Cubo Matemdtica Educacional
Vol. 4, N°1, MAYO 2002

AN INTRODUCTION TO THE STRUCTURE
OF ABELIAN GROUPS

David M. Arnold
Department of Mathematics, Baylor University,
Waco, TX 76798-7328/U.S.A.
e-mails: David_Arnold@baylor.edu

Abstract

The definition of an abelian group is an abstraction of familiar properties
of the set of integers. Some major structural theorems for abelian groups are
i d from an el y point of view. Numerous examples are included.

1 Introduction

Fundamental properties of the integers are encountered early in a student’s mathe-
matical education. For example finding an integer n with 7 +n = 15 + (19 + 85)
by inspection can be accomplished by writing 7+ n = (15 4 85) + 19 = 119 so that
n = -7+ 119 = 112. This simple solution uses the commutative law for addition
(19+85 = 85+ 19), the associative law for addition (15+ (85+19) = (15+85) +19),
and the existence of an additive inverse —7 of 7 (7+ (—=7) = 0).
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The definition of an abelian group can be viewed as an abstraction of these
fundamental properties. Specifically, an abelian group is a set G together with an
operation + on pairs of elements of G satisfying the following axioms:

(i) closure: a+ b is a unique element of G for each pair a, b of elements of G;

(ii) commutativity: @+ b= b+ a for each pair a,b of elements of G;

(iii) associativity: a + (b+ c) = (a+ b) + c for each triple a,b, and c of elements
of G

(iv) identity: there is an element of G, denoted by 0, such that a+0=a =a+0
for each element a of G;

(v) inverse: for each element a of G, there is an element of G, denoted by —a,
such that a + (—a) =0 = (—a) + a.

Abelian groups arise naturally in many areas of mathematics, both elementary
and sophisticated. For example, the set Z ={...,—2,—1,0,1,2,3,...} of integers
with addition as + satisfy axioms (i) -(v), as does the set Q ={a/b: a,b € Z, 0 # b}
of fractions with + defined by a/b + ¢/d = (ad + be)/bd. Notice that in the abelian
group @, 0 = 0/a € Q for each 0 # a € Q and —( a/b) = (—a)/b € Q for each
a/b € Q. The set of real numbers R, the set of complex numbers C, and vector
spaces over either R or C, essential tools for such disciplines as engineering and
physics, are all examples of abelian groups with addition as + in each case. On a
more advanced mathematical level, additive groups of rings and modules are abelian
groups, as are homology groups, cohomology groups, and certain homotopy groups
arising in algebraic topology.

Another example of an abelian group bearing a resemblance to the group Z of
integers is Z/nZ = {0,1,2,...,n — 1} for a fixed positive integer n > 1. This is
the set of all possible remainders obtained by dividing positive integers by n. The
operation + on Z/nZ, called addition modulo n, is given by i + j = k, where k is
the remainder when i + j is divided by n.

For example, if n = 12, then Z/nZ = Z/12Z = {0,1,2,3,4,5,6,7,8,9,10, 11}.
In Z/12Z,5+ 8 = 1, since 5 + 8 = 12 + 1 shows that the remainder is 1 when 5+ 8
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is divided by 12. On the other hand, —8 = 4 € Z/12Z because 8 + 4 = 0 in Z/12Z
(observing that 0 is the remainder when 8 + 4 is divided by 12). Consequently,
in Z/12Z,5 8 = 5+ (-8) = 5+4 = 9. These calculations are familiar to
clock-watchers, since if the time is now 5 o’clock, then it will be 1 o’clock in 8 hours
(5+ 8 = 1) and the time was 9 o’clock 8 hours earlier (5 — 8 = 9). In this case, the
arithmetic takes place in Z/12Z, since a normal clock has only twelve hours, namely
12=0,1,2,3,4,5,6,7,8,9,10, and 11. For a twenty-four hour clock, the arithmetic
would take place in Z/247.

If G is an abelian group, z € G, and n € Z is an integer, then nz is an element of
G. This is a consequence of the axioms for an abelian group because nz = z+...+x
(n terms) is an element of G if n > 1, nz = (—z) + ... + (-z) € G if n < 0, and
0z=0€G.

