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Abstract

This article describes some aspects of linearised theory of waler waves
in the context of current research interests in this area. After a brief intro-
duction, the basic equations in the linearised theory of water waves along-
with their general solutions, concepts of scattering and radiation problems,
breakwaters and finally trapped waves are presented without going through
the details of mathematical analysis involved in these problems. This may
motivate the readers to feel interested in water wave problems.

1. Introduction

The phenomena of wave propagation are encountered in almost all branches of
mathematical physics such as continuum mechanies, quantum mechanics, acous-
tics, electromagnetic theory ete. It is somewhat difficult to give a precise defi-
nition of what constitute a wave, but to cover the whole range of phenomenon
without being restrictive, it can be stated intuitively that wave is a recognizable
signal that is transferred from one part of the medium to another part with a rec-
ognizable velocity of propagation. The signal may be any feature of disturbance
which is clearly recognizable and its location at any time can be determined.

According to the famous theoretical physicist A. Somerfeld, ‘ever since waves
were studied, water waves have served the natural scientist as a model for wave




274 B. N. Mandal and Mridula Kanoria

theory in general’ (cf. Segel(1977) p 299). Consequently the wave phenomena in
water with a free surface under gravity have attracted the attention of a number
of famous mathematicians and physicists such as A. L. Cauchy (1759-1857), S.
D. Poisson (1781-1840), J. L . Lagrange (1736-1813), G. B. Airy (1801-1892), G.
G. Stokes (1819-1903), Lord Kelvin (Sir William Thomson) (1824-1907), J. H.
Michell (1836-1921) and many others. This has resulted in a systematic develop-
ment of the theory of water waves from the latter half of the eighteenth century.
This theory has provided a background for a somewhat rich development of some
important mathematical concepts and techniques and consequently it has become
an important branch of applied mathematics as well as mathematical physics.
The theory of water waves is most varied and is a fascinating subject, it includes a
wide range of natural phenomena in oceans, rivers and lakes. The research activ-
ities in this area accelerated after the second world war due to explosive growth
in ocean-related industries such as offshore drilling for oil production, construc-
tion of offshore structures, extraction of wave energy from ocean waves, design
and manufacturing of large ships, oil tankers, breakwaters to protect ports, sea
resorts from the impact of rough sea, ete. Interest in wave interaction with fixed
and floating stuctures was somewhat stimulated after the unsuccessful attempts
to utilize portable and floating breakwaters in the surprise amphibious landing
at Normandy, France, during the second world war.

Floating docks, breakwaters, burges, ships, oil tankers, submersibles supporting
oil drilling rigs, very large floating structures (VLES) etc. are all stuctures which
are useful in the ocean-related industries. Safety and performance of these struc-
tures depend on how they respond to ocean waves, particularly when the ocean is
rough during a storm. In a calm ocean these structures are in static equilibrium.
However, if the ocean is rough, then the waves are being diffracted by a structure
present in the ocean and the structure is being subjected to considerable thrust
produced by ocean waves and thus oscillates, and further radiates waves, and
experineces additional thrust from the surrounding fluid. Thus investigation of
problems on interaction of water waves and structures is very important. From
the time of Lord Kelvin and J. H. Michell interaction of water waves with floating
or submerged bodies (or structures) has been an active area of research in fluid
mechanics. Investigation of problems on wave interaction with large structures
needed for oil exploration in high seas has become very significant during the
last few decades. These investigations are obviously concerned with development
of analytical and computational techniques to predict hydrodynamic interaction
of waves with floating or submerged structures. The linearised theory of water
waves is generally utilized in the mathematical analysis for most cases although
the free surface boundary condition produces severe complication. The prob-

Fmmes .\



Water Waves 275

lems are usually tackled by judicious combination of analytical and numerical
techniques.

Below we present briefly the basic equations of the linearised theory of water
waves and the form of general solutions, concepts of water wave scattering and
radiation problems, breakwaters and trapped waves. The mathematical analysis
is kept at a minimum level to create interest in the topic to a reader without
having any background knowledge on water waves.

2 Linrearised Theory of Water Waves

Basie Equations

The basic equations in the linearised theory of water waves are remarkably
simple. These are derived under assumptions that water is an incompressible,
inviscid and homogeneous fluid and the motion in it is under the action of gravity
and is assumed to be irrotational and small. The assumption on smallness of
motion means that the velocity components together with their partial derivatives
are quantities of first order of smallness so that their products, squares and higher
powers can be neglected. Also there is a free surface which is horizontal when the
fluid is at rest. When a motion is set up, the free surface deviates smoothly [romn
its horizontal position and this deviation is small compared to some physical
length. The assumption of smallness of the velocity components and the [ree
surface deviation (clevation or depression above or below the mean horizontal
level of the free surface when at rest) together with their partial derivatives allow
us to linearise the various equations of fluid mechanics and thus constitute the
basis for the linearised theory of water waves.

