 
note Lhat. ah.hough Lhe govcrning partial derivatives upt.o second arder only, Lhe 
free suríace condition involves Lhe th ircl arder partial clerivative S· 
Genero/ solutions 

Por implicit.y we confine our attention Lo two-dimensional motion so Lh~lL <P 

is a funct.ion of x 1 y only. Then the basic equations set.isfiecl by <J; are described 
by t.he two-dimensional Laipalce equation 

'72 </J = O in the íluicl regian 

whcrc V2 is the Lwo-dimensional L a.p lace aperator, t.he free surfoce concli tion 

nncl the botLam condition 

far dccp wa t.er, ar 

'V<J;--1 0 as y-.oo 

iJj_ = O on y = h 
&y 

ror walcr ar uniíorm finite depth h. 
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The solulion for iP(x, y) can be obtained by the si mple method of scparation 
of variable. 

For the case of inñn iLCly deep water, using th is method, wc can casily find 
that 4>(x1 y) has the following two fo rms 

(!Oa) 

ancl 
<jJ(x, y) (k cos ky - /(sin ky)e-•lzl ( IOb) 

whcrc k is a non negativc real para rnctc r. Looking at t he t ime-cl cpcndcncc fac­
tor e- •at , wc can intcrpret the tcrrn e- 1<11 1•K.c LO representa progrcssivc wavc 
train propagating along t he posiLive x-di rection whilc e-Ky-il<r to reprcscnt a 
progrcss i\'C wavc train propagaLing along thc negat ivo x-d irect ion . Thc solut ion 
rcpresentcd by ( IOb) clics cxponeniially as lxl bccome largo so that this can be 
intcrpreux:I as a local solution having no cffcct. as jx j - In fact t hc set of 
functions 

forms a complete set of basis functions for 1,hc cxpansion of Lhe complcx va luc<l 
funclion <P(x, y) in Lhc half spacc y ;:::: O. This cxpansion is givcn by 

.P(x ,y) C 1e- KyHl<x ¡.. C2e - Ky-iKx 

{ lo°" A(k)(k cos ky - /( sin ky)e-"'dk , x > O 

1°" B(k)(k cos ky - J< sin ky)e"'dk , x < O 

(J I) 

whcrc C1 1 C2 are oonstnnLs and A(k) 1 R(k) are funct ions of k. Thc cxpansion { 11) 
is generally rcferred Lo as the l-lavelock 's expansion of water wave pot.cntia l in dcep 
water. The correspond ing integral expansion formula for a function / (y) defincd 
for y;:::: O and saLisfying thc Dirich let's cond iLion of Pourier integr al cxpansion is 
given by 

/ (y) = A0e- Ky +fo°" A(k)(kcos ky - J< sin ky)dk ( 12) 

whcrc 

Ao 2/( fo°" f(y)e - •Ydy , 

2 1 lo°" ---- (kcosky - J< sinky) /(y)dy . 
"k2 -1 J<' o 

( 13) 

A(k) 
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Por wstcr of unifonn fini te depth h, the solutions for q)(x1 y) are 

cosh ko(h - y)e±;koz , cos k,.(h - y)e-••i'l(n = 1, 2 .. ) ( l '1) 

where ±ko, ±ikn(n = 11 2 .) are the roots of the t ranscendental cquat.ion 

k canh kh 1\. 

Ais bcfore, thc first t.crms in ( 14) rcprcscnt progrC'S>tivC' wavc solut.ions propagming 
olong thc po itivc or ncgativc x-dircct.ions whilc thc SC'COlld t.crms rcprcscnt. local 
o;olulions which die away cxponl'lllially as lxl bccomcs largc. Thc set of functions 
givcn by ( 1 ·I) forrns a com.plele set. of basis funclions for t.hc cxp8nsion of th<' 
wntcr wavc potcmial </J(x,y) in t.hc strip O :S y S h. This C'xpansion is givC'n by 

<b(x,y) (¡c,i;:'" 1 c,.- '"''lco,hl.li(h -y) 

