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1 Introduction 

In this note we consider a rather elementary but importan! assertion, namely the 

Chinese Remainder Theorem. In Section 2 we give various applications1 and finally, 

in Section 3, we provide a Jist of exercises for the reader. 

The note is aimed at School students with proven interest in Mathematics, at 

their teachers, and at University students who have not lost (or forgotten) tbeir 

interest to problem solving. It could be used in preparation for Math competitions 

and olympiads. For further reading we would like to suggest the books [2] and 

[3] that are readily available in Portuguese. (Note that the first of them has been 

translated to English as well.) 



138 Paulo Brumatti & Plamen Kosblukov 

Throughout we consider integers. We suppose the reader is famiJiar with the 

notion of congruence and its basic properties. 

Let a and m be integers, m > 1 and (a , m) = J. The last notation means that the 

greatest common divjsor GCD of a and m equals 1 i.e. , a and m are coprime. It is 

well known that the congruence ax= b (mod m) has unique solution x0 E [O, m- 1), 

and its solutions are given by X t = x0 + mt, t E Z. In arder to prove this fact one 

considers ali residues modulo m, the integers {O, 1, . , m - 1 }, and multiplies them 

by a. Since (a, m) = 1 the integers {O.a, I.a, ... , (m - l).a} are pairwise distinct 

modulo m and hence modulo m they represent a permutation of the first system. 

T herefore sorne of the latter numbers, say x0 , satislies ax0 = b (mod m) . Now let 

us try to generalise this fact. Such generalisations were discovered by the ancient 

Chinese and Greek mathematicians long ago. Of course it was not asserted in the 

form we are going to present but in essence it was the same. 

Theore m 1 (Chinese R e m ainder Theorem) Let n 2". 1, and let m 1, m,, 

Tnn be pairwise coprime positive integers. Suppose that a1, a2, . , an are such that 

(a¡,m¡) = 1, i = 1, 2, . .. , n, and that b1, ~' ••. 1 b11 E Z. Then the system o/ 

congruences 

1 a;x = b; (mod m¡), i = 1,2, . . ,n 

has unique solution x0 E [O,m - 1] where m = m 1m2 . mn· Ali integer solutions of 

this system are given by the formula x, = xo + mt, t E z. 

Proof. We give a sketch of the proof. Use an induction on n. The case n = 1 was 

dealt witb the above comments. If n = 2, the solutions of a1x = b1 (mod mi) are 

X t = x0 + m 1t. Now substitute this expression for Xt in the second congruence. One 

obtains a2 {x0 + m 1t) = b, (mod m2 ) and {a2mi)t = b, - a,x0 (mod m,). The last 

congruence admits unique solution t0 in [O, m2 - IJ. Now we leave to the reader the 

completion of the induction argument. (Notice that the argument above justifies 

both the base and the step of the induction. Why starting the induction from n = 1 

is not sufficient?) 
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Now we outline another, direct proof of the Chinese Remainder theorem. Denote 

by M; = fl;,.,m;, i = 1, 2, ... , n. Observe that M; and m; are coprime (Why?). 

Therefore the congruence M;y = 1 (mod m;) admits a solution, say N;. Denote 

further e; a solution of the congruence a¡x;; bi (mod m¡). Since m1 divides M¡ for 

j ;i i then 

a;"~ M;N;c; = a;M;N;e; = a;e; = b; (mod m;) 
L__¡J= I 

for every i, and we can take x0 = L:j=1 MiN1c1 as a solution of the system. 

In fact both proofs of the theorem give us an algorithm for solving linear systems 

of congruences. If the numbers m¡ are not coprime the same rnethods yield the 

solu tions (or show that the system is incompatible). 

Now let us make sorne very brief historical comments. The Chinese Remainder 

theorem (as its name shows) dates back to the third century' China Mathematics. 

Approximately at the sarne time Greek scientists used a similar algorithm in resolv­

ing practical questions. Much later, in 19th century, the theorem was generalised to 

large extent. But explaining to what extent would Jeave us outside the scope of the 

present note. 

Essentially the Chinese Remainder theorem is an elementary fact. Surprisingly 

en~ugh, it has various applications, and sorne of them are quite interesting and 

difficult, as we shall try to convince the reader. 