We choose a rectangular cartesian co-ordinate system in which the y-axis is
taken vertically downwards, 22- plane is the position of the undisturbed free
surface so that water occupies the half space y > 0 if it is infinitely deep or the
region 0 < y < hif it is of finite depth k. We will assume A to be constant in our
discussion here. However, for water of variable depth, h is generally a function of
@ and z. If the irrotational motion in water is described by the velocity potential
®(z,y, 2. 1), where t is the time, then the equation of continuity produces

Vf‘b =0 in the fluid region (1)

where V7 is the three dimensional Laplacian operator, and the linearised form of

the Bernoulli’s equation is
% _ P 2
e, (2)
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where p is the presure and p is the density of water.

Let y = n(xz, z,t) denote the free surface depression below the plane y = 0,
then 7 together with its partial dertivatives are smooth functions and quantities
of first order of smallness, so that on the free surface y = 7, the condition (2)

gives rise to
oP
s on =0 3a
- ony (3a)
since p is constant on the free surface (the atmospheric pressure) and can be taken
to be zero by suitable choice of the pressure scale. The equation (3a) is in fact
the linearised dynamical condition at the free surface. The linearised kinematical
condition at the free surface is
0% on
ot o
which is obtained from the fact that the velocity of the fluid particles at the free
surface normal to it must be equal to the velocity of the free surface at that point.
Elimination of 7 between (3a) and (3b) produces the linearised free surface

on y=10 (3b)

condition o i
0

—_— g— =0}

o2 g@y on y (4)

The condition of no motion at the bottom gives
Vi® -0 on y— oo (5)

if the water extends infinitely downwards. However, if the water is of uniform
finite depth A below the mean free surface, then
g—;b:[) on y=h. (5")
Thus the basic equations of the linearised theory of water waves are described
by the partial differential equation (1), the free surface condition (4) and the
bottom condition (5) or (5'). As mentioned earlier, these are quite simple in
their appearances.
For simple harmonic motion with angular frequency o, we may assume ® (2, y,
z,t) to be of the form Re{(z,y,z)e "'}, then the complex valued function
é(z,y, z) satisfies

V?d) =0 in the fluid region, (6)
the free surface condition
Kd;lgg:Oony'O (7)
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where K = ¢2/g(> 0), and the bottom condition

Vi —0 on y— o0 (8)
for infinitely deep water, or
(o4
—=0on y=~h 8
By (8

for water of uniform finite depth h.

The equations (6), (7) and (8) or (8'), may also be regarded as the basic
equations of the linearised theory of water waves.

It may be noted that one can introduce the effect of surface tension at the
free surface. In this case the free surface condition (7) modifies to

99

IX(,/JI,—IM v00nyr0 (9)

ay®

where M = T/pg, T being the coefficient of surface tension. It is interesting to
note that although the governing partial derivatives upto second order only, the

59
free surface condition involves the third order partial derivative ﬁ

General solutions

For simplicity we confine our attention to two-dimensional motion so that ¢
is a function of @,y only. Then the basic equations satisfied by ¢ are described
by the two-dimensional Lapalce equation

V24 =0 in the fluid region

where V2 is the two-dimensional Laplace operator, the free surface condition
K¢ }' d’ =0 ony=0

and the bottom condition
V¢ —0 as y — o

for deep water, or

99 J
E40 on y=h

for water of uniform finite depth h.
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The solutions for ¢(z,y) can be obtained by the simple method of separation
of variable.

