Cubo Matemdtica Educacional
Vol. 3., N°1, ENERO 2001

Galois Representations in Mordell-Weil
Groups of Elliptic Curves

David E. Rohrlich
Department of Mathematics & Statistics
Boston University,

Boston, MA 02215
USA

Consider the following two problems:

Problem 1. Let G be a finite group. Does there exist a Galois extension K of
Q such that Gal(K/Q) = G?

Problem 2. Let K be a finite Galois sion of Q and 7 an wrreducible complex
representation of Gal(K/Q). Does there ewist an elliptic curve E over Q such
that T occurs in the natural representation of Gal(K/Q) on C®z E(K)?

i

Of course Problem 1 is the famous “inverse Galois problem”. It has a distinguis-
hed pedigree going back to Hilbert and E. Noether, and it remains an active topic
of research to this day. Problem 2 by contrast has received little attention, but it
arises naturally when one investigates the possible vanishing of certain Rankin-
Selberg convolutions (9], and in the present expository article it will be treated
simply as a natural companion to Problem 1. The remarks and examples which
comprise the article are intended to show that this point of view is reasonable.
We begin by mentioning a special case in which Problem 2 has an affirmative
answer.

1 A Result in low degree

Problem 2 has an affirmative answer whenever 7 occurs in the representation
of Gal(K/Q) induced by the trivial representation of a subgroup of index < 9
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([11], p. 123). Note that 7 is then of dimension < 8. Using Frobenius reciprocity,
we may state the result as follows:

Proposition 1 Let K be a finite Galois extension of Q and 7 an irreducible com-
plex representation of Gal (K/Q). Suppose there is a subfield L of K satisfying
the following conditions:

(@) [L: Q) <O.

(b) Gal(K/L) fires a nonzero vector in the space of 7.

Then there is an elliptic curve E over Q such that T occurs in the natural repre-
sentation of Gal(K/Q) on C® E(K).

By way of illustration, consider the case where 7 is a character x : Gal(K/Q) —
C* (we use “character” as an abbreviation for “one-dimensional character” when
the meaning is clear from context). Take L to be the fixed field of the kernel of x,
so that (ii) holds. If x has order < 9 then (i) is also satisfied and we deduce that
x occurs in C® E(K) for some E. Thus Problem 2 has an affirmative answer for
characters of order < 9. Actually we can do a little better than this by using the
following lemma:

Lemma If € is a quadratic character of Gal(K/Q) and E¢ the corresponding
quadratic twist of E then E(K) and E(K)® ¢ are isomorphic as Z[ Gal(K/Q)]-

modules.

Proof. Let y* +az + b be an equation for £ over @ and write the fixed field
of the kernel of ¢ as Q(v/d), where v/d denotes a fixed square root of some d € Q.
Then E has equation dy® = 2% 4+ az + b and (2, y) = (, Vdy) is an isomorphism
of E(K) onto E(K) ® e.

Suppose now that x is a character of Gal(K/Q) of order 10, 14, or 18. Then
we can write x = € with € as in the lemma and & :Gal(K/Q) — C* a character
of order 5, 7. or 9 respectively. As we have just noted, £ occurs in some C® E(K)
by Proposition 1, whence x occurs in C® E‘(K) by the lemma.

Remark. More generally, the lemma gives:
Proposition 2 Problem 2 has an affirmative answer for a given 7 if and only if
it has an affirmative answer for

wery quadratic twist of 7.
Thus Problem 2 is “invariant under quadratic twists”.

To summarize, Problem 2 has an affirmative answer for characters of order
< 10 and also for characters of order 14 or 18. However the case of an arbitrary
character remains open. Note by contrast that when G is abelian Problem 1 is
an easy exercise.

The proof of Proposition 1 is elementary. Since [L : Q] < 9, any 10 elements
of L are linearly dependent over Q. On the other hand, there are 10 monomials in
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« and y of degree < 3. Thus for each € € L there is a nonzero polynomial F(z,y)

over Q@ of degree < 3 such that F({""'.{’:‘) = (). If £ and F are chosen properly

then the equation F(z.y) = 0 defines a smooth plane cubic with a rational point
in other words an elliptic curve E over @ — and 7 occurs in C® E(K).