A basic problem in abelian group theory is the structure problem: Can a given
abelian group be identified as a combination of familiar groups? This is one of the
most important problems for applications to other areas, especially in the case that
an abelian group models a physical situation. Within more advanced mathematics,
classification of a homology, cohomology, or homotopy group of a topological space
provides information about the topological and geometric nature of the space. The
commutative axiom (axiom (ii)) is essential to make the structure problem feasible
for finite groups, where a finite group is a finite set with an operation + satisfying
axioms (i), (iii), (iv), and (v) but not necessarily (ii). As discussed in Section 1, all
finite abelian groups can be identified. On the other hand, the structure problem
for a finite group in general is currently just too complicated to resolve.

The two terms “identified” and “combination” in the structure problem can
be made more specific. As for “combination”, given two abelian groups G and
H, define G ® H to be the set of ordered pairs (g,h) with g € G and h € H.
This set is an abelian group, where + on G & H is defined by (g1, 1) + (g2, h2)
= (g1 + g2, h1 + hy). In this case, the identity is 0 = (0,0) € G @ H and the inverse
~(g,h) of (g,h) is (—g, —h) € G @ H. The abelian group G @ H is called the direct
sum of G and H and G is called a summand of G @ H. More generally, given
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abelian groups G, ...,Gn, Gy ® ... ® Gy, = {(g1, .---gn) : i € G;} with + defined by
(91y---9n) + (h1y .hn) = (91 + R, .., gn + ha) is the direct sum of these groups.
For example, the elements of Z/2Z ® Z/3Z are (0,0), (0, 1), (0, 2), (1,0),(1,1),
and (1,2). Let’s look at some arithmetic in Z/2Z & Z/3Z :
2= ( 1)+ (1,1) =@ +1,1+1)=(0,2),

3(L,1)=(1,)+1,1)+(1,1)=0+1+1,1+1+1)=(L,0)
4(1,1) = (0 1)

5(1,1) = (1,2), and
6(1,1) = (0,0).

A quick inspection shows that the elements of Z/2Z & Z/3Z, with z = (1,1),
are precisely 0 = 0z,z = lz,2z,3z,4z, and 5z. From this perspective, + in
Z/2Z.&® Z/3Z is given by iz + jr = kz, where 1 + j = k is computed in Z/6Z.
Consequently, Z/2Z & Z/3Z “looks like” Z /67, a suspicion that will be made precise.

Two abelian groups G and H are isomorphic if there is a 1-1 and onto function
f from G to H such that f(a +b) = f(a) + f(b) for each a and b in G. In this
case, f is called an isomorphism. For instance, G = Z/6Z is isomorphic to H =
7,/2Z ® Z/3Z, the isomorphism f being defined by f(i) = iz for each i € Z/6Z.
Isomorphism is the sense in which two abelian groups are identified.

On the other hand, Z/4Z is not isomorphic to Z/2Z @ Z/2Z, even though both
groups have four elements. To see this, first observe that 2(¢, j) = 0 for each (3, j) €
Z/2Z & Z,/2Z. If there actually was an isomorphism f from Z/4Z to Z/2Z & Z/2Z,
then f(0) = 0 = 2f(1) = f(1)+ f(1) = f(2). Since 0 # 2 € Z/4Z, this would be
a contradiction to the assumption that the function f is 1 —1. Thus, Z/4Z is not
isomorphic to Z/2Z & Z/27Z.

The structure problem can now be described more precisely: Is an abelian group
isomorphic to the direct sum of known groups? The questions of which groups are
“known” and the extent to which direct sums are unique are discussed further in
subsequent sections.

The author wishes to thank Treven Wall for reading an earlier version of this

manuscript and for his helpful comments.
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2 Finitely generated abelian groups

A subset X = {z,,...,2,} of an abelian group G is a finite set of generators for G
if n is a positive integer and for every element = of G there are integers ai, ..., a,
with z = a,z; + ... + a,z,. In this case, G is a finitely generated abelian group. A
finite abelian group is finitely generated since, in this case, the entire group may
be chosen to be the set of generators. A set of generators for a finite abelian group,
in fact even their number, need not be unique. For example, X = {1}, X = {5},
and X = {2,3} are all sets of generators for Z/6Z. However, X = {2} is not a
generating set for Z/6Z since the subset {n2 : n € Z} of elements of Z/67 generated
by 2 is {0,2,4} # Z,/62.

