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1 General overview

Let A and B be sets with A C B, and f : A — B. Fixed point theory identifies
conditions on A and/or on f which assure that f has at least one fized point; that
is a point z € A exists for which f (z) = z.

With the theory couched in such basic terms the variety of potential approaches
to the study seems almost endless. This alone has attracted interest in the subject
and led to elegant discoveries. Much of the theory, however, is firmly grounded in
its potential usefulness, either directly to the study of other problems, most notably
differential equations, or indirectly through its impact on the study of functional
analysis.

Before turning to more serious considerations we mention two abstract facts
about fixed point theory, each of which is remarkable in its simplicity and yet,
perhaps surprisingly, both have applications in deeper settings. The proofs are left
as exercises.
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Proposition 1.1 Let S be a set and f : S — S a mapping. Then f has a fized point
if and only if there ezists an integer n such that both f™ and f**' have a common
fized point. In fact the fized point set of f coincides with the intersection of the fived
point sets of f* and f™*' for any integer n € N.
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Proposition 1.2 Let S be a set and f : S — S a mapping. Then f has a fived
point if and only if there is a constant map h : S — S which commutes with f (that

is, h (f (z)) = f (h(z)) for allz € S).

There are three major (over-lapping) branches of fixed point theory in functional
analysis. The topological branch was inspired by the 1909 theorem of Brouwer; the
order theoretic branch has its origins in the early set-theoretic work of Zermelo which
dates back to 1908; and the metric branch inspired by the method of successive ap-
proximations and Banach’s contraction mapping principle put forth in 1922. These
branches are identified largely by the methods they employ. In most instances the
underlying framework is functional analytic, although the set-theoretic branch finds
wide application in the metric branch of the theory and, for example, in the study
mathematical economics and logic programming languages.

In this article we discuss only the theorem credited to the celebrated Dutch
mathematician L. E. J. Brouwer, along with some ideas either related to or motivated
by its discovery.

Theorem 1.3 (Brouwer) Let B denote the unit ball in euclidean space R*. Then
any continuous mapping f : B — B has at least one fived point.

We begin with the case n = 1, which significantly predates the general case.

2 Mappings in R!

The Czech mathematician and philosopher Bernard Bolzano' (1781-1848), published
the following result in 1817.

'It appears that historically the mathematical community has been slow to recognize many
of Bolzano’s contributions. In addition to the Intermediate Value Theorem and the Bolzano-
Weierstrass Theorem (from which Weierstrass’s name probably should be dropped), it appears
that Bolzano discovered the modern definitions of convergent sequences and even the notion of a
Cauchy sequence. See Russ [24]; also [7) (pp. 48 - 49) for a brief discussion.
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Theorem 2.1 Suppose f and g are continuous mappings of the closed interval
[a,b] = [a,b], and suppose f(a) < g(a) and f(b) > g(b). Then there ezists a
number zq in the interval (a,b) for which f (zo) = g (zq).

Upon taking g (z) = 0 one obtains the usual Intermediate Value Theorem in
calculus, which is the version of the theorem most widely known today. However
there are two fixed point theorems implicit in Bolzano’s theorem. First, suppose
f : [a,b] = [a,b] is continuous and define the mapping F' : [a,b] — R be setting
F (z) = z — f (x). Then, since f(a) > a, F (a) = a — f(a) < 0; similarly f(b) <
b= F (b) > 0. By the Intermediate Value Theorem there exists a point zy in [a, b]
for which F (zo) = 0; hence f (2¢) = z,. This gives we have Brouwer’s Theorem in
the case n = 1.

Theorem 2.2 Any continuous mapping f : [a,b] — [a,b] has a fized point.

On the other hand, the case g(z) = z in Theorem 2.1, produces another fixed
point theorem.

Theorem 2.3 Any continuous mapping f : [a,b] — R for which f(a) < a and
f(b) > b has a fized point.