For the case of infinitely deep water, using this method, we can easily find
that ¢(z,y) has the following two forms

W(w,y) — e~ KvkiK= (10a)

and

(@, y) = (kcoshky — K sin ky)e "=l (10b)
where k is a non negative real parameter. Looking at the time-dependence fac-
tor e, we can interpret the term e~ X¥1iK= 1o represent a progressive wave
train propagating along the positive z-direction while e=5¥="5= (o represent a
progressive wave train propagating along the negative z-direction. The solution
represented by (10b) dies exponentially as [z| become large so that this can be
interpreted as a local solution having no effect as |z| — oo. In fact the set of
functions

g Kvtike =fg=ika (kcosky — K sin ky)e’kl"(k > 0)

forms a complete set of basis functions for the expansion of the complex valued
function ¢(z,y) in the half space y > 0. This expansion is given by
#(z,y) Cre~KvHils | o p=Ky=iKz
0
A(k)(kcos ky — K sinky)e *dk, z >0 (11

00
/ B(k)(kcosky — K sin ky)e**dk, z <0
0

where €'y, (3 are constants and A(k), B(k) are functions of k. The expansion (11)
is generally referred to as the Havelock’s expansion of water wave potential in deep
water. The corresponding integral expansion formula for a function f(y) defined
for y > 0 and satisfying the Dirichlet’s condition of Fourier integral expansion is

given by
00
fly) = A=KV / A(k)(k cos ky — K sin ky)dk (12)
0

where
SRR / S()eHvdy,

(13)
am = 2 KZ_/ (kcos ky — K sinky)f(u)dy.
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For water of uniform finite depth h, the solutions for ¢(z,y) are
coshko(h — y)e**0%  cos kn(h — y)e ™ l(n = 1,2..) (14)
where kg, +ik,(n = 1,2..) are the roots of the transcendental equation
ktanhkh = K.

As before, the first terms in (14) represent progressive wave solutions propagating
along the positive or negative a-directions while the second terms represent local
solutions which die away exponentially as |z| becomes large. The set of functions
given by (14) forms a complete set of basis functions for the expansion of the
water wave potential ¢(z,y) in the strip 0 < y < h. This expansion is given by

o(a,y) (C1€%*07 4 Cre=*%) cosh ko(h — y)
0
Z Ay cos kn(h — y)e **dk, 2 >0
1

£
Z Bu cos kn(h — y)e**dk,z < 0
1

where Cy, (3 and A,,, Bu(n = 1,2,..) are constants. This expansion is also known
as the Havelock’s expansion of water wave potential in finite depth water. The
corresponding expansion formula for a function f(y) defined in the strip0 <y < h
and satisfying the Dirichlet’s condition for the Fourier series expansion is given
by

J() = Agcoshko(h = y) + 3 Ancoska(h — )
1

where
4 = —“"—/ f(@)cosh ko(h = y)d
© = 2koh +sinh2koh Jy 'V i
Ak,
b = e / F)cos ka(h —y)dy.
The formulae (11), (12), (13) as well as (14), (15), (16) play a very significant
role in the mathematical analysis of various water wave problems in deep water
as well as finite depth water.
For three-dimensional motion with harmonic variation along the z-direction,

we can represent ®(z,y, z,t) as

(16)

(x,y, 5,t) = Re{p(z,y)e "'} (17)
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where now ¢(z,y) satisfies the modified Helmholtz's equation
(V2= 12)p =0 in the fluid region

along with the appropriate free surface and bottom conditions. For deep water,
the solutions for ¢(z,y) in this case are

g =t (kcos Ky — K sin ky)e_(k2 +u)!2al (19)
where pt = (K2 —1?)"/2(v < K) and k is real positive so that the general solution
is

d(z,y) = Crefutinz | gpe-Ku-iuz
/ A(k)(kcosky — K 51|\Ly)e'(k7“’2 m‘d/» z >0, (20)

t 211/2
B(k)(k cos ky — K sin ky)e®™ ) "2k, z < 0.
0
For water of uniform finite depth h, the general solution in this case is

2t

(2 ,,2)1/2 : 2
((/'lre'“‘é"‘))] T4 Cze"("'{"’ *) cosh ko(h — y)

o
s b (B — el e g
ZAnwsL,.(h y)e dk, z >0, 1)

o(z,y)

&
> Bucoska(h — ye®i i)’z g g
1

where it has been assumed that v < ko.

3 Scattering and radiation problems

Problems of water wave scattering and radiation by bodies (structures) of
various geometrical configurations constitute two very important classes of prob-
lems in the linearised theory of water waves. In fact, investigations of the these
classes of problems perhaps constitute the most of this theory. A general for-
mulation of these classes of problems are given below. We consider only the
two-dimensional case.

