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1 General overview 

Let A and B be sets with A \;; B , and f : A -+ B . Fixed point theory identifies 

condi tions on A and/or 0 11 f which assure that f has at least one fixed poínt; that 

is a point x E A exists for which f (x) = x . 

With the theory couched in such basic terms the variety of potential approaches 

to the study seems almost endless. T his alone has attracted interest in the subject 
and led to elegant discoveries. Much of the theory1 however1 is firmly grounded in 

its potential usefulness, either directly to the study of other problems, rnost notably 

differentia1 ec1uations1 or indirectly through its impact on the study of functional 

analysis. 

Before tu rning to more serious considerations we mention two abstract facts 

about fixed point theory, each of whicll is remarkable in its simplicity and yet, 

perhaps surprisingly, both have applications in deeper settings. The proofs are left 

as exercises. 
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Proposition 1.1 Let S be a set and f : S-) S a mapping. Then f has a fixed point 

if and only if there exi.sts an integer n S1'Ch that both f" and f"+I have a common 

fixed point. In fact the fixed point set off coincides with the intersection of the jixed 

point sets off" and f"+ 1 for any integer n E N. 

Proposition 1.2 Let S be a set and f : S -) S a mapping. Then f has a jixed 

point if and only if there is a constant map h : S -) S which commutes with f {that 

is, h(f(x)) = f (h(x)) for allx ES). 

T here are three major (over-lapping) branches offixed point theory in functional 

analysis. T he topological branch was inspired by the 1909 theorem of Brouwer; the 

order theoretic branch has its origins i·n the early set-theoretic work of Zermelo which 

dates back to 1908; and the metric branch inspired by the method of successive ap­

prox.imations and Banach 1s contraction mapping principie put forth in 1922. These 

branches are identified largely by the methods they employ. In most instances the 

underlying framework is functional analytic1 although the set-theoretic branch fincls 

wide application in the metric branch of the theory and, for exarnple, in the study 

mathematical economics and logic programming languages. 

In this article we discuss only the theorem credited to the celebrated Dutch 

mathematician L. E. J . Brouwer, along wi th sorne ideas either related to or motivated 

by its discovery. 

Theorem 1.3 (Brouwer) Let B denote the unit ball in euclidean space IRn. Then 

any continuous mapping f : B -) B has at least one fixed point. 

We begin with the case n = 1, which significantly predates the general case. 

2 Mappings in IR1 

T he Czech mathematician and philosopher Bernard Bolzano1 (1781-1848), published 

the following resull in 1817. 
1 lt appears that historically the mathematical community has been slow to recognize many 

of Bohmno's contribui.ions. ln addition to the lntermediate Value Theorem and the 8 011.WlO­

Weierstrass Theorem {from which Weierstra.ss's name probably should be dropped), it appeara 

that Bolzano dísco"ered the modern definitions oí convergent sequences and even the notion of a 

Cuuchy sequence. See Russ !24)¡ also !7] (pp. 48 - 49) for a brieí discussion. 
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Theore m 2.1 Suppose f and g are continuous mappings of the closed in tenial 

[a, bj --t [a , bJ. and suppose f (a) < g (a) and f (b) > g (b). Then there exists a 

number x0 in the intenial (a, b) for which f (xo) = g (x0). 

Upon taking g (x) = O one obtains the usual lntermediate Value Theorem in 

caJculus 1 which is ihe version of the theorem most widely k11ow11 today. However 
there are two fi.xed point theorems implicit in Bolzano's theorem. F'irst, suppose 

f : [a , b) --t [a , bj is continuous and define tbe mapping F : [a , b] --t IR be set ting 

F (x) = x - f (x). T hen, since f (a) e: a, F (a) = a - f (a) $ O; similarly f {b) $ 

b :} F (b) e: O. By t he lntermediate Value Theorem there exists a point x0 in [a,b] 

íor which F (x0 ) = O; hence f (x0 ) = x0 . T his gives we have Brouwer's T heorem in 

the casen= l. 
Theorem 2.2 Any contimwus mapping f : [a, b) --t [a , b] has a fixed point. 