2 Irreducible Trinomials

The same approach sometimes works even when [L : Q] > 9. Here is an
example where [L : Q] is an arbitrary integer n > 2:

n

Proposition 3 Let K be a splitting field over Q of the polynomial f(u) = u" —
u-—1.

(i) Gal(K/Q) is isomorphic to S, the symmetric group on n letters.

(ii) Let& € K be aroot of f(u) =0, and put L = Q(€). Up to isomorphism there
is a unique nontrivial irreducible complex representation 7 of Gal(K/Q)
such that Gal(K/L) fizes a nonzero vector in the space of T. Furthermore,
the dimension of T isn — 1.

(iii) Assume that n # 0,1 modulo 12. Then there exists an elliptic curve E
over Q such that 7 occurs in the natural representation of Gal(K/Q) on
C® E(K).

For a proof of (i) see Selmer [12] and Serre [13]. p.42. The key point is
the irreducibility of f, which is proved in [12]. Conversely, (i) implies that f is
irreducible.

Assertion (ii) amounts by Frobenius reciprocity to a standard fact about re-
presentations of Sy, (cf.[7], p.50, Ex. 4.14): if H is a subgroup of index n in
ily isomorphic to S,—;) then the representation of S, induced by
al representation of H is a direct smm of the trivial representation of
S, and an irreducible representation of dimension n — 1. Incidentally, the latter
representation is sometimes called the “standard”™ representation of Sy, but this
terminology is dangerous when n = 6: there are two conjugacy classes of embed-
dings of S5 in Sg and consequently two inequivalent candidates for the “standard”
representation of Sg.

It remains to prove (iii). If n < 9 then the assertion follows from Proposition
1, so we may assume that n > 10. Let d denote the discriminant of K and put
M = Q(vd). Then Gal(K /M) is isomorphic to the alternating group A, and is
therefore a nonabelian simple group since n > 4. The following result is a slight
variant of the proposition on p.129 of [11]:
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Proposition 4 Let K be a finite Galois extension of Q and 7 an irreducible
complex representation of Gal(K/Q). Suppose that there are subfields L and M
of K satisfying the following conditions:

(i) [L:Q] =1+dimT.
(ii) Gal(K/L) fizes a nonzero vector in the space of T.

(iii) Gal(K/M) is a nonabelian simple group, M is Galois over Q, and LNM =
Q.
If E is any elliptic curve over Q such that E(L) # E(Q) then 7 occurs in the
natural representation of Gal(K/Q) on C® E(K).

We see that to complete the proof of part (iii) of Proposition 3 it suffices to
exhibit an elliptic curve E over @ together with a point P € E(L) such that
P ¢ B(Q). For every congruence class of integers n # 0,1 modulo 12 a possible
choice of E and P is shown in the following table.

n

B

(€273 _g=n+T)
(€72, Ty

2 mod 3
2 mod 4

3 mod 4 (E("“‘ lvf(:s-,.y |)
3 mod 6 (=€—173, ¢T=n)7Zy
| 4mod6 (=€0=1073 g=n7Z)

Strictly speaking, since the equation in the third row of the table is not in
ralized Weierstrass form, the nonsingular cubic curve E it defines does not
e to be called an elliptic curve until we designate some point O € E(Q) as
origin. However all that matters is that £(Q) is nonempty, so that some choice
of O (e. g. O=[0:1:0] or O = (0,0)) is possible.

When n = 0 or 1 modulo 12 this elementary approach fails. Furthermore,
while it succeeds for many other irreducible trinomials, its applicability is ulti-
mately rather limited: the requirement that a finite Galois extension K of Q be a
splitting field of an irreducible trinomial appears to be a rather severe restriction
on K. For example, suppose that p is a prime > 13 which is not a Fermat prime.
If K is a splitting field of an irreducible trinomial of degree p then Gal(K/Q) is
cither solvable or isomorphic to S, or A, (Feit [6]. p. 179, Cor. 4.4).