An abelian group that can be generated by a single element is called a cylic
group. A cyclic group is isomorphic to either Z or Z/nZ for some n > 1. It is
consistent with the definitions to identify Z with Z/0Z and the single element group
{0} with Z/1Z.

The following theorem is a good example of a structure theorem in that a finitely
generated abelian group is identified, up to isomorphism, as a direct sum of cyclic
groups and cyclic groups are identified, up to isomorphism, as Z or Z/nZ for some
n > 1 [Gallian 98]. This theorem is attributed to L. Kronecker in 1858.

Theorem 1 A finitely generated abelian group is a direct sum of cyclic groups.

There are a number of proofs of the preceding theorem. Following is an outline
of an old, but algorithmic, argument provided that the group is expressed in terms
of generators and relations. For complete details see [Mines, Richman, Ruitenburg
88].

A finitely generated abelian group G can be represented as a finite set X =
{z)....,z,} of generators and a set of relations expressed as an m X n matrix N =
(@35)mxn With m < n and each a;; an integer such that, for each i, Y {a;;z; : 1 <

J < n} = 0. For example, Z/6Z can be represented either by X = {1}, N = (6),,

orby X = {2,3} and N = ( ) . A Z-matrix is a matrix with all entries
2x2
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integers and a Z—matrix is invertible if its determinant is +1.

Given an m x n Z-matrix N, there are invertible Z—matrices P and @ with

dy S0F gl
0 d 0 s
= Edinl= e : RpE an m x n matrix consisting of integers
Rl )
1] ) Rl U

dy,...,dm, on the diagonal of the m X m submatrix and zeroes elsewhere, such that
d; divides d;;, (evenly) for each i. The matrix S is called the Smith normal form of
the integer matrix N derived by H. Smith in 1861. The Smith normal form of an
integer matrix can be computed by modern computational software packages such
as Maple. The Z-matrix S results in a new set ¥ = {1, ..., yn} of generators of G
with relation matrix S. It follows that G is isomorphic to the direct sum Z/d,Z
@... ® Z/d,Z of cyclic groups.
As an illustration of this argument suppose that the abelian group G has gener-
ators {z,,z, 23} and relation matrix
4 6 0
IVE=H1 =D B3 Nl
BRI D8ND
Elementary invertible row operations on N (multiplication by +1, interchanging
rows, and adding an integral multiple of one row to another) correspond to multi-
plying N on the left by an invertible Z-matrix P just as for elementary invertible
row operations for real-valued matrices. Similarly, elementary invertible column op-
erations on /N correspond to multiplying NV on the right by an invertible Z-matrix
Q.

Interchange columns of N to obtain

04 6
1.2 3
2 8 12

and interchange the first and second rows of this matrix to get

(T
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12 3
O 26 o b
2 8 12

This sequence of operations was done to put the entry 1 of N of least non-zero
absolute value into the upper left hand corner. Use an elementary row operation
(multiply the first row by —2 and add to the third row) to clear the first column,

a2 43
046 ].
046

Subtracting the third row from the second gives

123
Ded 6yl
000

Next, clear the entries of the first row by elementary invertible column operations

100
0.4 1693
000

So far, the process used is that of Gaussian elimination for real valued matrices.

thereby obtaining

to get

However, in this case we cannot take the next step, i.e. multiply the second column
by —~6/4 and add to the third column, because the only scalars allowed are integers.
Fortunately, greatest common divisors can be used to complete the process.

