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1 Introduction

In this note we consider a rather elementary but important assertion, namely the
Chinese Remainder Theorem. In Section 2 we give various applications, and finally,
in Section 3, we provide a list of exercises for the reader.

The note is aimed at School students with proven interest in Mathematics, at
their teachers, and at University students who have not lost (or forgotten) their
interest to problem solving. It could be used in preparation for Math competitions
and olympiads. For further reading we would like to suggest the books [2] and
[3] that are readily available in Portuguese. (Note that the first of them has been

translated to English as well.)
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Throughout we consider integers. We suppose the reader is familiar with the
notion of congruence and its basic properties.

Let a and m be integers, m > 1 and (a,m) = 1. The last notation means that the
greatest common divisor GCD of a and m equals 1 i.e., a and m are coprime. It is
well known that the congruence az = b (mod m) has unique solution zq € [0, —1],
and its solutions are given by z; = o + mt, t € Z. In order to prove this fact one
considers all residues modulo m, the integers {0,1,...,m — 1}, and multiplies them
by a. Since (a,m) = 1 the integers {0.a,1.q,...,(m — 1).a} are pairwise distinct
modulo m and hence modulo m they represent a permutation of the first system.
Therefore some of the latter numbers, say zo, satisfies azg = b (mod m). Now let
us try to generalise this fact. Such generalisations were discovered by the ancient
Chinese and Greek mathematicians long ago. Of course it was not asserted in the

form we are going to present but in essence it was the same.

Theorem 1 (Chinese Remainder Theorem) Let n > 1, and let my, my, ...,

my, be pairwise coprime positive integers. Suppose that a;, as, ..., a, are such that

(a;,m;) =1,1=1, 2, ..., n, and that by, by, ..., b, € Z. Then the system of
congruences

| aiz =b;  (mod m), = 1,2, 08
has unigue solution zo € [0, — 1] where m = mymy ... my,. All integer solutions of

this system are given by the formula z; = zo +mt, t € Z.

Proof. We give a sketch of the proof. Use an induction on n. The case n = 1 was
dealt with the above comments. If n = 2, the solutions of a;z = b, (mod m;,) are
z; = Ty +myt. Now substitute this expression for z; in the second congruence. One
obtains a(zo + mit) = by (mod my) and (agm, )t = by — @z (mod m,). The last
congruence admits unique solution £ in [0, m; — 1]. Now we leave to the reader the
completion of the induction argument. (Notice that the argument above justifies
both the base and the step of the induction. Why starting the induction from n = 1

is not sufficient?)
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Now we outline another, direct proof of the Chinese Remainder theorem. Denote
by M; = ]_[#,. mj,i=1,2,..., n. Observe that M; and m; are coprime (Why?).
Therefore the congruence M;y = 1 (mod m;) admits a solution, say N;. Denote
further ¢; a solution of the congruence a;z = b; (mod m;). Since my; divides M; for
J # 1 then

a Z;‘:l M;Njc; = a;MiNic; = aic; = b; - (mod m;)

for every 7, and we can take ) = Z;':l M;Njc; as a solution of the system.

In fact both proofs of the theorem give us an algorithm for solving linear systems
of congruences. If the numbers m; are not coprime the same methods yield the

solutions (or show that the system is incompatible).

Now let us make some very brief historical comments. The Chinese Remainder
theorem (as its name shows) dates back to the third century’ China Mathematics.
Approximately at the same time Greek scientists used a similar algorithm in resolv-
ing practical questions. Much later, in 19th century, the theorem was generalised to
large extent. But explaining to what extent would leave us outside the scope of the
present note.

Essentially the Chinese Remainder theorem is an elementary fact. Surprisingly
enqugh, it has various applications, and some of them are quite interesting and
difficult, as we shall try to convince the reader.