Nonetheless, let us briefly indicate how the argument on pp. 129 - 130 of
[11] can be modified to yield a proof of Proposition 4. Put G =Gal(K/Q),
H =Gal(K/L), and J =Gal(K/M) and let ay.09...., o, be representatives for
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the distinct left cosets of J N H in J. with oy € H N J. Also choose a point
P € E(L) not belonging to E(Q), and put v; = 1® (P - 0;(P)) € C® E(K)
for 2 < i € n. Let V be the subspace of C ® E(K) spanned by the vectors
v, Since LN M = Q and M is Galois over Q@ we have G = JH by Galois
theory, and consequently the elements o; are also a set of representatives for the
distinet left cosets of H in G. Therefore V' is stable under G. In fact let us write
Sind” for induction and 1y for the trivial representation of a group X, so that
conditions (i) and (ii) of Proposition 4 take the form inleH = 1lg ® 7. Then
the universal property of the induction functor shows that the representation of
(G on V is a quotient of 7. Consequently, since 7 is irreducible it suffices to show
that V # {0}. This is proved just as in [11], except that the symbols G, H, and
L of [11] correspond to the present J, J N H, and LM. Thus the key hypothesis
in [11] becomes the requirement that P belong to E(LM) but not to E(M). This
condition is in fact satisfied, because P belongs to E(L) but not to E(Q), and
LOM=Q

3 L-functions

Although Problem 1 is widely expected to have an affirmative answer, this
expectation does not seem to be founded on any broader conjectural framework.
By contrast, if one grants the standard conjectures about L-functions then an
affirmative answer to a special case of Problem 2 follows as a corollary. To explain
this point, let K and 7 be as in Problem 2, let E be any elliptic curve over Q,
and consider the “Rankin-Selberg convolution™ L(E, 7, s) associated to the tensor
product of 7 with the f-adic representations determined by E. (More precisely,
replace 7 by an equivalent representation defined over a number field E € C, and
for each place A of E over ¢ form the tensor product of the representations at
issue by taking their common field of definition to be Ey, the completion of E at
A). The order of vanishing of L(F, 7,s) at s = 1 is conjectured to satisfy

ofdy=1L( B, 7,8) = (7, B), (1)

where (7, E) denotes the multiplicity of 7 in C® E(K). This is also the multiplicity
of the dual representation 7, because the representation of Gal(K/Q) on C® E(K)
is obtained by extension of scalars from the representation on Q ® E(K) and is
therefore defined over (), hence in particular over R. In any case, we are certainly
Justified in viewing (1) as one of the “standard conjectures about L-functions”,
for it is a routine extension of the Birch-Swinnerton-Dyer conjecture and even a
formal consequence of the Birch-Swinnerton-Dyer conjecture when the latter is
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supplemented the Deligne-Gross conjecture (cf. [4]. p. 323, Conj. 2.7 (ii) and
91 p. 127, and note that the phrase “complex embedding of the motive™ in [9]
should be “complex embedding of the coefficient field of the motive™). On the
other hand. another standard conjecture — the Hasse-Weil conjecture for motivie

L-functions - gives

A(B,7,5) = W(E.T)A(E, 7,2 — 5), @)

where W(E, 7) is a constant of absolute value 1 and

A(E,7,5) = ((2m)~*T(s)) U D2 L(E, 7, 5), )

the quantity D = D(E,7) being a certain positive integer. Both W (E,7) and
D(E,7) have a definition independent of [1] and [?] and are in principle compu-
table (cf. [4] and [18]).

Now suppose that 7 is self-dual, or equivalently that trr is real-valued. Then
[2] becomes A(E.7,s) = W(E,7)A(E,7,2 — s), whence W(E,7) = %1 and
ordy— L(E. 7.5) is even or odd according as W(E,7) is 1 or —1. Therefore [1]
leads to a statement which no longer makes any explicit reference to L-functions:

The Parity Conjecture. Suppose that v = 7. Then

W(B,1) = (—1){"5),
In particular, if W(E,7) = =1 then the multiplicity of 7 in C® E(K) is odd and

hence positive.