The greatest common divisor of two positive integers a and b is denoted by
ged(a, b). From the second row of the preceding matrix, ged(4,6) = 2. Moreover,
2= (=1)4+ (1)6 (this is a special case of the fact that if a and b are integers with

ged(a, b) = d, then there are integers r and s with d = ra + sb). Hence,

190t 0 THNOES S0 100
046 =T =672 =" "o"2™Mo
00 0 0 1 4/2 000
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RN SO
[ o R (R
0l )b

an invertible Z-matrix, since its determinant is 1. This shows that the Smith normal

IR0
foormof Nis S=| 0 2 0

with

000
Therefore, G is isomorphic to Z/1Z® Z/2Z® Z/0Z = Z/2Z&® Z, recalling that
7,/17 ={0} is the one-element group and Z/0Z = Z.
The Smith normal form of an integer matrix is known to be unique. Moreover, if
G is isomorphic to the direct sum Z/d\Z ®...®Z/dy,Z of cyclic groups with d; divid-

TR e 0]
)
ing d;, for each i, then G has an mxm relation matrix S = 3 £ 3
(0o (st (0]
0. s

Consequently, a decomposition of G into direct sums of cyclic groups Z/d,\Z ®... ®
2] di of cyclic groups with d; dividing d;4, for each i, must be unique. On the
other hand, not every direct sum decomposition of G as a direct sum of cyclic groups
need be of this kind.

In particular, cyclic groups can have direct sum decompositions. For example, as
noted above, Z/6Z is isomorphic to Z/27 @ Z/3Z. As the next theorem illustrates,
this is due to the factorization of 6 into the product of prime numbers 2 and 3.

Theorem 2 Let n = pi'..p% be a factorization of an integer n into powers of

distinct prime numbers py, ...,pm. Then Z/nZ is isomorphic to the direct sum of

cyclic groups Z/p'2&..® Z[perT .

Proof. Define a function f from Z/nZ to Z/p{'Z&..& Z/pirZ by f(i)
(i(mod pf"), ... ,i(mod p)) for each i € Z/nZ , where i(modp]’) € Z/pj’Z is the

'm

remainder when i is divided by p;’. Then f(i+j) = f(2)+ f(5) for each 7, j € Z/nZ.

AW
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Moreover, f is 1 — 1 because the primes p,, ..., p,, are distinct. Since Z/nZ and
Z/p)'Z®...® L/prZ have the same number of elements, the function f is onto as
an application of the pigeon-hole principle [Grimaldi 99]. This shows that f is an
isomorphism. m

The proof of Theorem 2 can be used to prove that if n = ab with ged(a,b) = 1,
then Z/nZ is isomorphic to Z/aZ @ Z/bZ.  The hypothesis that ged(a,b) = 1
is definitely necessary, recalling that 4 = 2 x 2 but Z/4Z is not isomorphic to
Z/2Z® Z/2Z. Tt is used in the proof to conclude that i = j(modab) given that
1= j(moda) and 7 = j(modb).

Theorem 2 is popularly known as the Chinese Remainder Theorem, as the essence
of this theorem is in a third century B.C. Chinese manuscript entitled “Master Sun’s
Mathematical Manual”. This theorem appeared in the context of finding a solution
to a system of congruence equations. Given an integer n > 1 and integers a and
b, define a = b(mod n) if a(mod n) = b(modn) as elements of Z/nZ, i.e. a and b
have the same remainder when divided by n; equivalently a — b is evenly divisible by
n. An introductory survey of properties of congruences and the underlying number
theory is given in [Moreira 99].

The problem is, given positive integers a and b with ged(a,b) = 1, 2, € Z/dZ,
and z; € Z/bZ, to find a simultaneous solution to the congruence equations

z = zy(mod a)

Zo(mod b).

1}

T

In modern terminology, this amounts to showing that the function f from Z/nZ
to Z/aZ & Z/bZ given by f(i) = (i(moda),i(modb)) is onto. The above proof of
the Chinese Remainder Theorem appeals to the pigeon-hole principle. This is an
example of a pure existence proof in that there is a solution z but the proof doesn’t
indicate at all how to find the solution. To find the solution, write ged(a,b) = 1 =
ra+ sb for some integers r and s. Then o = sbx; +raz, is the desired solution. 'This

is because z(mod a) = sbz; (moda) = (1 —ra)z,(mod a) = z;(mod a) and, similarly
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z = zy(mod b).