On tbe other hand , t he case g (x) = x in Theorem 2.1, produces another fixed 

poinl theorem. 
T heo rem 2.3 Any contirmous mappin11 f [a , b) --t R for which f (a) $ a and 

f (b) e: b has a fixed point. 

ll is apparent t hat any generalization the lntermediate Value T heorem should 

also lead to a generalized fixed point theorem. Here is a recent example (see [10)). 

A mapping f is said to be upper semicontinuous on [a , b) if tl1e set 

S, = {x E [a,b]: f (x) e: t ) 

is closed for each t E IR. T herefore, if {xn} is a ny sequence in S, which converges 

to x0 E [a, b) then it musl be the case t hat f (xo) e: t. In particula r, f (x0 ) e: 
lim supn f (xn). This leads lo the following defini t ion. A mapping f : [a , b] --t R is 

said lo be upper semicontinuous from the nght if f (xo) e: lim supn f (x,.) for each 

sequence {xn} in [a , bj such t hat x ,. J. xo E (a, bj. Similarly, f is lower· sernicontinuous 

from the lejt if f (x0) $ lim inf,. f (x,.) for each sequence {x,.) in [a, bj for whicl1 

Xn t xo E [a,b). 
Theore m 2.4 l et f : [a , bj --t R be a mapping which is upper semicontinuous on 

the nght and lower semicontinuous on the lef t. lf f (a) $ a arid f (b) e: b, then f 

has a fixed pomt. 
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3 Brouwer's Theorem: n = 2 

Because of tbe absence of an appropriate analog of the Intermedia.te Value Theorem 

in higher dime.nsions1 one immediateJy encounters difficulties extending Brouwer1s 

T heorem even to tbe casen = 2; indeed none of the man y proofs that ha ve been given 

for Brouwer's Theorem is significantly simpler in the casen= 2 than in tbe general 

case. However there is one approach to Brouwer1s Theorem that is surprisingly 

elementary from a conceptual point of view. We describe this approach in the case 

n = 1, show how it extends to the casen= 21 and then indicate how it extends to 

the general case. Our point of departure is the following simple fact about the real 

line. 

Proposit ion 3.1 Let P : (O = P0 < P, < < P, = 1) be a partition of the 

interval ¡o, ! ] with each of the points P; 'labeled' either O or J. Then the cardinality 

of the set N'P = {i E (1 , · · ·, k) P,_, and P, are labeled differently) is an odd 

intege1·. 

This proposition has a straightforward induction proof the reader might want to 

try. However we rnotivate the approach to Brouwer,s theorern given below with a 
'cou11ting1 argurnent. Begin with t.he ordina.ry unit interval [O, l j with P0 = O and 

P, = 1, and label points P; E (O, 1) arbitrarily with O's and ! 's. We now count the 

number of 'endpoints' of intervals defined by the partition which a re labeled O in 

two ways. Fin;t, if an endpoint labeled O is in (O, !) then it must be counted twice 

since it is a O endpoint of two different intervals. By adding P0 to t hese endpoints 

we see t.hat there are an odd number of such endpoints, say k. ow divide the 

subintervals defined by the partition into two subclasses: (i) Those whicb have only 

O as endpoints and (ii) those which have a O and a 1 as an endpoint. lf there are m 

intervals in class (i) lhen these m intervals contri bu te 2m endpoints to the counting. 

lf tl1ere aren int.en "als in class (ii) theni since each sucb intervaJ conlribut.es only one 

endpoint to t.he total, we conclude that 2m + n = k. This proves that n must be an 

odd numb r and establishes Proposition 3.1. Note in particular that the conclusion 

of Proposition 3.1 implies 1 'P "I 0. 

\'Ye now show how lo use Proposition 3.1 to give proof of Brouwer1s Theorem in 

!R1. \.Vhile tbis proof is no simpler than the one usually given for the lntermediate 
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Val u Theorem, we shall see lhat lhis same line of argumenl leads to a simple proof 

oí Drouwer's T heorem in R.2 , and in turn it points tbe way to a proof of Drouwer's 

theorem in its full general ity. ln contrast to this, the lntermediate Value T heorem 

fai ls to suggest a higher dimensional proof. (Howe\'er this does not mean thal no 

such proof exists. Indeed lhe lntermediate Yalue Theorem ca n be exploited to give 

a proof of Brouwer's Theorem in the ca.se n = 2; see, íor example, [7], p. 71.) 