2 Applications

A well known exercise asks whether for every n there exist n consecutive composite
integers. One gives an example: (n+1)!+2, (n+1)!+3, ..., (n+1)!4+(n+1). In this
sequence, the i-th term is divisible by ¢ + 1, and it is obviously larger than i. Now
we consider some variations of this fact, of course applying the Chinese remainder
theorem. Note that such constructions sometimes are quite difficult -to find, and
could be rather tricky to invent. Fortunately the Chinese Remainder Theorem
provides some “canonical” approach to such questions. The above example can be
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resolved easily by observing that the system z + k = 0 (mod px) has solutions, and
its solutions form an arithmetic progression. Here pj stands for the k-th prime, thus
p1=2,py =3, p3 =, et

Exercise 1 Let a+bm, m =1, 2, ..., be an infinite arithmetic progression where
a, b € N. Prove that for every n there exist n consecutive elements of the progression
that are composite.

Solution. The solution is a slight modification of the above reasoning. Choose primes
b< 1 <1y <:-- <y, and consider the congruences a + bz = —ib (mod 72), 7 =1,

2, ..., n. These congruences have solution z € N and a + b(z +¢) = 0 (mod r7)
for every i. Therefore the n consecutive terms of a + bm namely {a + b(z + 1) |

i=1,2,...,n} are composite.

Exercise 2 Prove that:
a) There does not ezist an infinite arithmetic progression all of whose terms
being ezponents of positive integers;
b) For every n there ezist n-term arithmetic progressions consisting of ezpo-
nents of positive integers;
¢) For every n there exist n consecutive positive integers none of which is an
ezponent.
(Here by ezponent we mean non-trivial ezponent i.e. positive integers of the form
(g 1= )
Solution. a) Let a+mb, m =0, 1, 2, ..., be an infinite arithmetic progression, and
choose a prime p > a +b. Then (b,p) = (b,p?) = 1, and there exist integers z and
y with zb — yp? = 1 (Why?). Put m = z(p — a), then a + mb = p + (yp — ya)p? is
divisible by p but not by p%. Obviously a+mb belongs to our arithmetic progression
but it cannot be an exponent.
b) Denote by p; the i-th prime. Set p = pip2...pm, and let ¢; = p | pi, i = 1,
, m. Now consider the system of two congruences z = 0 (mod ¢;), z = —1

e = AWF

2%
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(mod p;). Since (pi;q;) = 1 this system has solution, denote it as z;. Now denote
d=122%..m"". We shall show that the progression {d,2d,3d, ..., md} consists
of exponents. According to the choice of z; we have that p; | @; if j # 7 and that
pi | (@i + 1) for every 7. Hence

Pn
dn =nd = (n(znﬂ)/pn H iz;/x».)
i#n
are exponents.
¢) If p; is the 4-th prime the system

|z=pi—i+1 (modp?), i=12...,m

has positive integer solution 7. Then the integers r +i—1,4 =1, 2, ..., m, give
the desired example.

An intriguing and rather complicated problem that has been attracting the at-
tention of lots of mathematicians is the following. Does there exist a function whose
values are exactly the primes? We already know that if exists, such function cannot
be linear. On the other hand, a famous theorem due to P. L. Dirichlet states that
in every arithmetic progression a +nb, n = 1, 2, ..., with (a,b) = 1 there exist
infinitely many primes. The proof of this theorem is complicated and there seem to
be no elementary proofs of it. The interested reader can get an idea on how this
theorem is proved in [1], Chapter 7, or in [7], Chapters 12, 13. We provide several
particular cases of it in the last section. (But do not cheat and do not use Dirichlet’s
theorem for these exercises. .. )