2 Applications 

A well known exercise asks whether for every n there exist n consecutive composite 

integers. One gives an exampJe: (n+l)! +2, (n+l)!+3, ... , (n+l)!+(n+ 1). In this 

sequence, the i-th term is divisible by i + 1, and it is obviously larger than i. Now 

we consider sorne variations of this fact, of course applying the Chinese remainder 

theorem. Note that such constructions sometimes are quite difficult ·to find , and 

could be rather tricky to invent. Fortunately the Chinese Remainder Theorem 

provides sorne 11ca.nonicaln approach to such questions. The above example can be 
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resolved easily by observing that the system x + k =O (mod P•) has solutions, and 

its solutions form an arithmetic progression. Here Pk stands for the k-th prime, thus 

p, = 2, p, = 3, p, = 5, etc. 

Exercise 1 Let a + bm, m = 1, 2, ... , be an infinite arithmetic progression where 

a, b E N. Prove that for every n there exist n consecutive elements of the progressian 

that are composite. 

Solutio11. The solution is a slight modification of the above reasoning. Choose primes 

b < r1 < r2 < · · · < r n, and consider the congruences a+ bx = -ib (mod rf) , i = 1, 

2, ... , n. These congruences have solution x E l\J and a+ b(x + i) = O (mod ri) 

for every i. Therefore the n consecutive terms of a + /nn namely {a + b(x + i) 1 

i = 1, 2, ... , n} are composite. 

Exercise 2 Prove that: 

a) There does not exist an infinite arithmetic_ progression a// of whose terms 

being exponents of positive integers; 

b) Far every n there exist n-term arithmetic progressions consisting of expo­

nents of positive integers; 

e) For every n there exist n consecutive positive integers none o/ whicli is an 

exponent. 

(Here by exponent we mean non-trivial exponent i.e. positive integers of the form 

a', k > !. } 

Solution. a) Let a+ mb, m = O, 1, 2, ... , be an infinite arithrnetic progression1 and 

choose a prime p > a+ b. Then (b,p) = (b,p2 ) = 1, and there exist integers x and 

y with xb - yp2 = 1 {Why?). Put m = x(p - a) , then a+ mb = p + (yp - ya)p2 is 

divisible by p but not by p2. Obviously a+ mb belongs to our arithmetic progression 

but it cannot be an exponent. 

b) Denote by p; the i-th prime. Set p = P1P'2 .. ·Pm , and Jet q; = p 1p;,i= 1, 

21 ..• , m. Now consider the system of two congruences x =O (mod q¡) , x = - 1 
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(mocl p;). Since (p;, q;) = 1 this system has solution, denote it as x;. New denote 

d = 1"' 2"' ... m•m. We sh~lll show that the progression { d, 2d, 3d, ... , md} consists 

of exponents. Accorcling te the choice of x; we have that p; 1 Xj if j # i and that 

Pi 1 (xi+ 1) for every i. Heace 

are exponents. 

e) If Pi is the i-th pri.,ne the system 

1 x =Pi - i + 1 (mod p¡), i = 1,2, .. . ,n, 

has positive integer so1ution r. Then the integers r + i - 11 i = li 2, ... , m1 give 

vbe desired example. 

An intriguing and raither comploicated problem that has been attracting the at­

tention of lots of mathematióans is the following. Does there exist a fuHction whose 

values are exactly the primes? We aJ.ready know that if exists, such fürnction cannot 

be linear. On the other hand, a farnous theorem due to P. L. Dirichlet states that 

in every arithmetic progressioH a+ nb, n = 1, 2, ... , with (a, b) = 1 there exist 

infinitely many primes. The pr0of of this theorem is complicatecl ancl there seem to 

be no elementary proofs of it. The interested reader can get aH idea 0n h0w this 

theorem is proved in [l), Chapter 7, or in [7], Chapters 12, 13. We pvovide severa! 

particular cases of it in the last section. (But do not che¡;\ and do not use Dirichlet's 

theorem for these exercises ... ) 

Let us return to functiens thait "generate11 the primes. In 1971 Yuri Matiya..sevich 

found a polynomial with integer c0ef!icients with the following pr0perty. For every 

positive integer values of its 24 variables the values of this p0lyn0mi~I are positive 

primes, and every posi·tive prime can be obtained in this way, as a value of this 

polynomial. The polynomi~I clisc0verecl by Matiyasevich is of clegree ·37, Notice 

that this result is by no meams elementary; it is consequence of the solu•tion of the 

Tenth Hilbert problem that c0ncerns solvability of Diophantiorie equations. We refer 
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to Matiyasevich ' book [5] for details. (A warning: the book is rather dif!icult and 

requires a lot of advanced knowledge.) Let us recall that a Diophantine equation is 

an equation that has to be solved in integers (or, sometimes, in rational numbers). 