To proceed wi th the proof in IR' we prove the following. T he reader might think 

oí quick proofs of this proposition, buL it i the method of proof that we are interested 

in here. 

Proposition 3.2 Let C0 and C, be two closed sets rn R1 with O E C0 a11d l E C 1, 

and suppose ¡o, l J e C0 u C 1. Then C0 n C1 # 0. 

P roof. For each k E N let P, be a partition of ¡o, l J into subintervals of equal 

length. Assign the label O lo P0 and l to P,. For i E {2, · · ·, k - l} assign labels as 
follows. lf P, E C0 assign lhe label O to P;; otherwise assign lhe !abe! l to P;. Since 

¡o, l ] e C0 u C, this resul ts in a labeling of Pt as in Proposition 3. 1. Consequenlly 

for each k tbere exists a n interval of length l /k wbose endpoints (P, , Q.) are labeled 

differently, say P, is labeled O and Q, is labeled l. Thns for each k, !'. E C0 and 

Q, E 1• lt is possible lo choose convergenl subsequenc (P,1 ) and (Q,,} with, say, 

li m1 -.00 PkJ = P and lim;4 ooQ k1 = Q. Since lim,.... IPkJ - Qk.; 1 = lim; 00 1/ k; = O, 
P = Q, and since both C0 and C, are closed this point lies in C0 n C,. • 

lt is somewhat remarkable that the above ideas provided t he basis for the general 

proof of Brouwer's theorem. Proposilion 3.1 is a special case of a celebraled resull 

known as Sperner's Lemma while Proposition 3.2 is a special case of a famous result 

dueto Knaster, Kuralowski and Mazurkiewicz, known as the KKM T heorem (118]}. 

We sbaU discuss more general cases below. First , however, we show how the above 

results lead anolher proof of lhe facl that any continuous mapping f: ¡o, l ] -t ¡o, L] 
has a fixed point. ot ice that every point in P E (01 1] can be written in the forrn 

P = ,\o(P) -0 +,\1(P) · l 
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where A0 (P) + >., (P) = l by simply taking A1(P) = P and Ao(P) = 1 - P. Set 

T hus 

C0 = {P E [O, l] : A0 (f(P)) S A0 (P )}; 

C, = (P E [O, l] : .>. , (f(P)) S .>. , (P )}. 

Co = (P E [O, l] : P S f(P)) ; 
C1 =(P E [O, l j : f (P) $ P}. 

Also O E C0 and 1 E C1. Tite assumption P rfc C0uC1 for some P E [O, 1 J implies botb 

f(P) > P and f (P) < P wlt ich is a bsurd, so it must be tite case that [O, 1) C C0UC1. 

We llOW invoke Proposition 3.2 to conclude Con e, i 0. But if p E Con e, then 

clearly f (P ) = P. 

We now give a detailed proof of Sperner's Lemma in the case n = 2 and we also 

indicate how to prove tbe theorem for arbitrary n. Our approach is inspired by a 

discussion found in Zeidler {30) (p. 798). 

Let M be a closed t riangle in IR' with vertices P0 , P, , P,. lo order to uoder­

stand the general case it is importaint to be precise about sorne definitions. The 

r-dirnensional sides of /llf are: 

The vertices P01 Pi1 P7 for r = O. 

The sides P0 P¡, P1 P2, P2 P0 for r = l. 

T he triangle itselí for r = 2. 

We define tbe base of a point P in M to be tite side of M of smal lest dimension 

whicb coutains P. An integer i (i = O, 1, 2) is said to be a Spem er /abel for P if 

P; belongs to lhe base oí P in M . lt is important to understand exact ly what this 

means. T he points P0, P1, P2 are labeled O, 1, 2 respect ively. Aoy other point on the 

side PoP1 may be labeled either O or 1 regardless of how any other such points are 

labeled . The same hold for the rema ining sides. Any point strict/y inside M may 

be labeled O, 1 or 2. 

T he following i Sperner's Lemma [28] fo r the casen = 2. 