Let us return to functions that “generate” the primes. In 1971 Yuri Matiyasevich
found a polynomial with integer coefficients with the following property. For every
positive integer values of its 24 variables the values of this polynomial are positive
primes, and every positive prime can be obtained in this way, as a value of this
polynomial. The polynomial discovered by Matiyasevich is of degree 37. Notice
that this result is by no means elementary; it is consequence of the solution of the
Tenth Hilbert problem that concerns solvability of Diophantine equations. We refer
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to Matiyasevich’ book [5] for details. (A warning: the book is rather difficult and
requires a lot of advanced knowledge.) Let us recall that a Diophantine equation is
an equation that has to be solved in integers (or, sometimes, in rational numbers).
A typical example is the equation 2" + y™ = 2" where n > 2 is given, and the
(integer) variables are z, y, z. When n = 2 its solutions are the Pythagorean triples,
i.e. they describe the right triangles whose sides are integers. When n > 2 it was
conjectured, centuries ago, by P. Fermat that this equation does not have solutions
in positive integers. This problem became famous as the “Fermat’s last theorem”,
it was recently resolved by A. Wiles. The proof of Fermat’s theorem was one of
the greatest achievements of the Mathematics of the 20th century. We do not give
reference for this important result since it is indeed extremely complicated; on the
other hand, Wiles’ achievement was discussed, even in “popular” texts.

Now we show that functions generating the primes cannot be polynomials in
one variable either. But first let us make the following observation. Let f(z) be a
polynomial with integer coefficients and let a, b € Z be such that ¢ = b (mod m),
m € N, Then f(a) = f(b) (mod m). For the proof notice that m divides a¥ — b* for
every k > 0.

Exercise 3 Let f(z) be a nonconstant polynomial with integer coefficients.” Then
there ezist infinitely many:

a) Primes p such that the congruence f(z) =0 (mod p) has solution;

b) Integers = € Z such that f(z) is composite;

¢) Integers x € Z such that f(z) is composite and has 2000 distinct prime divi-

S0rs.

Solution. a) If f(z) = z then we know that there exist infinitely many primes
(Euclid’s Theorem). We shall simulate Euclid’s proof of this fact. Suppose that
the congruences f(z) = 0 (mod p;) admit solutions where p; are pairwise distinct
primes, i = 1, 2, ..., k. (Such primes do exist since f(z) is non-constant.) We shall

find another prime pk+1 such that f(z) = 0 (mod px+1) has solution, too. Let y be
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variable, and write
f@+y) = (@) + 9@y + g2(2)y” + -+ + gal@)y" = f(=) +yA
where n = deg f is the degree of f, g, g2, ..., gn are polynomials with integer

coefficients, and A is an integer.

Now let z € N be such that f(z) = pf'p3®...pg* where e; > 0, and set y =
pip2-..prf(x). Then we obtain that f(z +y) = f(z)(1 + Apips...px). Take a
prime divisor g of 1+ Apyp; . .. px, obviously ¢ ¢ {p,pa, ..., pc}. Thus prs1 = ¢ and
we are done. (Why one may suppose that A # 0?)

b) (Hint) Apply (a) together with the Chinese Remainder Theorem.

¢) (Hint) Let f(z1) = 0 (mod p;) and f(z2) = 0 (mod p,) for distinct primes
p and py. Prove that for every = such that 2 = 2, (mod p,) and z = 5 (mod p,)
one has f(z) =0 (mod p;), 1 =1, 2.

Having proved that polynomial functions (in one variable) cannot “generate”
the sequence of the primes now we turn to exponential functions. We show that
certain exponential functions cannot generate the primes and even that they consist
of composite numbers only. We shall return to this topic in the last section.

Exercise 4 Let a, = an(k) = k2" +1, n =1, 2, ..., where k € N. Prove that
there ezist infinitely many k such that every an is composite.

Solution. We shall use the following classical and well known fact. Let F, = 22" +1
be the Fermat numbers. Then Fy = 3, F\ = 5, F, = 17, F3 = 257, Fy = 65537
are primes. Leonard Euler proved that Fj is composite, and it equals the product
Fy = 2% + 1 = 641.p where p is prime, p > Fj. (We suggest that the reader prove
F5 =0 (mod 641) using the following hint: 641 = 5 + 2! = 5.2" +1.)