A typical example is the equation xn + yn = z" where n 2: 2 is given, and the 

{integer) variables are x, y, z. When n = 2 its solutions are the Pythagorean triples, 

i.e. they describe the right triangles whose sides are integers. VVhen n > 2 it was 

conjectured , centuries ago, by P. Fermat that this equation does not have solutions 

in positive integers. T his problem became famous as the "Fermafs last theorem11 , 

it was recently resolved by A. Wiles. The proof of Fermat's theorem was one of 

the greatest achievements of the Mathematics of the 20th century. We do not give 

reference for this important result since it is indeed extremely complicated; on the 

other hand 1 \Viles' achievement was discussed, even in "popular1' texts. 

Now we show that functions generating the primes cannot be polynomials in 

one variable either. But first !et us make the following observation. Let f(x) be a 

polynomial with integer coeflicients and !et a, b E Z be such that a= b (mod m), 

m E N. T hen f (a) = f(b) (mod m) . For the proof notice that m divides a• -b• for 

every k?: O. 

Exercise 3 Let f(x) be a nonconstant polynomial with integer coefficients. · Then 

there exist infinitely many: 

a) Primes p such that the congruence f(x) = O (mod p) has solution; 

b) Integers x E Z such that f(x) is composite; 

e) Integers x E Z such that f(x) is composite and has 2000 distinct prime divi-

SOTS. 

Solution. a) rr f (x) = X then we know that there exist infinitely many primes 

(Euclid 's Theorem). We shall simulate Euclid 's proof of this fact. Suppose that 

the co11gruences f (x) = O (mod p¡) admit solutions where p¡ are pairwise distinct 

pri111es1 i = 11 21 ••• 1 k. (Such primes do exist si11ce /(x) is non-constant.) We shall 

find another prime P>+1 such that f(x) =O (rnod P•+1) has solution, too. Let y be 
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variable, and write 

f (x +y)= f(x ) + 91 (x)y + g,(x)y' + · · · + 9n(x)y" = f(x) + y A 

where n = degf is the degree off, g1, g,, .. ., 9n are polynomials with integer 

coefficients, and A is an integer. 

Now Jet x E N be such that f(x) = p~1p~2 ••• P!i. where e¡ ~ O, and set y = 

p1¡;1 ... pkf(x) . Then we obtain that f (x +y) = f(x)(I + Ap1p, . . p,). Take a 

prime divisor q of 1 + Ap1 p, ... p,, obviously q 'lo {pi, p,, . , p.). Thus Pk+ 1 = q and 

we are done. (Why one may suppose that A # O?) 

b) (Hint) Apply (a) together with the Chinese Remainder Theorem. 

e) (Hint) Let f (x1) = O (mod p1) and f (x, ) = O (mod p,) far distinct primes 

p1 and p-,. Prove that far every x such that x = x1 (mod p1) ancl x = x2 (mod p2) 

one has f (x) =O (mod p,), i = 1, 2. 

Having proved that polynomial functions (in one variable) cannot "generate" 

the sequence of the primes now we turn to exponential functions. We show that 

certain exponential functions cannot generate the primes and even that they consist 

of composite numbers only. We shall return to this tapie in the last section. 

Exercise 4 Let ª" = an(k) = k.2" + 1, n = l , 2, ... , where k E N. Prove that 

tl1ere exist infinitely many k such that every a. is composite. 

Sol11tio11. We shall use the fallowing classical and well known fact. Let Fn = 22" + 1 

be the Fermat numbers. Then Fo = 31 F1 = 51 P.i = 17, F3 = 257, F~ = 65537 

are primes. Leonard Euler proved that F5 is composite, and it equals the product 

1'6 = 232 + 1 = 641.p where pis prime, p > F,. (We suggest that the reader prove 

/',=O {mod 641) using the fallowing hint: 641 = 5' + 2' = 5.27 + !.) 
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Now consider the system of the congruences 

X - (mod F0 ) 

X - (mod Fi) 

X - (mod F2 ) 

X - (mod F3 ) 

X - (mod F4 ) 

X - 1 (mod 641) 

X - - 1 (modp) 

It has infinitely many solutions x. Take a solution k of this system such that k >p. 