Lemma 3.3 Suppose lhe trfon_qle Aif of IR2 with vertices P0 , P1i P2 is divided into 

subtd angles, and suppose lo en.ch vertex of tlae subt·riangles is assign.ed a Spem er 
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/abe/. T/&en tl1e cardinality o/ tl1e set o/ subtriangles whose vertices have distinct 

labela is odd. 

Proof. Call a subtriangle of the t riangulatioa of M a Spemer simplex if its vert ices 

have d istinct labels, and ca l! a side of a subtriangle distinguis/&ed if its vertices carry 

tbe labels {O, l} . 

Notice that if a distinguished side of T has a ,·erlex which lies in the interior of M 

then lhis sicle is also a distinguished side of another subtriangle in the triangulation 

of M. Thus every d ist.inguished side wbich has a verlex lying stricUy inside the 

lriangle A/ must be counted two times1 and o there are a.n eveu number of such 
dist inguished sides. On the other hand, by Proposition 3. 1, there are an odd number 

of d istiaguished sides lying on P0P1, because eacl1 uch side is side of only one 

triangle. Therefore the total number of distinguished sides is a n odd integer, ay 

k. At the same time, the vertices of any subtriangle which has distinguished sides 

and which is not a Sperner triangle must be labeled either {O, .l , 1) or {O, O, l ). Each 

such triangle has precisely two distinguished sides. Suppose there are m subtriangles 

oí this type and suppose there are n Sperner triangles. Then 2m + n = k and we 

conclude t hat n is odd. • 

We now prove the 1( KM T heorem for tbe case n = 2. Note that here we use M 

inclusively, to denote thc vertices of the triangle along with its sides and interior. 

Proposition 3.4 Suppose M is a triangle in R1 with. vertices P0 , P1i P21 and su.p­

pose Co, C,, 2 are closed s11bsets o/ IR' w/&id1 satis/y 

{i) P, E C., 1 = O, 1, 2; 

{ii) P,P, e C; u C;, i,j = O, l , 2; 

{iii) M e c,uc, uc,. 
Tl1e11 n?~0C, # 0. 

The proof Proposit ion 3.4 closely follows that of Proposition 3.2. Por k = 1, 2, · · · 

consider a sequence of triangulalions 'Pk of Al where the diarneter of the largest 

t riangle in 'Pt is f t where e,.. --t O a.s k --t . ( I ntuitively it is clear that such 

a triangulation can be always be constructed¡ describing a precise algori thm for 

doing so is a little more difficult). Assign a Sperner labeli11g to eacli triaugulation 

1 3 
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with the added provision that eacb vertex Q is ass igned a !abe! i consistent witb 

Q, E C,. T his restriclion is important, and (i i) and (iü ) insure that it can be done. 

Theu by Leruma 3.3 each triangulation 'Pk contains a Sperner simplex with vertices 

(PJ»,Pi'l , pJ'l} where P,<•l E C; , i = 0,1,2. Now choose respective convergent 

subsequences {/".(•;)};=• (i = 0, 1, 2) with 

lim p,"1l = Q; (i =O, 1, 2). 
,~,,., 

Since the d iameters of the sub triangles tend to zero as j --; it must be the case 

that Qo = Q, = Q, := Q, and si nce each of the sets C; is closed , Q E n r=oC;. 

We are now in a position to prove Brouwer's Theorem for tbe casen = 2. 

Theorem 3.5 Suppose :\! is a trian9le in IR2 with ve1·tices P0, P11 P2, and suppose 

f : M --; M is continuous. Then f has a fixed point. 

Outline of Proof. Every point P in M can be written in the fo rm 

P = >.o(P)Po + >., ( P) P, + >. 2 (P)P2 

where 0 5 >., (P) 5 1 (i =0,1,2) and >.0 (1') +,\1(P) + >. 2 (P ) =l. 