143
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Now consider the system of the congruences
1 (mod Fp)
1 (mod F)
1 (mod F3)
il
1

n

i

(mod F)
(mod Fy)
1 (mod 641)

-1 (mod p)

8 8 8 8 8 8 8
I}

It has infinitely many solutions z. Take a solution k of this system such that & > p.
We shall prove that all a,(k) are composite. But first note that one can write the
above system as follows.
z = 1 (mod 641(F; —2))
z = -1 (modp)
Let n = 2™t for ¢ odd. If 0 < m < 4 then
(k) =k2"+1=2""+1=(-1)'+1=0 (mod Fy)

since Fy, divides 2°2 — 1 for 0 < m < 4. (Prove the last statement!) But k& > p
implies a,(k) > p > Fy > F,, hence a, is composite.
Now assume m = 5. Then a, = k.2" + 1 = k.22 + 1 = 22t + 1 = 0 (mod 641)

is composite, too.
Finally if m > 6 we represent n = 267 where 7 > 1, and then k.2"+1 = —2%° r+1

(mod p). Combine this with 22" —1 = (22" —1).a = (22 —=1)(2® +1).a = 0 (mod p).
Hence in this case a, is also composite.

In order to continue we shall need some facts concerning congruences of the form
f(z) =0 (mod p?).
Theorem 2 Let f(z) be a nonconstant polynomial with integer coefficients.

a) Let f' be the derwative of f. If the congruence f(z) =0 (mod p) has integer
solution g such that f'(zo) # 0 (mod p) then the congruence f(z) = 0 (mod p°)

has solution for every a > 1.
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b) If f and f' are coprime polynomials (this is the case when f is irreducible
over the integers, for ezample) then there exist infinitely many primes p such that

the congruence f(t) = 0 (mod p) implies f'(t) # 0 (mod p).
Proof. a) We make use of the Taylor expansion of f:

f(@) = flzo) + (2 = 20)f'(z0) + (= = 20)*f"(20)/2!
+(@ = w0)* " (wo) /8! + - -+ + (& — @)™ F™ (o) /!

where n = deg f. You do not need calculus to prove the validity of this formula; a
simple induction yields the result (at least in case of polynomials).

Now since f(zg) = 0 (mod p) we know that f(zo + tp) = 0 (mod p) for every
t € Z. We put in Taylor’s formula z = zy + {p, and thus we obtain

f(zo+1tp) = f(o) + tnf'(wo) + (tp)*f"(z0) /2! + (tp)* " (w0) /3! + (tp)" f™ (w0)/m!
= f(@o) + tof'(20) + p*A

where A is some rational number. Consider the polynomial p(z) = 2, the r-th
derivative of p(z) equals s!/(s — r)!z*~" if s > r, and it is 0 otherwise. Now observe
that r! divides s!/(s — r)! (Why?) therefore A is actually integer. Consider the
congruence

tf'(20) = =f(xo)/p (mod p)

where ¢ is the new “variable.” (The right hand side fraction is an integer since f(zg)
is divisible by p.) The congruence has an integer solution ¢ since p does not divide
f!(zg). Therefore we obtain that f(zo+tp) =0 (mod p?). One can continue in the

same way, and thus one proves the first part of our theorem.

b) Suppose now that f(z) and f'(z) are coprime. Then there exist polynomials
with rational coefficients u(z) and v(z) such that u(z)f(z) + v(z)g(zr) = 1. (In
order to prove that consider the Euclid’s algorithm for division of polynomials,
and apply it twice; once climbing down and then climbing up the “staircase”.)
This means that one can choose u and v with integer coefficients but then one

has to substitute the constant 1 by another integer. Let the respective identity be
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U(z)f(z) + V(z)f'(z) = m where m € N. If p is prime such that p divides both
f(zo) and f'(z,) for some 7y € Z then p must divide 7. Hence there are finitely
many possibilities for such p, namely the prime divisors of m, and we are done.
Finally we would like to propose to the reader one “generalisation” of the Chinese
Remainder Theorem, and a related story. Further generalisations (yes without the

quotation marks) can be found in [4].