Problems involving the simultaneous solution to systems of congruence equations
are scattered throughout history, including present day puzzles that one may en-
counter in a variety of contexts. Here is an old problem from a medevial manuscript
[Ore, 48]:

“An old woman goes to market and a horse steps on her basket and crushes the
eggs. The rider offers to pay for the damages and asks her how many eggs she had
brought. She does not remember the exact number, but when she counted them
out two at a time, there was one egg left. The same happened when she picked
them out three, four, five, and six at a time, but when she took them out seven at
a time they came out even. What is the smallest number of eggs she could have?”

A moments thought reveals that, since the least common multiple of 2,3,4,5,
and 6 is 60, the problem is asking for a simultaneous solution to the two equations
z = 1(mod 60) and x= 0(mod 7). The above procedure, or even trial and error by
finding the smallest integer of the form 60 + 1 that is divisible by 7, reveals that
301 is the least number of eggs that the woman could have in her basket.

There are important applications of finite groups, especially Z /127, to the theory
of music. See [Albuquerque, Oliveira 99] for a survey of some of these applications.

Combining Theorems 1 and 2 and the fact that the direct sum decomposition of
Theorem 2 is unique up to isomorphism and order of direct summands yields:
Corollary 3 (Fundamental theorem for finitely generated abelian groups) A finitely
generated abelian group is isomorphic to a finite direct sum of cyclic groups isomor-
phic to Z and cyclic groups isomorphic to Z/nZ for n a power of a prime. Such a
decomposition is unique up to isomorphism and order of summands

Corollary 3 results in a procedure for listing all abelian groups with a given
finite number of elements. The first step is a factorization of a positive integer n as
a product of powers of distinct primes, say n = p{'...p%". An abelian group with n
elements must be uniquely a direct sum of m groups with pj-’ elements for 1 < j < m.

Moreover, the number of groups with p/ elements, for p a prime, correspond to the

(T

number of positive integer partitions of j.
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For example, the only abelian groups with 8 = 23 elements, up to isomorphism,
are Z /8%, Z./2Z & Z,/AZ, and Z/27 & Z/2Z & Z /27, corresponding respectively to
the partitions 3 = 3,3 =1+2,and 3 =1+1+1of 3. No two of these three groups
are isomorphic, since 4(z, j) = 0 for each (1, j) € Z/2Z & Z/4Z and 2(i, j, k) = 0 for
each (i, 5, k) € Z/22.® Z/22. & T,/2Z..

3 Torsion and divisible abelian groups

A distinguishing feature of finite abelian groups from finitely generated abelian
groups in general is that each non-zero element z of a finite abelian group G has
finite order (i.e. there is a non-zero positive integer n with nz = 0 € G). For
example, the order of 1 in Z/nZ for n > 1 is n, while the order of 1 in Z is infinite
(not finite). An abelian group G is a torsion group if each non-zero element of G
has finite order and torsion-free if each non-zero element has infinite order. In view
of Corollary 3, finite abelian groups are the finitely generated abelian groups that
are torsion. Furthermore, finitely generated abelian groups that are torsion free are
free groups, i.e. groups isomorphic to direct sums of Z.

An abelian group G is a p-group, for a prime p, if each non-zero element of G
has order a power of p, i.e. for each 0 # = € G, there is some positive integer e with
pfe = 0. The following theorem reduces the study of torsion abelian groups to that
of p-groups.

The notion of finite direct sums of abelian groups extends naturally to infinite
direct sums of abelian groups. Let I be a set and {G; : i € I'} a set of abelian groups
indexed by I. Define an abelian group ®;¢;G;, called the direct sum of {G; : i € I},
to be the set of sequences (g;)icr € I;c;G; such that g; = 0 for all but finitely many
i € I with + defined by (g:)ier + (hi)ier = (9i + hi)ier € ®ic1Gi.

The condition that an abelian group G is isomorphic to a direct sum of abelian
groups can be expressed in terms of subgroups of G, where a non-empty subset H
of G is a subgroup of G if a — b € H for each pair of elements a and b of H In
particular, the identity element 0 of G is an element of each subgroup H of G, since

- =
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ifa€ H,then0=a—a€ H.