Set C; :={ P E M: ,\,(J(P)) 5 >.;(P)}, i =O , 1, 2. Since f is continuous each of 

Ll1 e se ts C, is closed. Also, since ,\;(P,) = 1 for each i , P, E C; for i = O, 1, 2. lt is 

ensy Lo check that condilions (ii) and (iii) of Proposition 3.4 hold for the sets C1, so 

we conclude lhat there exists P E n;=0C¡. Th is irnp lies 

>.,(J( P) ) 5 ,\¡(!') , i = O, 1, 2 

which in turn implies 1 = ¿;~=0 ,\ ,(J (P)) 5 ¿;¡=0 ,\,(P) =l. Therefore ,\¡(/(P)) = 

>. ;(P), i =O, 1, 2, and thu f( P) = P. • 

T he diflicullies in lending Brouwer's T heorem Lo bigher dimensions largely 

invohie lerm inology. An n,..dimensioual closed simplex in R" is the convex hull oí 

n + 1 point Po1 • • · , Pn in R" which do not lie in an n - 1- dimensiona] subspace 

oí R" . s before, the base of a point in M is Lhe subsimple.x oí IO\\·est dimension oí 
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which Lhe point lies. To see how the induction goes we illustrate how to pass from 

n = 2 ton= 3. 

Let NI be a closed 3-dirnensional simplex in R3, and partition M into 3-dimension­
al subsimple.xes1 and assign to each vertex oí lhe panition a. number which belongs 

to its base in M. Now call a triangular face oí a subsimplex distinyuislied ií it carries 

t he labels {O, 1, 2}, and observe that ií a verte.x oí a distinguished triangle lies in 

interior oí Al then it is a íace oí two subsimplexes of the partition. By the case 

n = 2 lhere are an odd number of distinguished Lriangles on the boundary of Nf. 

(Mere it is important to observe that only tlie f ace initially labeled {O, 1, 2} cau have 

distinguisb d triangles.) T h refore the total number oí distinguished triangles is 

odd. On Lhe th r ha.nd the vertices of a simplex which is not a Sperner simplex 

(i.e., one which does not have distinguished labels) and which does liave a distin­

guislied tnangle must have one oí the following labellings: {O, 1, 2, O}, (O, 1, 2, l} , 
or (O, l, 2, 2} . Each such simplex has preci ely two distinguishcd triaugular faces. 

lf there are m such simplcxes and if n are the number of Sperner si111plexes, then 

2m + n must equal an ocle! number; whence n is odd. 

A statement of Sperner's Lemma in its íull generality requires a little more ex­

planation. Let M" = [P0 , · · · , P,.[ be a closed n-dimensional sirnplex in IR". By a sub­

division of ¡\1 11 we mean a decompositiou of A/11 into finitely 111any non-overlapping 

n-simplexes s1i · · ·· 1 Sk such that (1) the inl rsec.tion of any two simplexes in the 
subdivision is either ernpty ora common face of each 1 and (2) each n - 1-simplex in 
the subdivision that is not on the boundary of ¡\In is a common face of exactly two 

n-simplexes of the subdivision. 

Lemma 3.6 ¡Sperner] Let S be a subdivision o/,\/" and label eac/1 vertex P E S 

wilh one of Uie mnnbers { io 1 • • ·, i~} whenever [ P.01 · · ·, P,,] is lhe base o/ v in M11 • 

Tlien the number o/ sim¡¡lexes in S w/1ich are labeled {O, ··· , n) is od1i. 

The prooí is by induction with the indu tive slep applied 0 11 thc boundary oí 

M" . 

perner' Lemma can be used to extend the Kl<~t theorem to higher dirnensions1 

and this in LUrn leads to Drouwer's Theorem. The general vcrsion oí the KKM 
theoren1 needed to carry this out is the following. The path to the general case of 

Orouwer's Theorem losely íollows that giv n in the case n = 2. 
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T heore m 3.7 Suppose {Po, .. ·, P.,} is afinite set in R" and suppose C0, ··· , C., are 

closed subsets of R" for which 

for every subset {P;., ·· ·, P;,} of{P0,· ·· ,P.,} . Then 

n;:,,0c, #0. 

4 Sorne consequen ces Brouwer 's T heorem 

We stated Brouwer's Theorem for the closed uni t balJ, yet for n = 2 we discussed 

only the case when the domain is a triangle. The fact that this restriction is incon­

seque11Lial follows from the observations below. 

1f X is a lopological space and /111 ~ X, then a continuous mapping r : X ., Aif 

is called a retraction if r (x) = x far ali x E M . When this occurs, M is said to be a 

retm ct of X. 