We shall prove that ali an(k) are composite. But first note that one can write the 

above system as follows. 

1 
x = 1 (mod 64l(F5 - 2)) 

x = -1 (modp) 

Let n = 2mt for t odd. If O ~ m ~ 4 then 

a.(k) = k.2n + 1=22m'+ 1= (-1)'+1 =O (mod Fm) 

since Fm divides 232 - 1 for O ~ m ~ 4. (Prove the last statement!) But k > p 

implies an(k) > p > F, 2: Fm hence an is composite. 

Now assume m = 5. Then an = k.2n + 1 = k.2'"' + l = 2'°t + 1 =O (mod 641) 

is composite, too. 

Finally ifm 2: 6 we represent n = 26r where r 2: 1, and then k.2n+ l = - 2'°.r+l 

(mod p). Combine this with 220' - 1 = (22' - 1).a = (22' - 1)(22' + l ).a =O (mod p). 

Hence in this case °"1 is also composite. 

In arder to continue we shall need sorne facts concerning congruences of the form 

f( x) =O (mod pª). 

Theorem 2 Let f(x) be a nonconstant polynomial with integer coefficients. 

a) Let f' be the derivative of f. If the congruence f(x) =O (mod p) has integer 

solution x0 such that f'(xo) ¡i O (mod p) then the congruence f(x) = O (mod p") 

ha.s solution for every a 2: l. 
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b} lf f and f' are cop1-ime polynomials {this is the case when f is irreducible 

over the intege1·s1 for example) then there exist infinitely many primes p such that 

the congruence J(t) =O (mod p) implies f'(t) 't O (mod p). 

P roof. a) We make use of the Taylor expansion of /: 

J(x) = f(xo) + (x - xo)J'(xo) + (x - xo)2 /"(xo)/2! 

+(:r - xo)3 J"'(xo)/31 + · · + (x - xo)" ¡<nl(x0 )/n! 

where n = deg f. You do uot ueed calculus to preve the validity of t his formula ; a 

simple iuduction yields the result (a t least in case of polynornials). 

ow since f(xo) = O (mod p) we know that /(x0 + tp) = O (mod p) for every 

t E Z. \•Ve put in Taylor's formula x = x0 + lp, and thus we obtain 

f(xo + tp) = f(xo) + tpf'(xo) + (tp)2 /"(xo)/2! + (tp)' f"' (xo)/31 + (tp)"f{nl(x0 )/n' 
= f(xo) + tpf'(xo) + p2.4 

where A is some rational number. Consider the polyuomial p(x) = x', the r-th 

derivative of p(x) equals s'/(s - r) 'x'- ' if s 2'. r , ru1d it is O otherwise. Now observe 

that r' divides s !/(s - r) ' (Why?) therefore A is actually integer. Cousider the 

congruence 

t.J'(x0 ) = - f( x0 )/p (mod p) 

where t is the new ¡¡variable.11 (The right hand side fraction is an integer since f(x0) 

is divisible by p.) The congruence has an integer solution t since p <loes not divide 

f' (x0 ). T herefore we obtain that f (x0 + tp) =O (mod p2). One can contiuue in the 

same way, and thus one proves the first part of our theorem. 

b) Suppose now that f(x) ami f'( x) are coprime. T hen there exist polynomials 

with rational coefficients u(x) ancl v(x) such that u(x)f(x) + v(x)g(.~) = l. (In 

orcler to preve thaL consider the Euclid's algorithm for division of polynomials, 

aud apply it twice; once climbing <lown and then cl irnbing up the "staircase" .) 

This means that one can choose u a11CI u with integer coeffi.cients but then one 

has to s11bstitute the co11sta11t 1 by auother iuteger. Let the respective identity be 
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U(x)f(x) + V(x) f' (x) = m where m E Jll. If pis prime such that p divides both 

f(xo) and f'(x0 ) for sorne x0 E Z then p must divide m. Hence there are finitely 

many possibilities far such p, namely the prime divisors of m, and we are done. 