LA,, coo k.,(h - y)e-k.z dk, J' > O 

~ IJ,,<·o>k.,(11 y)c••'dk,.r < O 

(li;) 

whC're C1, ('2 an<l A 11 , 13,i('n 11 2, .. ) MC constam~. This <'xpt111siou is also known 
lb th(' llavC'lock's cxp~1 nsion of water wavc potC'ntial in fi niw dcpL11 wat<·r. Thc• 
l'Orr~ponding cxpansion formulA for a function /(y) dC'ñned in thc strip O ::; lJ :S h 
nnd sati-.fying thc Dirichlct. 1s condition for thc Fouricr series cxpansion is givrn 
by 

00 

/(y) Ao coshko(h -y) 1 ¿A.,cosk,,(h - y) 

whl'rC' 

Ao 
,lko r• 

2k0h 1 sinh2koh l i f (y)coshl.li(h - y)dy , 

4k,. 1 ) ) 2k,,h lsin 2k,,h 0 f (ycosk,.(h - y dy. 

(16) 
A,. 

Thc rormulae (11), (12), (13) as wcll as ( 1•1), (15), (16) play a vcry significanL 
role in the malhcmat.ical analysis of various water wave problems in dccp water 
as wcll as ñnitc depth water. 

Fbr three-drmensional mot ion with harmonic \'8.riation along Lhe z-dircction, 
wc can represcnt <l>(x 1 y 1 z, 1) as 

<~(x, y , z, t) /le{<f¡(x, y)e'"'-'º ') ( 17) 
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where now 4>(x ,y) sat.isfies the modified llelmholtz1s equation 

(\72 - v 2 )<P = O in the Huid region 

along wit.h the appropria.te free surface and bottom condit.ions. Por deep water, 
thc solutions for <f>(x, y) in this case a re 

(19) 

whcrc Jl = (J<2-112 ) 112 ( 11 < J<) and k is real positive so that the general solution 
is 

ql(x,y) c{,e¡i:;:+;,,, + c,e-/(y-;µ, ' ' >''' 
.fo A(k)(kcos ky- f(sinky)e-(k +v "dk , x >O, 

loo 1 11~ 
/J(k)(kcosky - Ksinky)e<• ; v > 'dk, x < O . 

. o 

l·br water of uniform fi niw dept.h h, t he general solmion in lhis case is 

d>(x ,y) 
+ (1c,~•:-::~~:.;,,~:~:«~,~":::::,';d:~sl: k:(;, -y) 

L 13,.cosk,.(h- y)e(k,+v'>''\ x < O 
1 

where it has been assumecl that v < ko . 

3 Scattering and radiation problems 

(20) 

(21) 

Problems of water wave scattering a nd rad iation by bodies (structurcs) of 
various geometrical configurations constitute two very important classes oí prob­
lems in lhe lincarise<l theory oí water waves. In íact, investiga Lions oí t.hc t.hcsc 
classcs oí problems perhaps constitute the most oí t his theory. A general íor­
mulation oí these classcs of problems are given bclow. \Ve considcr only t.hc 
Lwo-dimensional case. 
Scalleri.ng problem 

Ir a t.rain oí suríacc water waves wiLh angular írcqucncy o rcprescntcd by 
lie{ t/Jm"(:i:, y)e-iº1 } ttnd propagaLing from thc di rcclion oí ncgativc infini t.y is 



\•Valer Waves 281 

inciclenL on a floatiing 0r submerged body, Lhea a pML of iL is reílecLed back by 
i..he bocly and Lhe r0maini1~g ¡:>art is LransmiLLed íorward belmv or over the body. lf 
uhe motion is descrihie& li>y the velocity polential Re{<P(:n, y)e-'(11} Lhen </) satisfies 
Lhe Laplace equation 

'V21) = Omboxi.nlhefluidregion., 

the free surface concliuion 

1«/1 -1 ~fJ</J = o on y = o, 
y 

Lhe condiLion on Lhe wotbecl surface of the body 

01!. = 0onW 
fJn 

where W is Lhe wetbecl suwface of Lhe body and n denot.es Lhe outward drnwn 
normal Lo it.1 the bot.Lorn concliLion 

fer intlnit.ely cleep wai~er, or 

\J<f¡-¡.O on y-oc 

01!. = o on y = h 
[)y 

for waLer of uni form firüue depth h, ~rncl finally t.he infiniLy condiLion givon by 

{ ef1'""(x, y)+ R</J'""(-x, y) 
</J(x,y) ~ T</i'"" (x,y) 

as 2i-¡. -001 

as -¡. oo 

whcrc R ancl 7' denoue t l1e reflection and Lransmision coefficeint.s (unknown) rc­
spcctively, ancl 

{ 
e- Ky·Hl<x 

ó'"°(x, y) = cosh ko(h - y) e'ko• 
cosh koh 

for cleep water, 

for waler of uniform fini t.e depth. 