It is apparent that any generalization the Intermediate Value Theorem should
also lead to a generalized fixed point theorem. Here is a recent example (see [10]).
A mapping f is said to be upper semicontinuous on [a, b] if the set

Si={zelab: f() > 1)

is closed for each t € R. Therefore, if {z,} is any sequence in S; which converges
to 2o € [a,b] then it must be the case that f(zg) > t. In particular, f(zp) >
limsup,, f (z,). This leads to the following definition. A mapping f : [a,b] = R is
said to be upper semicontinuous from the right if f (zo) > limsup,, f (z,) for each
sequence {z,} in [a, b] such that @, | o € (a, b]. Similarly, f is lower semicontinuous
from the left if f(zo) < liminf, f (z,) for each sequence {z,} in [a,b] for which
Zn T o € [ﬂ,b).

Theorem 2.4 Let f : [a,b] = R be a mapping which is upper semicontinuous on
the right and lower semicontinuous on the left. If f(a) < a and f (b) > b, then f
has a fized point.
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3 Brouwer’s Theorem: n = 2

Because of the absence of an appropriate analog of the Intermediate Value Theorem
in higher dimensions, one immediately encounters difficulties extending Brouwer's
Theorem even to the case n = 2; indeed none of the many proofs that have been given
for Brouwer’s Theorem is significantly simpler in the case n = 2 than in the general
case. However there is one approach to Brouwer’s Theorem that is surprisingly
elementary from a conceptual point of view. We describe this approach in the case
n = 1, show how it extends to the case n = 2, and then indicate how it extends to
the general case. Our point of departure is the following simple fact about the real
line.

Proposition 3.1 Let P : (0 = Py < P, < -+ < P, = 1) be a partition of the
interval [0, 1] with each of the points P; ‘labeled’ either 0 or 1. Then the cardinality
of the set Np = {i € {1,-- -k} : Pi_, and P; are labeled differently} is an odd
integer.

This proposition has a straightforward induction proof the reader might want to
try. However we motivate the approach to Brouwer’s theorem given below with a
‘counting’ argument. Begin with the ordinary unit interval [0,1] with P, = 0 and
Py =1, and label points P, € (0,1) arbitrarily with 0’s and 1’s. We now count the
number of ‘endpoints’ of intervals defined by the partition which are labeled 0 in
two ways. First, if an endpoint labeled 0 is in (0, 1) then it must be counted twice
since it is a 0 endpoint of two different intervals. By adding P, to these endpoints
we see that there are an odd number of such endpoints, say k. Now divide the
subintervals defined by the partition into two subclasses: (i) Those which have only
0 as endpoints and (ii) those which have a 0 and a 1 as an endpoint. If there are m
intervals in class (i) then these m intervals contribute 2m endpoints to the counting.
If there are n intervals in class (ii) then, since each such interval contributes only one
endpoint to the total, we conclude that 2m +n = k. This proves that 7 must be an
odd number and establishes Proposition 3.1. Note in particular that the conclusion
of Proposition 3.1 implies Np # 0.

We now show how to use Proposition 3.1 to give proof of Brouwer’s Theorem in
R'. While this proof is no simpler than the one usually given for the Intermediate
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Value Theorem, we shall see that this same line of argument leads to a simple proof
of Brouwer’s Theorem in R?, and in turn it points the way to a proof of Brouwer’s
theorem in its full generality. In contrast to this, the Intermediate Value Theorem
fails to suggest a higher dimensional proof. (However this does not mean that no
such proof exists. Indeed the Intermediate Value Theorem can be exploited to give
a proof of Brouwer’s Theorem in the case n = 2; see, for example, (7], p. 71.)

To proceed with the proof in R' we prove the following. The reader might think
of quick proofs of this proposition, but it is the method of proof that we are interested
in here.

Proposition 3.2 Let Cy and C, be two closed sets in R' with 0 € Cy and 1 € C,
and suppose [0,1) C Cy U C,. Then CoN Cy # 0.