Let {Gi : ¢ € I} be a set of subgroups of an abelian group G. Then G is
equal to @icrG; if and only if each element g of G' can be written uniquely as

= E{g,- S F} for some finite subset F' of I and g; € G;. An equivalent criterion
is that

(i) G = Y ier Gi (for each a € G there is a finite subset F of I with a = ), ra;
and each q; € G;) and

(it) for each i € I, GiN Y-, .., G = {0}

For instance, G; = {0,2,4} and G, = {0,3} are subgroups of Z/6Z with
Z/6Z =G,® G,. This is because each element a of Z/6Z can be written uniquely

as a = a, + ay for some q; € G;.

Theorem 4 A torsion abelian group G can be written uniquely as a direct sum of

p-groups.

Proof. For each prime p, let G, be the set of non-zero elements of G' with order a
power of p. Then each G, is a p-group and a subgroup of G. The goal is to prove
that G = @,cnGp, where IT denotes the set of prime numbers.

To see that (i) holds, i.e. G = Zpen G, let 0# a € Gandn=pf'..pZ the least
positive integer with na = 0. Since the primes p; are distinct, there are integers r;
with 1 = Y {ri(n/p{*) : 1 <i < m}. Then a = Y {ri(n/pf')a: 1 < i < m} with each
ri(n/p)a € Gy,. As for (ii), if p € 11, and a € G,N Y, G, then p¢a = 0 = ma for
some integer m relatively prime to p. Writing 1 = rp® + sm for some integers r and
s gives a = rpa + sma = 0. Uniqueness follows from the observation that if f is an
isomorphism from G to ®penH, with each H, a p-group, then f is an isomorphism

from G, to H, for each prime p. m

Given an abelian group G and integer n, define nG = {na : a € G}, a subgroup
of G. An abelian group G is bounded if there is an integer n with nG = 0. Clearly,
a bounded abelian group must be a torsion group. The next theorem, proved by
H. Priifer in 1923 and R. Baer in 1934, is another example of a good structure
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theorem. The proof uses infinite set theory (Zorn'’s Lemma) and is not included;
see [Kaplansky 69] or [Fuchs 70]. Since a finite torsion abelian group is necessarily
bounded, this theorem is a generalization of Corollary 3.

Theorem 5 A bounded abelian group is a direct sum of cyclic groups of prime

power order.

Not every direct sum of cyclic groups of prime power order is bounded. For
example, given a prime p, G = ®{Z/p'Z : 1 < i} is not bounded. An abelian group
G is countable if the set G can be put into 1-1 correspondence with the natural
numbers. The pentultimate theorem of this section, proved by H. Priifer in 1921,
is a structure theorem for a large class of countable p-groups.

Theorem 6 Let p be a prime. A countable p-group G is a direct sum of cyclic
groups if and only if N{p'G :1 < i} = {0}.

A complez nth root of unity for a positive integer n is a complex number z with
2" = 1. For example, z = ?™/™ = cos(2r/n) + isin(27/n) is a complex nth root of
unity. Given a prime p, the set of complex p* roots of unity with i = 1,2, ... is a
countable abelian p-group, denoted by Z(p*), with + defined by multiplication of
complex numbers and 1 the identity for +. An alternate, but equivalent, definition of
Z(p>) is an abelian group with generators zi, ..., T, Ty 41, ... and relations pz; = 0,
PTy = Ty, - , PTngl = Tp, .. Now p'Z(p™®) = Z(p™) for each 1 < 4 and so
N{P'Z(p>) : 1 < i} = Z(p™). In view of the preceding theorem, Z(p*®) is not a
direct sum of cyclic groups.

An abelian group G is divisible if nG = G for each non-zero integer n. Examples
of divisible groups include Z(p™) and Q, the additive group of rational numbers.
Divisible groups are identified as a consequence of the final structure theorem of this

section.