We begin "; th lhe followiug simple fact. 

P roposition 4.1 Euery closed convex :mbset /( in IR" is a retract of R". 

Proof. Let p E R" and set 

r = inf{llv - xll : x E I<}. 

T hen il is possible to cl1oose a sequence (:c., } ~ [( such tha t 

lirn ll:c., - Pll = r. 
11- 100 

Since the sequence {xn } is bounded iL has a convergent subsequence. (An ex­

Lension of the Oolzano-IVeierstrass T heorem assures Lha l f( is compact). So assume 

Lhat lirn, _ x.,, = x. Then x E f ( because J( is closed, and clea rly flx - Pll = r. • 
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ow suppose there are two points x, y E K, such that 

llx - Pll "' llY - Pil = r. 

Suppo e x f. y and consider the poiot m = 4(x +y). Then by the Pythagorean 

Theorem 

llP - mil'+ ilm - xil' = r 2 . 

lf m f. x this would imply llP - mil < 1· a contradiction since convexity of /( 

irnplies m E /<. Therefore m = x = y. This assures that for each point p E IR" there 

is a unique point p(p) E /( which is nearest p. 

We assert that p is the desired retractio11. To do this we neecl to show that p 

is conlinuous. However (and we omit the details) il is possible to show even more; 

namely that p is nonexpru1sive1 that is, for each u, v E Rn 

llP(u) - p(u)ll $ ilu - vll . 

The above fact perrnits an ex.tension of Brouwer's Theorem to arbitrary bounde<l 

closed con"ex subsets of IR". For such a set K select a simplex S sufficiently large 

that /( ~ S (remember, J< is bounded). By Proposition 4.1 there exists a retraction 

r: S -l K. The composition rnap f or is a conlinuous mapping of S into itself and 

therefore must bave a fixed point x. Moreover1 x mu t lie in /(. Since r(x) = x for 

points in K, we have 

x =fo r(x) = f (x). 

Therefore we have the following. 

T heorem 4.2 Let /( be a bounded closed co11vex subset of R" and let f : /( --1 I< 

be contonuous. Then f has a fixed point. 

One very interesting consequence oí l3rouwer1 theorem is tbe following fact1 

which seems intuilively clear. 

P roposilioa 4.3 The boundary1 881 o/ a 11ontnu1al closed ball D in IR'1 is not a 

retracto/ B 

187 
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Proof. Suppose r is a retraction of B onto BB . T beu -T would be a continu­

ous mapping oí B into 8 which is fixed point free 1 and this contradict.s Brouwer's 

Theorem. • 

In fact ProposiLion 4.3 is equivalent to Brouwer's Theorem. To see this, suppose 

f : B -> B is conlinuous. 1f /(x) 1' x for each x E B then one could construct 

a retraction r : B -> 88 as follows. For each x follow the directed line segment 

from f(x) through x and find its intersectiou with S(x; r). Call this point r(x). The 

existence of such a retraction contradicts Proposition 4.3. T herefore f must have a 

fixed point. 

In 1935 S. Ulam posed the following )>roblem (Problem 36) in the famous col­

lection of mathematical problems known as The Scottish Book (named after the 

Scottish Cafe in whal was theu Lw!,!'lw, Poland - a cafe in whicb Stefan Banach 

and bis colla boralor.; frequently gathered to discuss mathematics): "Can one lrans­

fonn continuously lhe solid sphere of a Hil bert space into ils boundary such that 

Lhe transformalion should be the ident ity on the boundary of the ball'!" ln other 

worcls1 Ulam is asking wh ther Propositio11 4.3 holds in infinite dimensional Hilbert 

space. A.n addenclum indicates that 11ychonoff provided an affi.rmative answer lo 

Ulam 1s quesliou; lhu showing that ProposiLion 4-.31 hence Brouwer1s Theorem, fails 
in infinile dimensional. 