Proof. For each k € N let Py be a partition of [0,1] into subintervals of equal
length. Assign the label 0 to Py and 1 to Pi. For i € {2,k — 1} assign labels as
follows. If P; € Cj assign the label 0 to P; otherwise assign the label 1 to P;. Since
[0,1] € Cy U C, this results in a labeling of Py as in Proposition 3.1. Consequently
for each k there exists an interval of length 1/k whose endpoints { P, Qx} are labeled
differently, say P is labeled 0 and Qy is labeled 1. Thus for each k, P; € C and
Qk € Cy. It is possible to choose convergent subsequences { Py, } and {Q4, } with, say,
lim;_o0 Pe; = P and lim;_,,Qk; = Q. Since lim; o | Py = Q| = lim;001/k; =0,
P = Q, and since both Cj and C are closed this point lies in CoNC). m

It is somewhat remarkable that the above ideas provided the basis for the general
proof of Brouwer’s theorem. Proposition 3.1 is a special case of a celebrated result
known as Sperner’s Lemma while Proposition 3.2 is a special case of a famous result
due to Knaster, Kuratowski and Mazurkiewicz, known as the KKM Theorem ([18]).
We shall discuss more general cases below. First, however, we show how the above
results lead another proof of the fact that any continuous mapping f : [0,1] — [0,1]
has a fixed point. Notice that every point in P € [0,1] can be written in the form

P =X(P)-0+A(P)-1
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where A(P) + A (P) = 1 by simply taking A, (P) = P and Ag(P) =1 — P. Set
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Co ={P€[0,1]: W(f(P)) < M(P)};
G ={P€0,1]: \(£(P)) < \i(P)}.

Thus
G ={P€0,1]: P < f(P)}

Gy ={Pie [0, 1] f(R) <P}

Also 0 € Cp and 1 € C;. The assumption P ¢ CoUC; for some P € [0, 1] implies both
f(P) > P and f(P) < P which is absurd, so it must be the case that [0,1] C C,UC;.
We now invoke Proposition 3.2 to conclude Cy N Cy # 0. But if P € Cy N C) then
clearly f(P) = P.

We now give a detailed proof of Sperner’s Lemma in the case n = 2 and we also
indicate how to prove the theorem for arbitrary n. Our approach is inspired by a
discussion found in Zeidler [30] (p. 798).

Let M be a closed triangle in R? with vertices P, Py, P,. In order to under-
stand the general case it is important to be precise about some definitions. The
r-dimensional sides of M are:

The vertices Py, Py, P for r = 0.

The sides PyPy, P, Py, Py for 7 = 1.

The triangle itself for r = 2.

We define the base of a point P in M to be the side of M of smallest dimension
which contains P. An integer 7 (i = 0,1,2) is said to be a Sperner label for P if
P, belongs to the base of P in M. It is important to understand exactly what this
means. The points Py, P;, P, are labeled 0, 1, 2 respectively. Any other point on the
side Py P may be labeled either 0 or 1 regardless of how any other such points are
labeled. The same holds for the remaining sides. Any point strictly inside M may
be labeled 0,1 or 2.

The following is Sperner’s Lemma (28] for the case n = 2.

Lemma 3.3 Suppose the triangle M of R? with vertices Py, Py, Py is divided into
subtriangles, and suppose to each vertex of the subtriangles is assigned a Sperner
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label. Then the cardinality of the set of subtriangles whose vertices have distinct
labels is odd.

Proof. Call a subtriangle of the triangulation of M a Sperner simplex if its vertices
have distinct labels, and call a side of a subtriangle distinguished if its vertices carry
the labels {0,1}.

Notice that if a distinguished side of 7" has a vertex which lies in the interior of M
then this side is also a distinguished side of another subtriangle in the triangulation
of M. Thus every distinguished side which has a vertex lying strictly inside the
triangle M must be counted two times, and so there are an even number of such
distinguished sides. On the other hand, by Proposition 3.1, there are an odd number
of distinguished sides lying on PyP;, because each such side is side of only one
triangle. Therefore the total number of distinguished sides is an odd integer, say
k. At the same time, the vertices of any subtriangle which has distinguished sides
and which is not a Sperner triangle must be labeled either {0, 1,1} or {0,0, 1}. Each
such triangle has precisely two distinguished sides. Suppose there are m subtriangles
of this type and suppose there are n Sperner triangles. Then 2m + n = k and we
conclude that n is odd. m

We now prove the KKM Theorem for the case n = 2. Note that here we use M
inclusively, to denote the vertices of the triangle along with its sides and interior.