The connection with Problem 2 is that for certain self-dual representations
7 it is easy to produce an E such that W(FE.7) = —1. The simplest general
statement along these lines is the following (cf. [10]. p. 311, Prop. A):

Proposition 5 Suppose that T has real-valucd character and cither odd dimension
or nontrivial determinant. Then there cuists an clliptic curve E over Q such that

W(E,7) = -1.

For example, take K to be a Galois extension of @ with Galois group S),. and
suppose that 7 is “standard™: in other words. suppose that 7 is the nontrivial
constituent of the representation of Gal(K/Q) induced by the trivial representa-
tion of some subgroup Gal(K/L) of index n. Then dim 7 = n — 1. Hence for even
n we conclude under the Parity Conjecture that 7 occurs in some C ® E(K). In
fact the same conclusion holds when 7 is add, because for any n the determinant
of a standard representation of 9, is the sign character.
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These remarks apply in particular to the example considered carlier, where K
was the splitting field of the polynomial f(u) = u" —u—1 and L the extension of
Q generated by a root of f(u) = 0. When n =0 or 1 modulo 12 we were unable
to prove that 7 occurred in some C ® E(K). Under the Parity Conjecture this
conclusion now follows from Proposition, 5.

4 Specialization

The basic strategy for attacking Problem 1 has not changed since Hilbert:
one first realizes G' as a Galois group over a field of rational functions over Q,
and one then quotes the Hilbert irreducibility theorem to deduce that G is a
Galois group over Q. In principle there is an analogous approach to Problem 2
in which the role of the Hilbert irreducibility theorem is played by a different
sort of specialization theorem, namely that of Néron (8], Silverman [17], and Tate
[19]. Given K and 7 as in Problem 2, one first finds an elliptic curve C over Q(t)
with nonconstant j-invariant such that 7 occurs in the natural representation of
Gal(K/Q) on C®E(K (1)), and one then quotes the theorem of Néron-Silverman-
Tate to deduce that 7 occurs in C®&&;, (K) for all but finitely many specializations
&, of € over Q. Here &, denotes the fiber over #, € P'(Q) of a relatively minimal
elliptic fibration S — P! with generic fiber £, and the finite set of excluded values
of tg is understood to contain all tg € P'(Q) such that & is not an elliptic curve.

To see this approach implemented in practice we must turn to the work of
Shioda [15]. [16). Shioda focuses on the case where the elliptic surface S is
rational. In this case the Mordell-Weil rank of £(Q(#)) is < 8 and can be computed
from a knowledge of the reducible fibers of S — P'. For example, if there are no
reducible fibers at all then the rank of £(Q(t)) is exactly 8, and in fact E(Q(t)
is a free Z-module of this rank. The negative of the height pairing then makes
£(Q(t)) into a positive-definite, even, integral, unimodular lattice of rank 8, so
that as a lattice £(Q(t)) is isomorphic to the Eg root lattice. Quite generally, for
any root system X let W (X) denote the associated Weyl group.

Proposition 6 (Shioda) Let K be a Galois ertension of Q with Gal(K/Q) =
WI(E,), where n =6, 7, or 8, and let 7 be an n-dimensional irreducible complex
representation of Gal(K/Q). Then there exists an elliptic curve E over Q such
that 7 occurs in the natural representation of Gal(K/Q) on C® E(K).

This is an immediate consequence of Theorem 7.2 of [15] and the following remark:

Every irreducible n-dimensional complex representation of W(E,) is cquivalent
either to the standard representation of W(E,) on the complex span of E, or
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to the twist of the standard representation by the unigue quadratic character of
\W(E,). Hence by the =mvariance of Problem 2 under quadratic twists™ (Propo-
sition 2), the proof of Proposition 6 is reduced to the case where T corresponds
to the standard representation of W(E,) under some identification of Gal(K/Q)
with W(E,).