Theorem 7 A divisible abelian group is isomorphic to a direct sum of copies of

Q and Z(p™) for primes p.

o ([T




As an application of the preceding theorem, R, the additive group of real num-
bers, is isomorphic to an uncountable direct sum of copies of Q. In particular, R
is a Q-vector space with an uncountable basis. Once again, the proof is a pure
existence proof, as the proof does not demonstrate how to find such a basis.
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More profound properties of torsion groups are presented in [Kaplansky 69],
[Griffith 70], and [Fuchs 70,73]. While the structure problem has been resolved for
large classes of abelian p-groups, it is far from being resolved for abelian p-groups

in general.

4 Torsion-free abelian groups

Each torsion-free abelian group G is isomorphic to a subgroup of a torsion-free
divisible group. Hence, G may be realized as a subgroup of a vector space over
Q of least dimension, called the rank of G. For example, the torsion-free abelian
groups of rank 1 are just the subgroups of 1-dimensional @ -vector spaces. Up to
isomorphism, these groups are just subgroups of Q.

Subgroups of @ can be identified up to isomorphism by sequences of non-negative
integers and co. For purposes of identification of a non-zero subgroup X of Q up
to isomorphism, it is sufficient to assume that 1 € X. To see this, let 0 # m/n € X.
Then (m/n)X is a subgroup of @ that is isomorphic to X and contains 1.

For each prime p, let 4 (1) be the largest non-negative integer n with 1/p" € X
if such an n exists and X (1) = oo if there is no largest such n. Define A(X) to be
the sequence (ll;}‘(l))pgn indexed by the set IT of all primes. It follows that X is the
subgroup of @ generated by {I/p":(” : p € IT}. For example, h(Z) = (0, ...,0,...) is
the sequence of all zeros and h(Q) =(o0, ..., 00, ...) is the sequence of all co’s.

Conversely, define a height sequence h = (h,),en to be a sequence of non-negative
integers and oo's indexed by the set of primes. Let X be the subgroup of @
generated by {1/p"» : p € II}. Then h(X) = h. Consequently, there is a 1-1
correspondence between subgroups of @ containing 1 and height sequences.

It remains to determine precisely, in terms of height sequences, when two sub-
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groups X and Y of Q containing 1 are isomorphic. The groups X and Y are iso-
morphic if and only if there are non-zero positive integers m and n with mX = nY.
This is because an isomorphism from X to Y is given by a function f(z) = (m/n)z
for some non-zero rn/n € Q. Moreover, there are non-zero positive integers m and
n with mX = nY if and only if the sequences h(X) and h(Y) differ in at most
finitely many finite entries; in other words A (1) = A} (1) for all but a finite number
of primes p and if hX (1) # h¥ (1), then both ~X (1) and h¥ (1) must be finite. This
proves the following theorem, the sense in which torsion-free abelian groups of rank
1 can be regarded as known. This result dates back to F. Levi in 1917.

Theorem 8 FEach torsion-free abelian group X of rank 1 corresponds to a height
q h(X) of gative integers and oo’s indexed by the set of primes. More-
over, X andY are isomorphic if and only if h(X) and h(Y) differ in at most finitely

many finite entries.

A direct sum of torsion-free abelian groups of rank 1 is called a completely
decomposable group. Part (a) of the next theorem is a result by R. Baer in 1937
and (b) is known as the Baer-Kulikov-Kaplansky theorem, see [Fuchs 73].

Theorem 9

(a) A completely decomposable group is uniquely a direct sum of torsion-free

abelian groups of rank 1.

(b) If G is a completely decomposable group isomorphic to a direct sum H @& K

of abelian groups, then H and K are also completely decomposable groups.

While torsion-free abelian groups of rank 1 are well understood, torsion-free
abelian groups of rank > 2 are extremely complicated and not at all understood,
see [Fuchs 73] and [Arnold 82]. This difficulty in the structure problem for torsion-
free abelian groups of finite rank has been addressed by consideration of restricted
classes of these groups. A natural candidate is a class of groups known as Butler
groups in honor of a seminal paper by M.C.R. Butler in 1965.