Proposition 3.4 Suppose M is a triangle in R? with vertices Py, Py, P, and sup-
pose Cy, Cy,Cy are closed subsets of R? which satisfy

(i) eC;i=0,1,2

(i) BP; c C;UCj, 4,5 =0,1,2;

(i) M C CoUC, U Cs.

Then N}_oC; # 0.

The proof Proposition 3.4 closely follows that of Proposition 3.2. For k = 1,2,
consider a sequence of triangulations Py of M where the diameter of the largest
triangle in Py is ¢, where ¢, — 0 as k — oc. (Intuitively it is clear that such
a triangulation can be always be constructed; describing a precise algorithm for
doing so is a little more difficult). Assign a Sperner labeling to each triangulation
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with the added provision that each vertex () is assigned a label ¢ consistent with
Qi € C;. This restriction is important, and (ii) and (iii) insure that it can be done.
Then by Lemma 3.3 each triangulation P contains a Sperner simplex with vertices
{I’(,("),P,("),Pz(")} where Pim € C;, 1 = 0,1,2. Now choose respective convergent
subsequences {Pl-(k’)}j";l (i=0,1,2) with
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lim P*) = @, (1 =0,1,2).
j—o0
Since the diameters of the subtriangles tend to zero as j — oo it must be the case
that Qo = Q) = Q2 = @, and since each of the sets C; is closed, @ € NZ_,C:.
We are now in a position to prove Brouwer’s Theorem for the case n = 2.

Theorem 3.5 Suppose M is a triangle in R? with vertices Py, Py, Py, and suppose
f i M — M is continuous. Then f has a fived point.

Outline of Proof. Every point P in M can be written in the form
P = Xo(P)Py + A\ (P) Py + \a(P) P2

where 0 < A\i(P) <1 (i =0,1,2) and Xo(P) + A\ (P) + A2(P) = 1.

Set G == {P € M : \,(f(P)) < \i(P)}, i =0,1,2. Since f is continuous each of
the sets Cj is closed. Also, since Ai(P;) = 1 for each i, P, € C; for i = 0,1,2. It is
easy to check that conditions (ii) and (iii) of Proposition 3.4 hold for the sets Cj, so

we conclude that there exists P € N2, C;. This implies
Ai(f(P)) £ Ni(P), i=0,1,2

which in turn implies 1 = 327 A(f(P)) < Y22, Ai(P) = 1. Therefore A;(f(P)) =
Ai(P),i=0,1,2, and thus f(P)=P. m

The difficulties in extending Brouwer’s Theorem to higher dimensions largely
involve terminology. An n-dimensional closed simplez in R" is the convex hull of
n -1 points Py, - -+, P, in R" which do not lie in an n — 1- dimensional subspace
of R". As before, the base of a point in M is the subsimplex of lowest dimension of
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which the point lies. To see how the induction goes we illustrate how to pass from
n=2ton=3.

Let M be a closed 3-dimensional simplex in R, and partition M into 3-dimension-
al subsimplexes, and assign to each vertex of the partition a number which belongs
to its base in M. Now call a tri lar face of a subsimplex distinguished if it carries

the labels {0,1,2}, and observe that if a vertex of a distinguished triangle lies in
interior of M then it is a face of two subsimplexes of the partition. By the case
n = 2 there are an odd number of distinguished triangles on the boundary of M.
(Here it is important to observe that only the face initially labeled {0,1,2} can have
distinguished triangles.) Therefore the total number of distinguished triangles is
odd. On the other hand the vertices of a simplex which is not a Sperner simplex
(i.e., one which does not have distinguished labels) and which does have a distin-
guished triangle must have one of the following labellings: {0,1,2,0}, {0,1,2,1},
or {0,1,2,2}. Each such simplex has precisely two distinguished triangular faces.
If there are m such simplexes and if n are the number of Sperner simplexes, then
2m + n must equal an odd number; whence n is odd.