AnoLher nice solulion to Ulam's problern, and one that holds in an arbiLrary 

Banach, space was published by \lictor Klee in 1955. In [!GJ Klee proved that any 

infinile dim nsional Banach space X is homeomorphic wiLh the punctured space 

X\(O}. Let h : X-> X \ {O} be such a homeomorphism. (Thus h is conLinuous, 

one-to-one, ancl surjeclh•e (onto) 1 and 1i- 1 is also continuous). ow assume (as one 
may) thaL h(x ) = x if x E X and llx[[ ~ J. T he required retraction is uow given by 

Lh · 111apping R : X -> h(x)/ llh(x)ll . 

ll is also important Lo realize that Orouwer1s Theorem xlends to R" with any 

olher norm. This follows frorn an elementary facl in functional analysis: Any linear 

rnapping T : E-+ F where E ancl F are Ba11ach spnces with E 6oite dim nsional is 

necessarily continuous. In particular the identity mapping 1 : (R", Jl ·Jl2 ) -> (R", 11·[1) 
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is continuous. Thus there exist constants 0:1 P E R such that for any x E IRn 

a llxll $ llxll, $ fJ llxll 

where , o í course, 11·112 denotes t he u ua l eucl ideao norm in IR" . Consequently any 

closed convex set K 1 in (IR'', ll·llJ is homeomorphic to a closed convex set !{2 in 

(R", 11·112) via t he identity mapping 1 : /{2 :-+ K 1• 

Since any finite dimensioual Banacl1 space can be viewed as IR" with an equivalent 

norm simply by identifying the respective basis \'eclors1 Brouwer1s Theorem can be 
r lated as follows. 

T heor m 4.4 Suppose J< is a nonempty bounded closed convex subset of a firu te 

dimensional Banach space X, and suppose f : I< -+ I< is contirmous. T/ien f has 

at least one fixed point. 

REMARKS. Vle me11tio11 smne further hi torical comments. IJrouwer announced 
his result in 190 a nd proved the casen= 3 111 1909. In 19 10 Had arna rd gave a 

proof using Kroneckcr 's index theory. 13rouwer gave another proof (for arbitra ry n) 

in 1912 u ing l he th ry of topological degree. In devising this proof t he fundamental 

properties oí classical topologica l degree were explicitly forn1ula tcd by Orouwer for 

the first tim , a lthough t hese ideru were implicitly used by 1 oinca ré and others 

mucl1 earh r ( e 16)). 'T'hc underlying idea is the continuation rnethod . Suppose 

f : B -+ R" is continuous, and Jet B, := (! - tf)(B) for t E IO, J ]. C iea rly O E 8 0 . 

'T'he idea is to show tha t the condition x - tf(x) 1 O for ali x in the boundary 

of B and t E (O, l} implics O E 8 1• The approach we have j usl oul lined , based on 

Sperner's Lemrna appeared in 1929 in a joint pap r of l<nastcr, Kuratowski, and 

Maiurk1ewicz [I ]. 
Finally1 il i intcresti11g 1 iudeed curious1 that Brouwer's latcr embrace of intu­

itioni ·t logic caus d hi111 later to reject th(' Clolzano-\Veicrstrass T h orc111 1 the result 

which fonns the basis f t he µroof of lntermed1ate Valuc T heore111 (sec 15)). Intu­

itio111 lS reject. "argurnents by e 11tradictio11··. an approach readi ly acc pted by m t 

mathematicians. T h11s Orouwer's fixed point theorem lias had a lrem ru.lou impact 

on mathematic , while his aµproach to lo ric (about wliich he licld strong \liew ) has 

l>ecn largely ingorcd by rn at.h maticians. 

1 9 
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The history of mathematics is replete with instances in whicb ideas have been 

rnis-attributed (recaJI our comment about Bolzano). This question also arises in 

the case of Brouwer1s Theorem. In 1904 the German-Baltic mathemaLician Piers 
Bohl published a proof of the following theorem (stated bere in the style of today's 

writing). 

Theorem 4.5 {Bo/il) S•ppose T: B ---+ IR" is continuous {B is the •nit ball in IR") 

and suppose T(x) t O for al/ x E B. Then thern exists a point x in the boundary 

{surface) of B and a 1wmber µ. < O such that 

T(:c ) =µx. 