A Butler group is a torsion-free abelian group that is generated by finitely many
rank-1 subgroups, i.e. there are finitely many rank-1 subgroups Xj, ..., X, of G witt
G = X, + ... + X;. This is a natural extension of the notion of a finitely generated
abelian group, recalling that a finitely generated torsion-free abelian group is free.

The starting point for the extensive theory of Butler groups (see [Arnold 00]) is
the following theorem. A subgroup H of a torsion-free abelian group G is a pure

subgroup of G if nH = H N nG for each non-zero positive integer n.
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Theorem 10 A finite rank torsion-free abelian group G is a Butler group if anad
only if G is a pure subgroup of a finite rank completely decomposable group.

A special class of Butler groups is the class of almost completely decomposable
groups, those torsion-free abelian groups of finite rank that contain a completely
decomposable group as a subgroup of finite index. A relatively elementary develop-
ment of known properties of almost completely decomposable groups may be found
in [Mader 00]. The theories of Butler groups and almost completely decomposable
groups are not at all complete, there are a substantial number of open questions,

including structural questions.

5 Mixed abelian groups

A mized abelian group is an abelian group that is neither torsion nor torsion-free. In
this case, there must be both non-zero elements of finite order and non-zero elements
of infinite order. For example, given a prime p, the infinite product II{Z/p'Z : 1 <
i} consisting of sequences (1,...,Tn,...) With @; € Z/p'Z is a mixed group, since
elements of the form (0,...,0,1,0,...) with exactly one non-zero entry have finite
order while the element (1,...,1,...) with all entries 1 is an element of infinite order.
Given an abelian group G, define the torsion subgroup t(G) of G to be {a € G : a
has finite order}. Then ¢(G) is a torsion group and the factor group G/t(G) is a
torsion-free group, where G/t(G) = {a + ¢(G) : a € G} is the set of cosets of t(G)
in G with + in G/#(G) defined by (a + t(G)) + (b+ t(G)) = (a + b) + t(G).

One of the first steps in an investigation of mixed groups is the case that the
mixed group really isn’t mixed in the sense that ¢(G) is a summand of G, i.e.

(T
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G = 1(G) @ H for some torsion-free subgroup H of G. The following theorem is due
to R. Baer in 1936 and S.V. Fomin in 1937, see [Fuchs 73]. The abelian groups that
arise in this theorem are identified in Section 3.

Theorem 11 Let T be a torsion abelian group. Then G = t(G) @ H for each
abelian group G with t(G) isomorphic to T if and only if T is a direct sum of a
divisible group and a bounded group.

A problem, posed originally by R. Baer, that is complementary to that of the
previous theorem is resolved in [Griffith 70].

Theorem 12 Let A be a torsion-free abelian group. Then G = t(G) ® H for each
abelian group G with G/t(G) isomorphic to A if and only if A is a free group.

Not much progress has been made on the structure problem for mixed abelian
groups with the notable exception of those mixed groups G with G/t(G) a torsion-
free group of rank 1, see [Fuchs 73] and references.

A class of mixed groups for which the structure problem has been resolved is the
class of algebraically compact groups, those abelian groups G such that whenever G
is a pure subgroup of an abelian group H, then G is a summand of H.

Theorem 13 An abelian group G is algebraically compact if and only if G is a
summand of a direct product of abelian groups of the form Z/p'Z and Z(p>).

There is more to the story of algebraically compact groups. Specifically, G is
algebraically compact with no divisible subgroups if and only if G is complete in
the Z—adic topology on G (the topology with open sets a +nG with a € G and n a
non-zero integer). Moreover, these groups can be identified up to isomorphism in
terms of known groups, see [Fuchs 70].

This article represents a very small sample of the known structural results
for abelian groups. The structure theorem for finitely generated abelian groups
(Corollary 3) is standard fare for any introductory abstract algebra textbook, e.g.
(Gallian 98], but the algorithmic proof outlined in Section 2 is not the standard
proof. More advanced books on the subject include [Kaplansky 69], [Griffith 70],
[Fuchs 70, 73], [Mader 00], and [Arnold 82, 00]. The interested reader is encouraged
to consult any of these books, and accompanying references to published research
articles, for other aspects of the subject.

o [
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