Finally we would like to propase to the reader one 11generalisation11 of the Chinese 

Remainder Theorem, and a related story. F\Jrther generalisations (yes without the 

quotation marks) can be found in [4). 

Exercise 5 Let ai, b¡ 1 m¡ be integers, and form the systern of congruences 1 a¡x = b; 

(mod m;), i = 1, 2, .. . , n. Prove that this system has solution if a11d only if for 

every two indices i # j, the system of two congruences a;x = b; (mod m;), a;x = b; 

{mod m;) has a solution. 

Solution. Use an induction on n starting with n = 21 and 11imitate" the proof of the 

Chiuese Remainder Theorem. 

Notice that in essence the last exercise states the follpwing. If we are given 

n arithmetic progressions (infini te at both sides) consisting of integers, then these 

progressions have a common point of intersection if and only if every two of them 

have such point. 

One interesting question concerns coverings of the integers by arithmetíc pro­

gressions. One asks whether it is possible to find arithmetic progressions such that 

every integer belongs to sorne of tbem. Of course this question has trivial answer 

"yes" since the progression O+ m.l, m E Z covers ali integers. Thus Jet us modify 

our question. We shall require that our progressions have dilferences d; > l. This 

means our progressions will be of the form a¡ +nd¡,, n = 1, 2, .. , where d¡ > l. But 

in this case the answer is still trivial: one considers the odd and the even numbers. 

One is thus led lo consider progressions with pairwise distinct differences d1 > l. 
And our problern becomes the following. 

Do there exist a positive integer k and k arithmetic progressions a; + d;b; con­

sisting of integers, where l < d1 < · · · < d, such that every integer belongs to sorne 

of these progressions? 
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This problem can be easily translated to the language of congruences. In fact 

it asks whether there exists a collection of congruences x = a; (mod d;) such that 

every integer z is a solution for at least one of these congruences. 

One easily verifies that when k = 2 this is impossible. The case k = 3 is easy 

to eliminate as well. We sketch how to show that the case k = 4 is impossible, too. 

The numbers 1 and 2 belong to two different progressions. If 3 belongs to the fi rst 

(the one that contains 1) then it consists of ali odd integers. Hence 4 cannot belong 

to the second progression - otherwise the first two progressions would have equal 

differences. Thus 4 must belong to the third progression . Consider 6 - it cannot 

belong to the third progression. Now there are two cases to <leal with. 

a) The number 6 belongs to the second progression. Then the first two are 

determined, they are 1, 3, 5, 7, ... , and 2, 6, 10, 14, . T!Je number 8 does not 

belong to the third progression; otherwise it would have difference 4. Hence 8 is in 

the fourth progression. Then 12 is in the second, and the second progression is 4, 

121 201 28, ... , and then 16 must be in the fourth. But this determines it, and it is 

8, 16, 24, ... , and the difference is 8. 

b) The number 6 belongs to the fourth progression. Then consider 8, and con­

tinue as in the case (a). 

If 3 belongs to the third progression, the considerations are fairly similar to the 

above, and we leave them to the reader. 

Theorem 3 There exist five arithmetic progressions of integers having differences 

1 < d1 < d., < d3 < d, < d5 that cover t/1e integers. 

Proof. lt is sufficient to point out such progressions. We leave to the reader to 

verify that the five progressions 2k, 3k + 1, 4k + 3, 6k + 5, and 12k + 9 do cover the 

integers. {lt is sufficient to consider only the integers frorn 1 to 24 and t.o prove the 

statement for them since the differences divide 24). 
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3 Exercises 

Exercise 6 Salve the system: 

a) 5x = -l (mod 24) ; b) 2x = 5 (mod 15) ; e) 5x = 3 (mod 7) 1 l 
3x = 7 (mod 10) l 4x = 1 (mod 9) 

4x = 19 (mod 21) 7x = 5 (mod 12) 4x = 5 (mod 12) 

Exer cise 7 Find the least positive integer k such that k divided by 7, 5, S, 11, yields 

residues S, 2, 1, 9, respectively. 

Exer cise 8 Find the least k suc/1 that 45 1 (2' - 1). (Hint: Find the integers m 

such that 9 1 2m - 1 and n such that 5 1 2n - l.) 

Exer cise 9 Find the digits x and y in the number n = 4x87y6 (in decimal system) 

if n is divisible by 5 6. 