A statement of Sperner’s Lemma in its full generality requires a little more ex-
planation. Let M™ = [P, -+, P,] be a closed n-dimensional simplex in R". By a sub-
division of M™ we mean a decomposition of M™ into finitely many non-overlapping
n-simplexes s, - -, 8, such that (1) the intersection of any two simplexes in the
subdivision is either empty or a common face of each, and (2) each n — 1-simplex in
the subdivision that is not on the boundary of M™ is a common face of exactly two
n-simplexes of the subdivision.

Lemma 3.6 [Sperner] Let S be a subdivision of M™ and label each vertez P € S
with one of the numbers {iy, - +,is} whenever [Py, - -+, P,,] is the base of v in M™.
Then the number of simplezes in S which are labeled {0, - n} is odd.

The proof is by induction with the inductive step applied on the boundary of
M.

Sperner’s Lemma can be used to extend the KKM theorem to higher dimensions,
and this in turn leads to Brouwer’s Theorem. The general version of the KKM
theorem needed to carry this out is the following. The path to the general case of
Brouwer’s Theorem closely follows that given in the case n = 2.
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Theorem 3.7 Suppose {Py, -+, P,} is a finite set in R* and suppose Cq, -+, C, are
closed subsets of R* for which

conv{ Py, P} € U;T'=OC,~j

for every subset {Py,---, P} of {Py,+, P.}. Then

NioCi # 0.

4 Some consequences Brouwer’s Theorem

We stated Brouwer's Theorem for the closed unit ball, yet for n = 2 we discussed
only the case when the domain is a triangle. The fact that this restriction is incon-

sequential follows from the observations below.
If X is a topological space and M C X, then a continuous mapping 7 : X — M
is called a retraction if r(z) = o for all z € M. When this occurs, M is said to be a

retract of X.
We begin with the following simple fact.

Proposition 4.1 Every closed conves subset K in R* is a retract of R™.
Proof. . Let p € R® and set
r=inf{||p— | : v € K}.
Then it is possible to choose a sequence {z,} C K such that
lim ||z, — p|| = .
fre

Since the sequence {z,} is bounded it has a convergent subsequence. (An ex-
tension of the Bolzano-Weierstrass Theorem assures that K is compact). So assume
that limg o Z, = 7. Then z € K because K is closed, and clearly ||z —p]| =7. ®

- "



T

BROUWER’S FIXED POINT THEOREM 187

Now suppose there are two points z,y € K, such that
llz = pll = lly - pll = -

Suppose z # y and consider the point m = %(z + y). Then by the Pythagorean
Theorem
llp = m|® + llm — z|* = .

If m # z this would imply ||[p—m|| < r - a contradiction since convexity of K
implies m € K. Therefore m = z = y. This assures that for each point p € R" there
is a unique point p(p) € K which is nearest p.

We assert that p is the desired retraction. To do this we need to show that p
is continuous. However (and we omit the details) it is possible to show even more;
namely that p is nonexpansive, that is, for each u,v € R

[lo(u) = p()]| < [lu — vl|.

The above fact permits an extension of Brouwer’s Theorem to arbitrary bounded
closed convex subsets of R". For such a set K select a simplex S sufficiently large
that K C S (remember, K is bounded). By Proposition 4.1 there exists a retraction
r: 8 — K. The composition map f or is a continuous mapping of S into itself and
therefore must have a fixed point z. Moreover, z must lie in K. Since r(z) = z for
points in K, we have

z = for(z) = f(z).
Therefore we have the following.
Theorem 4.2 Let K be a bounded closed conver subset of R and let f : K — K
be continuous. Then f has a fized point.

One very interesting consequence of Brouwer’s theorem is the following fact,
which seems intuitively clear.