The remark can be verified using the character tables for Uy(2), S5(2), and OF (2)
in [3]. Note that W (Eg) contains U;(2) as a subgroup of index 2, that W(E;) =
S6(2) x {£1}, and that W(Eg)/{+£1} contains Og (2) x {£1} as a subgroup of

index 2.

Proposition 6 is nonvacuous in the strong sense that the groups W(E,,) do
oceur as Galois groups over Q. This follows from Chevalley’s theorem on finite
reflection groups (2], but Shioda’s construction gives an independent proof. In-
deed the underlying construction pertains not to K but to the fraction field X
of the symmetric algebra of the rational span of E,,. and Shioda shows directly
that the fixed field K"V(Ea) j5 a rational function field over Q.

The fact that Shioda’s construction is “generic” rather than specifi

to Q
gives it much broader scope than is indicated in Proposition 6. In particular,
let X be one of the root systems A, (1 £ n < 7)or D, (4 £ n <7), and
view W(X) as a subgroup of W (Eg) via an embedding of Dynkin diagrams. By
combining Shioda’s construction with Chevalley’s theorem (applied to the field
KW where K is attached to Eg as above) it should be possible to deduce
a statement similar to Proposition 6 for W(X). Alternatively, we c¢an obtain
a statement along these lines for a slightly different collection of root systems
g Proposition 1 (note that at least the cases of Ay and Dy were already
examined by Shioda in [16]):

Proposition 7 Let X be one of the following root systems: A, (1 < n < 8), By,
By. By. Dy. Gy. Let K be a Galois extension of O with Gal(K/Q) = W (X), and
let 7 be an wrreducible complex representation of Gal(K/Q) of dimension equal to
the rank of X. Then there crists an elliptic curve E over Q such that T occurs
in the natural representation of Gal(K/Q) on C® E(K).

IR A

A proof of Proposition 7 is briefly summarized in the following table.

X G =W(X) [G: H]
Sha g n+1

~(Z/2Z)" % S, n

g 8

| G
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In the first column of the table we list cach of the root systems X in the propo-
sition, and in the second column we indicate the structure of the corresponding
Weyl group G = W(X). Let n denote the rank of X. A case-by- verification
using the standard facts about irreducible representations of semidirect products
with abelian kernel shows that if 7 is an n-dimensional irreducible representation
of G then there is a subgroup [ of G such that either @ or a quadratic twist of 7
oceurs in iml‘,jl;/. The structure of H is independent of 7 and is indicated in the
really matters is the index [G : H] displayed
se, [G: H] <9, so that the data fall within the
purview of Proposition 1. Although the isomorphism class of H can be specified
independently of 7, the reader is cautioned that the abstract isomorphism class of
H need not determine a unique conjugacy class of embeddings of H in G. Indeed
in the case G = W(A;) = S35, H = S5 we have already noted that there are
two such conjugacy classes, corresponding to two inequivalent choices of m, and
in the case G = W(Gy) = Dy (the dihedral group of order 12), H = Z /27 there
are three such conjugacy classes, of which only the two noncentral classi
rise to the irreducible two-dimensional representation of Dg. Finally, we
that the root systems Cz and C; could also have been listed in Proposition 7 but
would have added nothing new, because W(C,,) = W (B,,).

third column of the table, but w

in the fourth column: in every c:

5 Multiplicities

Formulated positively, Problem 2 asserts that for every finite Galois extension
K of @ and every irreducible complex representation 7 of Gal(K/Q) there is an
clliptic curve E over @ such that (7, £) > 0. Our final remark is that if this
conjecture is correct then the set of all multiplicities is unbounded:

[E8) supK,r,r(r, B) = oo.