Exer cise 10 a) Prove that if 2" - 1 is prime then n is also prime. 

b) Prove that for every n E N there exist n consecutive terms of the sequence 

ak = 2k - 1 that are composite. 

Exer cise 11 Let a+bm, m = 1, 2, ... i be an arithmetic progressian, and let n EN. 

Prove that: 

a) There exist n consecutive terms of the progression such that every one o/ them 

is divisible by 2000 distinct primes, and ali these 2000.n primes are pairwise distinct. 

b) Let k EN and let C<¡ = (i, ,i,, .. . ,i,) be k -tuples o/ positive integers, i = 1, 

2, . , n. Fix pairwise distinct primes {p¡; 1 i = 1, 2,. , n;j = 1> 2, ... , k} . Prove 

that thern exist n consecutive terms of our progression such that the i-th of them is 

divisible by p~\, v:~ , ... , v:~. 
e) Is it possible to choose n consecutive tenns of 01ir pro_r¡ression that satis/y (b) 

and satis/y fu1'lher the condition that neither· v;t 1 dú1ides lhe i -th tenn? 

Exercise 12 Proue that titen:. exist infinitely rnany primes of the form: 

a) •In + 1; b) 4n+ 0; e) Gn + l ; d) Gn 5, n E 111. 
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llint. Simulate Euclid's proof of the infinity of the primes. For a), suppose that p1, 

¡>1 , ... , p, are the only primes of this form , and set p = (2p1p, ... p.)2 + l. Using 

FermaL's Little theorem prove that if a prime q = 4m + 3 divides a2 + IJ then q 

divides a and b. Another, similar approach to tbis question is the following. We 

know that the polynomial congruence x2 + 1 =O (mod p) has solution for an infinity 

of primes p. Of course these cannot be of the form 4m + 3. But every odd prime is 

either of the form 4m + 1 or 4m + 3. 

The statement of b) is easy to prove since product of integers of the form 4s + 1 

is again of Lhe same form. In order to prove e) and d) one uses similar reasoning. 

(Recall that Fermat's Theorem states that if pis prime then a• = a (mod p). One 

proves this assertion by induction on a, or by using the fact that ali binomial coef­

ficients in the expansion (x + y)P are divisible by p. One can rewrite the assertion 

as follows. lf p is prime and p <loes not divide a then a•- 1 = 1 (mod p)). 

Exercise 13 Let !1, h , ... , ! 11 be nonconstant polynomials with inte_qer coefficients. 

Prove that there exist infinitely many m E Z such that the' integers f 1 (m), j,(m), 

... , J n ( m) are composite. 

llint. Choose primes Pi and Qi, i = 1, 21 ••. , n that are pairwise distinct , and 

such that every one of the congruences f; (x) = O (mod p;), f;(x) =O (mod q,) has 

solution. Then apply the Chinese Remaiuder T heorem using the fact that a = b 

(mod m) implies f(a) = f (b) (mod m). 

Exercise 14 Let f (x) be nonconstant polynomial with inte,qer coefficients, and let 

k E N and <>; = (i1, i,, . .. , ik) be k-tuples of positive integers, i = 1, 2, . .. , n. Fix 

pairwise distinct primes {P;; 1 i = 1, 2, ... , n; j = 1, 2 , ... , k). Pr·ove that there exist 

n consecutive positive integers x + i, i = 1, 2, ... , k, such that f (x + i) is divisible 

by p:: , p~~' ... , P:k for every i. 

Exercise 15 Js it possible to choose in the previous exercise, the inte,qers x + i, 
i = 1, 2, .. . , k such that neither p:;+• divides f (x + i) P Consider at least the case 

when f is irreducible. 



150 Paulo Brumatti & Plamen Koshlukov 

Exercise 16 Let b > 1 ande be integers, and let Xn = b" + c. Prove that: 

a) The congroence x. ;; O (mod p) has solutíon for infinitely many primes p; 

b) There exist infinitely man y composite numbers in the sequence { Xn} ; 

e) Generalize (a) and {b), for thefunction g(x) = a/T +e where a, b EN, e E Z. 

Hint. Elaborate the following reasoning. If p1 , ... , Pn are primes then due to Fermat 

Little theorem one has a*l ;; a (mod p, . .. p.) where s(t ) = t (p, -1) ... (p,. -1)+1, 

t E N. 
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