In fact Lhe above resulL was even k11own to Henri Poincaré as early as 18831 

who announced il wilhout proof in [22] but later, in 1886, published an argumenl 

([23]) whicb forms Uie basis of a proof. T his latter resul t has come lo be known as 

the theorem of Miranda who, in 1940 [21], showed it actually to be equivalent to 

13rouwer's Theorem. 

lt is easy to see that Bohl's Theorem implies Brouwer's Tbeorem. Suppose 

f: B--> Bis cont.inuous. atice that since f: B--> Bit is necessarily the case that 
f(x) t ,\x for ali x in the boundary of B and ,\ > l. Let f = I - T . Then 

x -T(:c) f ,\:e 

for a li x in lhe boundary of B and ,\ > l. T his in turn implies that 

T(x) t (1 - ,\):e= ¡;x 

for a li x in the boundar)' of B aucl J.L < O. By Oold 's Theorem tbere exis ls x E B 

such that T (x) = O. But 

T(x) =O<* x - f(:c) =O<* f(x) = x. 

Th Hrsl major ext nsion of the Bohl- Brouwer Theor m wns obtained by .Juliusz 

Schauder in 1930, a lthough !lirkhoff ancl I<ellogg had earl ier extended it Lo com-
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pncl conv subs ls oí erla in íunclion space . Thi theorem can be derived ír m 

Orouwcr's Theorern iu a reJa.tively sLraighlforward way using finite dimensional ap-­

prox.imations. 

T beorem 4.6 (Schauder) Suppose f ( is a compact and convex subset o/ an arbitrory 

Ba11ach space. Then every continuous m apping f : K -+ K always has at least one 

fixed point. 

This was followed in 1934 by a t h orem known as the Schauder-Tychonoff The­

orcm. 
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T hco re m 4.7 {Schauder- Y)¡clwnoff) Suppose Kas a compact and convex subset of 

a locolly convex 1-/ausdorjJ linear topological vector space. Then every continuous 
mapprng f : / -+ / has at least 011e jixed pornt. 

The following is a slabili ly rcsul l which can also be derivcd írorn Br uwer's 

1'heorem. A mapping f frorn a topological X space into a metric space is said 

to be t:-contmuous if giveu any x X ther is a neighborhood U-x of x for which 

diam(f(U,)) 5 e. 

T heorem 4.8 {Klee) Suppose /( is a compact conuex subset of a nonned linear 

space, and suppose f : /( -+ /( is <-contmuous. Then there exists a point x0 E /( 

such that 11/(xo} - :i:oll 5 <. 

5 A nother look a t IR1 

Simpl questions are sometirnes d iflicult (or impossible!} to a nswer. In J954 Eldon 

Dy r posed the fo llowing qucslion: Ir lwo conlinuous mappillb'S / , g : ¡o, J J -+ ¡o, 1) 
commut , do th y neccssarily have a e mmon fixed point'! In facl, A. L. Shielcls 

p sed the same questi n in 1955, as did Lesler Dubins in 1956, but l he problem first 

appeared in the litera ture as part oí a more general question posed by J. R. lsbell 

in 1957 [13). This qu tion irnmediately attracted a lol oí atlenlion, in parl because 

it had long becn known lhat the answer is yes for polynomial funclions. In l964 R. 
O Marr [ J Sª' ' a parlia l posilive answer by showing thal i[ f and g satis[y 

/(x) - / (y}I S o lx- yl and lg(r)- q(y)I SPlx-yl 
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for a li x , y E [O, ! ), where p < (o:+ 1) /(a - 1), theu f and g must have a common 

fixed poi.nt. Another parl ial answer to the question was established by Schwartz 

in 1965, who showed i.n [26j Lhat if f has a continuous derivative, then there is a 

common fixed poi.nL oí f and sorne iterate of g. 

However the general question resis~ed a complete solution far over ten years. In 

1967 both W. M. Boyce [3j and H. Huneke [I2j gave counterexamples to the problern. 

In fac t , Boyce describes a counlerexarnple in which f and g are both lipschi tzian. 

We conclude by looking back to our opening remarks. Suppose f : [O, lj -1 [O, l j 
hM the property lha t for some n E N both f" and f" -+ 1 are cont inuous. Does f 
have a fixed point? Notice tbat f 11 and j 11+ 1 commute, so in view of Proposition 1.1 

the answer is 1yes1 if /" and / 11+1 have a commou fixed point. 
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