Scattering problem
If a train of surface water waves with angular frequency o represented by
Re{¢'™(x,y)e~*'} and propagating from the direction of negative infinity is
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incident on a floating or submerged body, then a part of it is reflected back by
the body and the remaining part is transmitted forward below or over the borly If
the motion is described by the velocity potential Re{a(x, y)e="7'}
the Laplace equation

V2 = Ombowinthe fluidregion,

the free surface condition
%)
K¢+ lﬁ =0 ony=0,
y

the condition on the wetted surface of the body
¢
—— =0 on W
on
where W is the wetted surface of the body and n denotes the outward drawn
normal to it, the bottom condition
Vo — 0 on y—
for infinitely deep water, or
¢
,—(/ -0 on y=nh
Ay

for water of uniform finite depth h, and finally the infinity condition given by

s $ (@, y) + ROT(—2,y) 85 @ — —00,
H(@,y) ~{ T4 (, y) ey

where R and T' denotie the reflection and transmision coefliceints (unknown) re-
spectively, and

eninie for deep water,
(z,y) = cosh ko(h — y) gikox
cosh koh

#inc
for water of uniform finite depth.

Determination of the potential function ¢(a, y) explicitly for any configuration
of the body is an almost impossible task. However, for some special configura-
tions, such as thin barriers, it may be possible to determine ¢(,y) completely.
Even if é(z, y) cannot be determined is closed forms, R and T' can be obtained by
some approximate methods for some other configurations. For most scattering
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]
7]
1)

problems, we will be happy if numerical estimates for these coefficients can be
obtained by some numerical procedure. For bodies having a submerged sharp
edge, and additional condition, known as edge condition, has also to be satisfied.
This will be discussed shortly.

Radiation problem
If a body present in water is forced to execute a small prescribed motion, then

a wave motion is set up in the fluid, which radiates away from the body towards
infinity (in the directions of positive and negative z-axis). If the motion in the
fluid is described by Re{¢(z,y)e**"} then in this case ¢(,y) satisfies

V2¢ =0 in the fluid region,
¢
K¢+ — =0 ony=0,
i e 4

g—: is prescribed on W

where W is the wetted surface of the body and n denotes the outward drawn
normal to it, the bottom condition
V¢ —0 on y—

for infinitely deep water, or

0¢

— =0 on y=h

oy Y
for water of uniform finite depth h, and finally the radiation condition

H(@,y) ~ Ape! VI g5 a5 3 — Lo

for deep water, or

cosh ko(h — )

_—
cosh koh

for water of uniform finite depth h, where Ay is the amplitude of the wave

motion set up at = *0o0. These are unknown, and their determination, like the

determination of R and 7 in scattering problems, is the most important task for

Pz, y) ~ Ax tholzl g as 2 — +o00

a radiation problem.
If there is a submerged sharp edge in the body , then in the radiation problem

also, an edge condition on ¢ has to be imposed. A simple derivation of the edge

condition is given below.
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Edge condition

Without any loss of generality, we choose the origin at the tip of the submerged
edge and let y = 0 (2 > 0) be one side of the edge and the other side of the edge
makes an angle a with the z-axis. a is the angle of the wedge formed between the
two sides of the edge. Using polar co-ordinate 7, 8, the potential function ¢(r, 0)
satisfies the differential equation

B¢ 109  10%

el i il <0<
GPARS IO 2002 00<fsa
and the boundary conditions
1 O
;}7((/1: =0Aon 8 =0;0.

In a small beighbourhood of the origin, let
@(r,0) = 1 [(0)

where A(> 0) is to be chosen suitably and f(#) is a twice differentaiable function.
Thus f(0) satisfies the diflerential equation

110)+ N2 f0) =0, 0<O<a
with the boundary conditions
f'(0) =0 on 0=0,a.

Thus if we choose

[(0) = Acos A0 + Bsin A0
then we must have s

B=0, \=—

@
where 7 is a positive integer. In order to satisfy the requirement that energy must
be bounded everywhere, we must choose n to be the smallest positive integer (cf.
Karp and Karal (1962)). Thus we choose n = 1 so that

A=

210=

and hence, near the origin,

41—‘Ar5cos§0 as 7 — 0.
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Thus near the edge ;
% :0(7‘%-|) as r—0.
where a is the angle of the wedge formed at the submerged edge.
For a thin barrier, near a submerged edge, the wedge angle is 2, so that

%ﬁ = 0(1‘"/2) as r— 0.

For an obstacle in the form of a thick rectangular barrier, near a submerged edge,

the wedge angle is 3%, so that

% = 0(1"3/2) as r— 0.

These edge conditions play crucial role in the mathematical analysis of water
wave scattering or radiation problems involving thin or thick barriers.