The reason is simple. First of all, since the representation of Gal(K/Q) on C®
E(K) is defined over Q, the multiplicity (p. £) is divisible by the Schur index of
7. Now it was observed long ago by Brauer ([1], pp. 742 745) that for every
integer n > 1 there is a finite group G, and an irreducible representation 7, of
G, with Schur index 7. Furthermore, Braner
I has an affirmative answer: in other words,

cample is one for which Problem
we can write G, = Gal(K,,/Q)
for some Galois extension K, of Q. Thus 7, becomes a representation 7, of
Gal(K,,/Q). and (r,, B) > n whenever (7,,. E) > 0. Hence if Problem 2 has
an affirmative solution then (+) follows. Note however that (*) is much weaker
than the conjecture that ranks of elliptic curves ove Q can be arbitrarily large,
because the latter conjecture amounts to saying that 7 in (%) can be chosen to
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lie the trivial representation.

Let us briefly indicate how to construet Gy e and K, We may assume
that 7 > 1. Choose a prime p = 1 modulo n such that (p — 1)/ and n are
relatively prime. and fix an embedding of Z/nZ in (Z/pZ)*. Then Z/nZ acts on
7 /pZ via the natural action of (Z/p2)*, and Z/n*Z acts on Z /pZ via the natural
wap Z/n’Z — Z/nZ. It suffices to put

G = (Z/p2) % (Z/n*T)

and to take for m, any vepresentation of G, induced by a faithful character
of the subgroup (Z/pZ) x (nZ/n*Z). As fov K,, one can appeal to general
theorems on the realizability of solvable groups as Galois groups (cf. Shafarevich
(14]) or perhaps more appropriately tio weaker statements which suffice for the
application at hand (cf. Serre [13] pp. 17 - 18). However it is also easy to give
a direct construction. Let L be a totally real cyclic extension of @ of degree
n*, and let F be the subfield of L with (F : @] = n; fix an identification of
Gal(L/Q) with Z/n°Z and hence of Gal(F/Q) with Z/nZ. By composing the
latter identification with our fixed embedding of Z/nZ in (Z/pZ)*, we obtain a
chavacter x : Gal(F/Q) — Fy. We note that any representation of Gal(F/Q)
over F), is semisimple, because p f n.

Proposition 8 Let q and r be distinet primes congruent to 1 modulo p which
split completely in F. and write C' for the wide vay class group of F modulo qrO,
ring of integers of F. View C/CP as a vepresentation space for
. Then x occurs in C/CP.

Granting the proposition, let D be a subgroup of index p in €, stable under
Gal(F/Q). such that Gal(F/Q) acts on C/D via y. Let M be the class field over
I* corresponding to D. Then Gal(LM/Q) = G,,, so we may take K, = LM. It
remains to prove the proposition. Put O/ = 0%, A = (O/qrO)*. and B = A/u(U),
where ¢ : U — A is the natural map.

Lemma Buvery irreducible repre.

ntation of Gal(F/Q) over B, occurs in B/BP.

Proof. . Consider the exact sequence
UjU? — AJA” — B/BP —s {1}.
The Dirichlet unit theorem shows that as a representation for Gal(#/Q) over E,.

the space U/UP is isomorphic o the augmentation representation (the subrepre-
sentation of the regular represer

ion afforded by the angmentation ideal). On
the other hand, our choice of ¢ and 7 ensures that A/A” is the direct sum of (wo
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copies of the regular repr ation of Gal(F/Q). Therefore at least one copy of
the regular representation survives in B/B".

For any abelian group X and any positive integer m let X[m] denote the
subgroup of X annihilated by m. According to the lemma, x occurs in B/BP,
s0 by the Jordan-Hélder theorem there is an integer ; > 0 such that x occurs
in B[p*']/B[p’). On the other hand, B is naturally a subgroup of C, whence
Blp!*'|/B[p’] is naturally a subspace of C[p’*']/C[p’]. Therefore x occurs in
the latter space, and a second appeal to the Jordan-Holder theorem shows that
X ocenrs in some (,'""/C”Hl (k > 0). Finally, since C”A/C”'+l is naturally a
quotient of C'/C? we conclude that y occurs in €'/CP. proving Proposition 8.

Ser
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