Proposition 4.3 The boundary, 9B, of a nontrivial closed ball B in R" is not a
retract of B.
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Proof. Suppose r is a retraction of B onto dB. Then —r would be a continu-
ous mapping of B into B which is fixed point free, and this contradicts Brouwer's

Theorem. m

In fact Proposition 4.3 is equivalent to Brouwer’s Theorem. To see this, suppose
f B = B is continuous. If f(z) # « for each & € B then one could construct
a retraction r : B — 9B as follows. For each z follow the directed line segment
from f(z) through z and find its intersection with S(z;r). Call this point 7(z). The
existence of such a retraction contradicts Proposition 4.3. Therefore f must have a
fixed point.

In 1935 S. Ulam posed the following problem (Problem 36) in the famous col-
lection of mathematical problems known as The Scottish Book (named after the
Scottish Cafe in what was then Lwgw, Poland - a cafe in which Stefan Banach
and his collaborators frequently gathered to discuss mathematics): “Can one trans-
form continuously the solid sphere of a Hilbert space into its boundary such that
the transformation should be the identity on the boundary of the ball?” In other
words, Ulam is asking whether Proposition 4.3 holds in infinite dimensional Hilbert
space. An addendum indicates that Tychonoff provided an affirmative answer to
Ulam's question; thus showing that Proposition 4.3, hence Brouwer’s Theorem, fails

in infinite dimensional.

Another nice solution to Ulam’s problem, and one that holds in an arbitrary
Banach, space was published by Victor Klee in 1955. In [16] Klee proved that any
infinite dimensional Banach space X is homeomorphic with the punctured space
X\{0}. Let A : X — X\{0} be such a homeomorphism. (Thus A is continuous,
one-to-one, and surjective (onto), and h~" is also continuous). Now assume (as one
may) that A(z) = z if 2 € X and ||z|| > 1. The required retraction is now given by
the mapping R : X — h(z)/ ||h(z)||.

It is also important to realize that Brouwer's Theorem extends to R™ with any
other norm. This follows from an elementary fact in functional analysis: Any linear
mapping 7" : E — F where E and F are Banach spaces with E finite dimensional is

necessarily continuous. In particular the identity mapping I : (R®, [|-]|,) = (R, ||-||)
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is continuous. Thus there exist constants «, 3 € R such that for any z € R
allz]| < [lzll, < 8 il

where, of course, ||-||, denotes the usual euclidean norm in R". Consequently any
closed convex set K; in (R", ||-||) is homeomorphic to a closed convex set K, in
(R™, ||-||,) via the identity mapping I : K :— K.

Since any finite dimensional Banach space can be viewed as R" with an equivalent
norm simply by identifying the respective basis vectors, Brouwer’s Theorem can be
restated as follows.

Theorem 4.4 Suppose K is a nonempty bounded closed convex subset of a finite
dimensional Banach space X, and suppose f : K — K is continuous. Then f has
at least one fized point.

REMARKS. We mention some further historical comments. Brouwer announced
his result in 1908 and proved the case n = 3 in 1909. In 1910 Hadamard gave a
proof using Kronecker’s index theory. Brouwer gave another proof (for arbitrary n)
in 1912 using the theory of topological degree. In devising this proof the fundamental
properties of classical topological degree were explicitly formulated by Brouwer for
the first time, although these ideas were implicitly used by Poincaré and others
much earlier (see [6]). The underlying idea is the continuation method. Suppose
f: B = R is continuous, and let B, := (I — tf)(B) for t € [0,1]. Clearly 0 € By.
The idea is to show that the condition z — tf(z) # 0 for all z in the boundary
of B and ¢ € (0,1) implies 0 € B,. The approach we have just outlined, based on
Sperner's Lemma appeared in 1929 in a joint paper of Knaster, Kuratowski, and
Mazurkiewicz [18].

Finally, it is interesting, indeed curious, that Brouwer'’s later embrace of intu-
itionist logic caused him later to reject the Bolzano-Weierstrass Theorem, the result
which forms the basis of the proof of Intermediate Value Theorem (see [5]). Intu-
itionists reject “arguments by contradiction”, an approach readily accepted by most
mathematicians. Thus Brouwer's fixed point theorem has had a tremendous impact
on mathematics, while his approach to logic (about which he held strong views) has
been largely ingored by mathematicians.
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The history of mathematics is replete with instances in which ideas have been
mis-attributed (recall our comment about Bolzano). This question also arises in
the case of Brouwer’s Theorem. In 1904 the German-Baltic mathematician Piers
Bohl published a proof of the following theorem (stated here in the style of today’s
writing).