Detcrmination of Lhe (l)OhenLial funct.ion rJ>(x, y) explicitly for any con figuration 
of thc body is an alrnost impossible task. However, for some special configura.­
Lions, uch as t hin hi~\1T iers, iL may be possible lo determine <P(x1 y) completely. 
l·~vcn ií Q{x, y) cannoL l'.>e cletcrmined is closecl forms, R and T cun be obt.ained by 
o;omc approximaLe me~líods for some et.her configurations. F'or mosL scatLering 
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problems, we will be happy if numerical eslimates for t..hese coefficients can be 
obt.einecl by some numerical proceclure. Por bodies having a submerged sharp 
edge, aocl addit..ional condition, known as edge conditfon, has also to be satisfied. 
This will be discussed sho1t !y. 

Radiat·ion problem 
l f a body present. in water is force<! to execute a small prescribe<! motion 1 then 

a wave motion is sel. up in the fluicl 1 which radia t.es away from t.he body Lowards 
infinit.y (in t.he directions of posiLive and negative x-ax is). If t.he motion in the 
fl uid is described by lle{q>(x ,y)e-;º') Lhen in Lhis case 1>(x,y) saLisfies 

V2efJ = O in the fluid region1 

81> 
K 1>-t-ay = D ony = O, 

~ is prescribed on I-V 

where M' is the wetted surface of Lhe body ancl n denotes the outward drawn 
normal t.o it.1 the botLom condition 

'VefJ -t O on y -too 

far infinit.ely deep water 1 or 

81> 
ay = 0 on y = h 

for water of unifarm finite clepLh h, ancl fina!ly Lhe radiaLion condiLion 

for deep water, or 

1>(x, y) ~ A± cosh ko(h - y) e;•ol•I as as x - ±oo 
cosh koh 

far water oí unifarm fin ite depth h, where A± is t he amplit.Udc of Lhe wave 
molion set up at x = ±oo. These are unknown, and t.heir delerminaLion, likc the 
deLermination oí R and T in scatter ing problems, is t.he most impartant task íor 

a radiation problem. 
lf there is a submerged sharp edgc in Lhe body , then in lhc recliation problem 

also, an cdge condition on <P has to be imposed. A imple derivaLion or Lhe cdgc 

co11ditio 11 is given below. 
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/Edge condit1.on 
WithouL any loss of generality1 we choose the origin at. t he t ip of the s\llf\)1nerge<I 

edge and Jet y = O (x > O) be one s icl e of the eclge and the other sicle of the edge 
mnkes an angle a with the x-axis. a is Lhe angle oí the wedge formed between t.he 
two sides of t.he edge. Using polar co-ordinate r, O, t.he pot.ential funct ion í/J(r1 O) 
stUisfies t.he different.ial eq uat ion 

und thc bounclary condlitions 

~'!5'_ = 0 on 0 = 0, a . 
.,. !JO 

In a small beighbourhood of t.he origi n, \et. 

,P(r, O) = ,.> f(O ) 

whcrc A{ > O) is 1.0 be cl~osen suiLably ancl f(O) is a twico diffeFenLs i&ble f.unc~ion. 

Thus / {O) saL isfi es t.he different.ial equation 

((O) i· >.2/(0) = 0, O S O S o· 

wit.h the boundary concl iLions 

/(O) = O on O= O, o . 