Exercise 5 Let a;, b;, m; be integers, and form the system of congruences | a;z = b;
(mod m;), i =1, 2, ..., n. Prove that this system has solution if and only if for
every two indices i # j, the system of two congruences a;z = b; (mod m;), a;z = b;

(mod m;) has a solution.

Solution. Use an induction on n starting with n = 2, and “imitate” the proof of the
Chinese Remainder Theorem.

Notice that in essence the last exercise states the following. If we are given
n arithmetic progressions (infinite at both sides) consisting of integers, then these
progressions have a common point of intersection if and only if every two of them

have such point.

One interesting question concerns coverings of the integers by arithmetic pro-
gressions. One asks whether it is possible to find arithmetic progressions such that
every integer belongs to some of them. Of course this question has trivial answer
“yes” since the progression 0+ m.l, m € Z covers all integers. Thus let us modify
our question. We shall require that our progressions have differences d; > 1. This
means our progressions will be of the form a; +nd;, n =1, 2, ..., where d; > 1. But
in this case the answer is still trivial: one considers the odd and the even numbers.
One is thus led to consider progressions with pairwise distinct differences d; > 1.
And our problem becomes the following.

Do there exist a positive integer k and k arithmetic progressions a; + d;b; con-
sisting of integers, where 1 < d; < -+ < dj such that every integer belongs to some

of these progressions?
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This problem can be easily translated to the language of congruences. In fact
it asks whether there exists a collection of congruences z = a; (mod d;) such that
every integer 2 is a solution for at least one of these congruences.

One easily verifies that when k& = 2 this is impossible. The case k = 3 is easy
to eliminate as well. We sketch how to show that the case k = 4 is impossible, too.
The numbers 1 and 2 belong to two different progressions. If 3 belongs to the first
(the one that contains 1) then it consists of all odd integers. Hence 4 cannot belong
to the second progression — otherwise the first two progressions would have equal
differences. Thus 4 must belong to the third progression. Consider 6 — it cannot
belong to the third progression. Now there are two cases to deal with.

a) The number 6 belongs to the second progression. Then the first two are
determined, they are 1, 3, 5, 7, ..., and 2, 6, 10, 14, ... The number 8 does not
belong to the third progression; otherwise it would have difference 4. Hence 8 is in
the fourth progression. Then 12 is in the second, and the second progression is 4,
12, 20, 28, ..., and then 16 must be in the fourth. But this determines it, and it is
8, 16, 24, ..., and the difference is 8.

b) The number 6 belongs to the fourth progression. Then consider 8, and con-
tinue as in the case (a).

If 3 belongs to the third progression, the considerations are fairly similar to the

above, and we leave them to the reader.

Theorem 3 There exist five arithmetic progressions of integers having differences

1<d <dy <ds<dy<ds that cover the integers.

Proof. It is sufficient to point out such progressions. We leave to the reader to
verify that the five progressions 2k, 3k + 1, 4k + 3, 6k + 5, and 12k + 9 do cover the
integers. (It is sufficient to consider only the integers from 1 to 24 and to prove the

statement for them since the differences divide 24).

m
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3 Exercises

Exercise 6 Solve the system.:

oy = ik sfmyei) 3z =7 (mod 10) 4z =1 (mod9)
a) 41 =_;9 (mod 21 i b)| 20 =5 (mod15) ; ¢)| 5z =3 (mod7)
= e 7o =5 (mod 12) 4z =5 (mod 12)

Exercise 7 Find the least positive integer k such that k divided by 7, 5, 3, 11, yields

residues 3, 2, 1, 9, respectively.

Exercise 8 Find the least k such that 45 | (28 — 1). (Hint: Find the integers m
such that 9 | 2™ — 1 and n such that 5| 2" —1.)

Exercise 9 Find the digits © and y in the number n = 4z87y6 (in decimal system)
if n i divisible by 56.