Theorem 4.5 (Bohl) Suppose T : B — R" is continuous (B is the unit ball in R")
and suppose T(x) # 0 for all v € B. Then there ezists a point z in the boundary
(surface) of B and a number p < 0 such that

T(z) = pw.

In fact the above result was even known to Henri Poincaré as early as 1883,
who announced it without proof in [22] but later, in 1886, published an argument
([28]) which forms the basis of a proof. This latter result has come to be known as
the theorem of Miranda who, in 1940 [21], showed it actually to be equivalent to

Brouwer’s Theorem.
It is easy to see that Bohl's Theorem implies Brouwer’s Theorem. Suppose

f B = B is continuous. Notice that since f : B — B it is necessarily the case that
f(z) # Az for all z in the boundary of B and A > 1. Let f = I — T. Then

z — T(z) # Az
for all z in the boundary of B and A > 1. This in turn implies that
T(z) # (1 - Nz = pz

for all z in the boundary of B and p < 0. By Bohl’s Theorem there exists z € B
such that T'(z) = 0. But

T(z)=0% z - f(z) =0¢ f(z) =z.

The first major extension of the Bohl-Brouwer Theorem was obtained by Juliusz
Schauder in 1930, although Birkhoff and Kellogg had earlier extended it to com-
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pact convex subsets of certain function spaces. This theorem can be derived from
Brouwer’s Theorem in a relatively straightforward way using finite dimensional ap-
proximations.
Theorem 4.6 (Schauder) Suppose K is a compact and convez subset of an arbitrary
Banach space. Then every continuous mapping f : K — K always has at least one
fized point.

This was followed in 1934 by a theorem known as the Schauder-Tychonoff The-
orem.
Theorem 4.7 (Schauder-Tychonoff) Suppose K is a compact and conver subset of
a locally conver Hausdorff linear topological vector space. Then every continuous
mapping f : K — K has at least one fized point.

The following is a stability result which can also be derived from Brouwer's
Theorem. A mapping f from a topological X space into a metric space is said
to be e-continuous if given any z € X there is a neighborhood U, of = for which
diam(f(U;)) <e.

Theorem 4.8 (Klee) Suppose K 1is a compact convex subset of a normed linear
space, and suppose f : K — K is e-continuous. Then there exists a point 7y € K
such that || f(zo) — zo|| < €.

5 Another look at R!

Simple questions are sometimes difficult (or impossible!) to answer. In 1954 Eldon
Dyer posed the following question: If two continuous mappings f, g : [0,1] = [0,1]
commute, do they necessarily have a common fixed point? In fact, A. L. Shields
posed the same question in 1955, as did Lester Dubins in 1956, but the problem first
appeared in the literature as part of a more general question posed by J. R. Isbell
in 1957 [13]. This question immediately attracted a lot of attention, in part because
it had long been known that the answer is yes for polynomial functions. In 1964 R.
DeMarr (8] gave a partial positive answer by showing that if f and g satisfy

1f () = f(W)| Salz—y| and |g(z) - g(y)| < Bz - y|

e [
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for all z,y € [0,1], where 8 < (a+1) /(a — 1), then f and g must have a common
fixed point. Another partial answer to the question was established by Schwartz
in 1965, who showed in [26] that if f has a continuous derivative, then there is a
common fixed point of f and some iterate of g.

However the general question resisted a complete solution for over ten years. In
1967 both W. M. Boyce [3] and H. Huneke [12] gave counterexamples to the problem.
In fact, Boyce describes a counterexample in which f and g are both lipschitzian.

We conclude by looking back to our opening remarks. Suppose f : [0,1] = [0,1]
has the property that for some n € N both f™ and f™*! are continuous. Does f
have a fixed point? Notice that f* and f™! commute, so in view of Proposition 1.1
the answer is ‘yes’ if f™ and f™*! have a common fixed point.
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