Thus i f wc cho ose 
f(O) A cos >.O + B s in >.O 

t.hcn wc mnst. have 

13 = 0, >. = ~ 
wherc nis a posit.ive int.eger. In arder LO sa t.i sfy thc requirement. t.h ~it. energy rnust. 
be bounded everywhere, we must. ohoose n LO be t.he smalles t. posiLive inLeger (cf. 
1 arp ancl l<F1 ral ( 1962)). Thus we choose n = 1 so t.lrnt. 

and hcnce, nea.r t he 0rigin 1 

" ;r 
tjJ - Ar" cos - O as r - O. 

a 
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Thus near the edge 

P/!: o(,.;;- 1) as r-0. 

wherc o is the angle of thc wcdge formed M l he submerged edge. 
Fbr a thin barrier, nce r a submerged edgc, thc wedge angle is 2rr , so that 

For an obstaclc in thc form of a t hi ck rcctongular barrier, ncar a su bmergcd edgc, 
thc wedgc angle i ªf, so tlrnt 

Th cdgc oonditions play crucial role in thc mathematica l a na lysis of wa. tcr 
wavc scancring or radia lion problcrns involving thin or thick barricrs. 

4 B reakwater 

Brcakwatcrs are bcing const ruct<..'<I Lo protcct a shcltcrcd arca from Lhc iinptt.CL 
of t hc rough -.ea. 111crc are numcrous rnodcl of breakwaters. Thc simplc.sL 
modcls are pcrhaps thin VNLica l ba rri rs. Wntcr wavc intcraclion with such 
mod Is have becn i1westigatod in Lho water wavc litcraturc cxtcnsivcly for mor<' 
thnn la:,t fh d<'C&d('S b('Causo of thoi r simpli ity in thc cnginoering dcs ign 11 nd 
ma.l importantly duC' to t he abil i ty to solvC' thc associAtcd <.;Cattcring problcm'i 
C'xpliritly íor normally inci<lC'nt sui'f11cc w»lN wavcs in infinilC'ly dccp wAtcr . T hc 
vrlocity potrntial of thr rC'sulting fluid mot ion con bC' obtained in close<I form 
nnd lh<' qunntili of physic~1 l intrrcsL, muncly the rcílcction end transmission 
cot'flkit"nt•>, can also br obtni ncd in tcrm"i of known functions or somc clrfinitc 
intc-grak ;-\ \"8ric1y of mn1.hcnu1tical tcchniquM have becn utilized to obtAin 
thc C'xpliC'it '-Olution~. Thcsr hove cn ri chcd cnorornou!;Jy the classical applicd 
rnathC'mati in ~ neral a ncl thc lineariscd thoory of wa.Lcr \\•aves in particular. 
Tht· rca'<>n for th<'C'XistC'ncc or cxpliciL solutions for thc afore,aid clas of problem5 
Ji~ in thC fa<"t thRt ad1 OÍ thCSC problcm is CC¡uivuJcnt 10 o;oJving thC lW0-

dilTil'f1'iOnaJ LaplRre rqun tion in H lrn lf plAnc with thc condition o f ~ero norrnal 
dNiV~Hi\'C' OÍ thr functiOn bring soughL f r Oll LhC barricr and the mixed condiLion 
on lh<' ff('(' surfacc. By t hr ui;c of 1.hc coinplcx variablr lheory, each problcm can 
lX' redu('('(J to fioding a com plcx function sat isfying certain oondilions, which 
¡, -;omcwhat ~lraight forward in principlc. Fbr obliquely incidí'nl wt\\ , t hc 
gov{'rning pa.ninl diíf<'rent iRl C'quntion is no longN lhr l...aplece equation , and os 
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such t.hc complex variable theory is no longcr applicable. Thus it is perhaps no 
Jonger possiblc to obtain explicit solutions. The same conclusion also applies 
if thc water is not infinitely deep even when the waves are normally incident 
en a barri r . In t.hese cases, the associa.tcd problems are generally tacklcd by 
sorne approximate methods Lo obtain numerical estimates for the reflection and 
transmission coefficients. 