4 Breakwaters

Breakwaters are being constructed to protect a sheltered area from the impact
of the rough sea. There are numerous models of breakwaters. The simplest
models are perhaps thin vertical barriers. Water wave interaction with such
models have been investigated in the water wave literature extensively for more
than last five decades because of their simplicity in the engineering design and
most importantly due to the ability to solve the associated scattering problems
explicitly for normally incident surface water waves in infinitely deep water. The
velocity potential of the resulting fluid motion can be obtained in closed form
and the quantities of physical interest, namely the reflection and transmission
coefficients, can also be obtained in terms of known functions or some definite
integrals. A wariety of mathematical techniques have been utilized to obtain
the explicit solutions. These have enriched enoromously the classical applied
mathematics in general and the linearised theory of water waves in particular.
The reason for the existence of explicit solutions for the aforesaid class of problems
lies in the fact that each of these problems is equivalent to solving the two-
dimensional Laplace equation in a half plane with the condition of zero normal
derivative of the function being sought for on the barrier and the mixed condition
on the free surface. By the use of the complex variable theory, each problem can
be reduced to finding a complex function satisfying certain conditions, which
is somewhat straight forward in principle. For obliquely incident waves, the
governing partial differential equation is no longer the Laplace equation, and as

L —
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such the complex variable theory is no longer applicable. Thus it is perhaps no
longer possible to obtain explicit solutions. The same conclusion also applies
if the water is not infinitely deep even when the waves are normally incident
on a barrier. In these cases, the associated problems are generally tackled by
some approximate methods to obtain numerical estimates for the reflection and
transmission coefficients.

For obliquely incident waves in deep water the scattering problems involving
thin vertical barriers, complementary bounds for the reflection coefficient can be
obtained by utilizing Galerkin approximations for solving two integral equations
of first kind arising in each problem in complementary intervals, one in terms of
the difference of potential function across the barrier and the other in terms of
the horizontal component of velocity across the gap. For the case of a partially
immersed or completely submerged thin vertical plate, single term approximation
involving the corresponding explicit solution for normally incident wave training
deep water provides very close bounds for the reflection coefficient and as such
their average produces very accurate numerical estimates for this. However, for
other barrier configurations, such single term approximations do not provide close
bounds and as such multi-term approximations in terms of some basis functions
are utilized. Although in principle any set of independent functions would serve
as the basis functions, in practice, the basis functions are chosen in some judi-
cious manner. For thin barriers in finite depth water these are chosen in terms of
Chebyshev polynomials. For thick barriers with rectangular cross section in finite
depth water, the same Galerkin approximation technique can be utilized. How-
ever, in this case, the basis functions are chosen in terms of functions involving
ultraspherical Gegenbauer polynomials of order one sixth to account for the cube
root of singularity of the velocity near a submerged edge which was mentioned
carlier.

In the monograph by Mandal and Chakrabarti (2000) and the handbook by
Linton and Meclver(2001) almost exhaustive list of references of research work in
this area are available.

5 Trapped waves

Study of trapped waves or edge waves is an area of intense and active research
in recent years. Trapped waves are confined within a finite region of the fluid.
Nearly one and half century back Stokes discovered the existence of edge waves
over a sloping beach. These waves travel unchanged in the direction of the shore
line but decays exponentially in the seaward direction. Thus the waves are trapped
by a sloping boundary inspite of the unbounded fluid region. For almost a century
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after this discovery of Stokes, it was felt that such waves are not important and no
study on these were made until exactly fifty years back when Ursell (1951) proved
the existence of trapped waves above a submerged horizontal circular cylinder of
small radius. He showed that these trapped waves travel along the top generator
of the eylinder without changes while they decay to zero in a horizontal direction
perpendicular to the generator.

There is & close relationship between the problem of unigueness of solution to
the linearised water wave problem for time harmonic motions involving a body or
bodies and the problem of existence of trapped waves in the presence of the body
or bodies. Obviously if the water wave problem possesses non-unique solution
or no solution then there will perhaps exist trapped waves. Considerable effort
has been made by many researchers to obtain a general uniqueness theorem valid
for any general body, but success could not be achieved. Finally the question
of uniqueness of solution was put to rest by M. Melver (1996) who provided
an explicit example of non-uniqueness by considering two identical line sources
at the free surface placed at such a distance that their effect at either infinity
is cancelled. She showed that there are certain streamlines of the resulting fluid
motion which enter the sources from above the free surface. These can be replaced
by pairs of rigid bodies enclosing the sources and having an open free surface.
After the publication of this landmark work, there is a tremendous amount of
interest amongst the researchers on water waves to discover different situations in
which trapped wave can exist within the framework of linearised theory of water
waves.
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