Exercise 10 a) Prove that if 2" — 1 is prime then n is also prime.
b) Prove that for every n € N there exist n consecutive terms of the sequence

ay = 2% — 1 that are composite.

Exercise 11 Leta+bm, m =1, 2, ..., be an arithmetic progression, and letn € N.
Prove that:

a) There exist n consecutive terms of the progression such that every one of them
is dwisible by 2000 distinct primes, and all these 2000.n primes are pairwise distinct.

b) Let k € N and let o; = (11,92, ..., 4) be k-tuples of positive integers, i = 1,
2, ..., n. Fiz pairwise distinct primes {pi; | i = 1,2,...,n;5 = 1,2,...,k}. Prove
that there ewist n consecutive terms of our progression such that the i-th of them is
divisible by pil, p3, ..., pik.

¢) Is it possible to choose n consecutive terms of our progression that satisfy (b)

and satisfy further the condition that neither p:fl divides the i-th term?

Exercise 12 Prove that there ewist infinitely many primes of the form:
a)dn +1; b) 4n + 3; ¢) d)6n+5,neN.

(.
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Hint. Simulate Euclid’s proof of the infinity of the primes. For a), suppose that p;,
P2, -, Pk are the only primes of this form, and set p = (2p;ps...px)? + 1. Using
Fermat’s Little theorem prove that if a prime ¢ = 4m + 3 divides a® + b? then ¢
divides a and b. Another, similar approach to this question is the following. We
know that the polynomial congruence z°+1 = 0 (mod p) has solution for an infinity
of primes p. Of course these cannot be of the form 4m + 3. But every odd prime is
either of the form 4m + 1 or 4m + 3.

The statement of b) is easy to prove since product of integers of the form 4s + 1
is again of the same form. In order to prove ¢) and d) one uses similar reasoning.
(Recall that Fermat’s Theorem states that if p is prime then a” = a (mod p). One
proves this assertion by induction on a, or by using the fact that all binomial coef-
ficients in the expansion (z + y)P are divisible by p. One can rewrite the assertion

as follows. If p is prime and p does not divide a then a?~' =1 (mod p)).

Exercise 13 Let fi, fa, ..., fa be nonconstant polynomials with integer coefficients.
Prove that there ezist infinitely many m € Z such that the integers fi(m), fa(m),

..., fa(m) are composite.

Hint. Choose primes p; and ¢;, ¢ = 1, 2, ..., n that are pairwise distinct, and
such that every one of the congruences fi(z) = 0 (mod p;), fi(z) = 0 (mod g;) has
solution. Then apply the Chinese Remainder Theorem using the fact that a = b
(mod m) implies f(a) = f(b) (mod m).

Exercise 14 Let f(z) be nonconstant polynomial with integer coefficients, and let
k € N and a; = (iy,13,...,4) be k-tuples of positive integers, i =1, 2, ..., n. Fiz
pairwise distinct primes {pi; | i =1,2,...,n;j = 1,2,...,k}. Prove that there ezist
n consecutive positive integers T +1i, 1 =1, 2, ..., k, such that f(z + i) is divisible
by B, P2, .., Pk for every i.

Exercise 15 Is it possible to choose in the previous exercise, the integers T + 1,
i=1, 2 ..., k such that neither p::j?+1 divides f(z +1)? Consider at least the case
when f is irreducible.
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Exercise 16 Let b > 1 and c be integers, and let z,, = b + c. Prove that:
a) The congruence z, =0 (mod p) has solution for infinitely many primes p;
b) There exist infinitely many composit bers in the sequence {zn};

¢) Generalize (a) and (b), for the function g(z) = ab® +c where a, b€ N, ¢ € Z.

Hint. Elaborate the following reasoning. If py, ..., p, are primes then due to Fermat
Little theorem one has a*® = a (mod p; .. .pn) where s(t) = t(p1—1) ... (pn—1)+1,
teN.
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