Fbr obliquely incident waves in deep water the scattering problems involving 
thin vertical barriers1 complementary bounds fer thc reílection coefficient can be 
obLsinccl by utilizing Galerkin approx.imations for solving two imcgral cquaLions 
of first kind arising in cech problem in complcmcntary interva ls, one in t.erms of 
Lhc difference of potential function across the barrier and the et.her in terms of 
thc horizontal componcnt of velociLy across t.he gap. F'or the case of a part ially 
immerscd or completcly submerged Lhin ver t ical piste, single term approximaLion 
involving t hc corresponding explici t solution for normally incident wave training 
dcop water providc.c; very clase bounds far the rcftcction coefficienL and as such 
Lheir av rage produces vory a.ccurate numerical estimet.es fer this. llowcvcr, far 
mhcr barricr configuretions, such si ngle t.erm approximetion do not providc closc 
bounds andas such multi- term approximations in Lerm of sorne basis funct.ions 
are utilizcd. Although in principie any set of indcpcnd nt. funct.ions woulcl serve 
os lhc basi functions, in practico, 1.he basis functions 8['(' chosc11 i11 sorne j udi­
ciou manner. l~r t hin barl'lers in ñnite dept h water Lhese ere chor;on in tonns of 
'hcby hev polynomials. Fo r thick ba.rriers wilh rectangular cross scction in finiLc 

dcpth water, thc samc Galorkin approximation tcchnique can be ut.ilizcd. llow­
cv r , in thi case, thc basis funclions are chosen in term of functions invotving 
ultraspherical Cegenbaucr polynomials of arder one sixth to account far Lhe cu be 
root. oí ingulerity of the velocity near a submergecl edge which was mcntioncd 
carlier. 

In the monograph by M andal and Chakrabani (2000) and t.he handbook by 
J.int.on and ~lclvcr(2001) almost cxhaustivc list. of refer nces of rcscarch work in 
Lhis ares are ava.ilablc. 

5 Trapped waves 

tudy oí tropped waves ar edge waues is an erea oí intense and active rcscarch 
ln r nt ycars. Trapped waves are confi necl within a finito rcgion of thc ílu id . 
Ncarly one and half ccnwry back Stokcs discovered the existcncc of edge waves 
ovcr a loping beach. Thesc waves travel unchanged in the direct.ion of thc shorc 
lin bul dccay cxponcntielly in thc scawarcl direction. Thus Lhe waves ore tmvped 
by a loping boundary insplt.c of Lhc unboundcd íluid region. l~r almost. a ccntury 
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afLer this discovery of St.okes, iL was felt that. such waves are not import.ant. and no 
st.udy on these were made unt.il exacLly fi fLy years back when Ursell (1951) proved 
t.he existencc of trappe<I waves a.hove a submerged horizontal ci rcular cylinder of 
small radius. lle showed t.hat. t.hese Lrapped waves Lravel a long t.he t.op generat.or 
of t.hc cylinder without. changes while t hey decay to 1.ero in a horizonte\ clirect.ion 
perpendicular to t.he generat.or. 

Therc is a clase relat.ionship bet.ween t.he problem of uniqueness of solut.ion to 
t.he lineariscd wat r wave problem for time harmonic mot.ions involving a body or 
bodies ancl lhe problem of existence of t ra pped waves in t.he presence of Lhe body 
or bodies. Obviously if t.he wat.er wave problem possesses non-unique solut.ion 
or no solution Lhen t.he re will perhaps exist. t.rapped waves. Considerable effo r t. 
has becn made by many researchers to obtain a genera l uniqueness t.heorem valid 
for any general body, but success coukl not. be achieved. Pinally the q uest.ion 
of uniquen oí solution was put to rest. by M. Mclver (1996) who provicled 
an explicit example of non-uniqueness by considering t.wo iclent.ical Hne sources 
at t.hc free urface placed a.L such a clists.nce Lhat. t.heir effect. at eit.her infini t.y 
is cancelled. he showecl t.hat Lhere are cert.ain st.reamlines of t.he result.ing í\uid 
mot.ion which enter t.he sources from t1bove t.he free suríace. T hese can be replaced 
by pairs oí rigid bodies enclosing t.he sources ancl havi ng a n open free surface. 
Aíter the publicat.ion oí Lhis landmark work , t.here is a t.remcndous amounL of 
imeresl amongst t.he researchers on wat.e r waves to discover different sit.uations in 
which trepped wave can exis t within the framework o í linearised t.heory of water 
waves. 
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