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1 Introduction

The oldest problem in Algebra is solving polynomial equations. The main aim of
Algebraic Geometry is the study of the common zeros of finitely many polynomials
iables. In the geometric part of Algebraic Geometry one often
uses differenti als, derivatives and other tools from Differential Geometry. However, if we
want to work over a field, K, of positive characteristic (for instance a finite field) several
pathologies arise for the following reason. If p := char(K) > 0, the d(a?)/dx = paP~' =0
(because p = 0) and hence the non-constant function z” has identically zero derivative.
We will much more on these strange phenomena in section 3. Finding solutions
of polynomial equations over finite fields is important for some applications to coding
theory, in particular for the construction and study of linear codes. The aim of section
4 is to try to explain some of the connections between these two topics. Previously,
several applications of number theory and algebra to coding theory were known; after
all most codes are connected with a finite field. In the references we listed several books
(most of them brand new), a few surveys and a very small part of the recent preprints
on the subject. Using the web it is easy to find a huge number of recent preprints
on this topic and hence to see the popularity of this topic among researchers (mostly
pure mathematicians). For an example of quantum error correcting code for quantum
computers (if any in the near future!), see page 50 of [CG]. In section 2 we review a few
well-known properties of algebraic curves, stressing their arithmetic (e.g. counting the
number of their points if the base field is finite) and the fundamental trichotomy between
curves of genus 0, curves of genus 1 and curves of genus at least two.
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2 Algebraic Curves

Let X be a smooth projective curve defined over a field L. One should think about
A a one-dimensional object, say the generalization of the notions of lines, ellipses,
parabolas and hyperbolas. The main discrete invariant of X is its genus, g. The genus
is a non negative integer. Indeed, every line, every ellipse, every parabola and every
hyperbola corresponds to a smooth curve of genus 0. If the field L is the complex num-
ber field C, then we may endowe the complex points, X(C), of X with the euclidean
topology. With this topology X (C) is a compact connected orientable two-dimensional
topological manifold. X(C) has a unique C* structure. The algebraic structure on
X induces a complex structure, i.e. X(C) is a Riemann Surface. Viceversa, every
compact connected Riemann Surface ated to a unique smooth projective curve
defined over the field C. The topological or differentiable classification of all orientable
compact connected two-dimensional manifolds is very well-known: every such T is ho-
meomorphic (or diffeomorphic) to a sphere with g handles and g is exactly the genus
of X [St]; we have H,(T,Z) = 7929 and this may be used to define the integer g, i.e.
the genus; even the fundamental group =, (T, P) of T is uniquely determined by the ge-
nus. Viceversa, 7, (T, P) may be used to define the genus, g, because it has 2g generators
ay,by,as,b a,. b, with a unique relation ]_[K.(y n,b,n,"b," =1. If g = 0, then X(C)
is topologically a sphere and the associated Riemann Surface is just CP'. If g = 1, then
the Riemann Surface X(C) is called an elliptic curve and the associated topological ma-
nifold is a two-dimensional torus S' x S'. There is a deep difference between the 3 cases:
9 =0,g=1or g >2. On the topological side, this may be seen looking at their universal
covering spaces: CP' is simply connected, the universal covering of an elliptic curve is
C as a Riemann Surface (i.e. it has no non-constant holomorphic function), while the
universal covering of a smooth curve of genus g > 2 is biholomorphic to the unit disk
A= {z € C:|z| < 1} ([F), Th. IV.4.5); the last assertion is a famous theorem proved in
1907 independently by Poincaré and Koebe. If a smooth curve defined over an arbitrary
field is seen as a plane curve of a certain degree, we have a lot of informations about its
genus. Here we need to work with the projective plane P2, not the affine plane, because
a smooth affine curve may have singularities at infinity: think about two parallel affine
lines. A smooth plane curve of degree d has genus (d — 1)(d — 2)/2. In particular it has
genus 0if and only if d = 1 or d = 2 (lines and smooth conics) and it has genus 1 if and
only if d = 3. If the degree d plane curve Y has some singularities, then the genus, g, of
its smooth model is at most (d — 1)(d — 2)/2 and the integer (d - 1)(d —2)/2 — g depends
only on the number and type of the singularities of Y for instance if ¥ has only ordinary
nodes and ordinary cusps as singularities, then (d — 1)(d — 2)/2 = g is the number of
singular points of }"

. The three cases g = 0.g= 1 and g > 2 are completely different from several points of
view (see [L] for the higher dimensional case and for complex analytic methods, [Ma] for
more from the point of view of the arithmetic of algebraic curves). Here we will consider
them fr}nnl the point of view of points defined on certain small field. Let X be a smooth
projective curve defined over a field L. If L is algebraically closed, the set X(L) of points
of X' defined over L is infinite. What happens if L is not algebraically closed ? The set
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X (L) may be empty. hu instance the plane conic «* + y* + 1 = 0 (or in homogeneous
coordinates x° + y* + = 0) is defined over R but it has no real point. The most
important object associated to X is its canonical line bundle &' and its dual (i.c. the
tangent bundle T.X of .X'). We have deg(K, ) g — 2 and deg(TX') = 2 — 2g. These
line bundles ave defined over L. If g = 1, both are trivial and not very interesting. Line
bundles of positive degree may be used to embed the curve in a projective space. If g = 0
indeed T.X embeds X as a plane conic and the embedding is defined over L. Hence if g,
= () we may see .\ as a plane conic. As the example of the real conic without real points
just given shows, we may have X (L) = ¢. Since P! is defined over any field, there is at
least one genus 0 curve with X(L) # ¢. We have P'(L) = LU {co}. In particular if L
is infinite P'(L) is infinite, while if L is finite we have #(P'(L)) = #(L) + 1. The next
result shows that these are the only two possibilities for the integers #(X (L)) for any
smooth curve X with genus 0 defined over a finite field L.

Proposition 2.1. Let X' be a smooth projective curve of genus 0 defined over the field
L. If X(L) # ¢ the X is isomorphic over L to P

Proof. See X as a plane conic and take P € X(L). Thus P € P*(L) and for every
Q € P*(L) with @ # P there is a unique line (PQ) containing P and ) and this line is
defined over L. Take any line D of P? defined over L and with P ¢ D. We have D = P!
over L. For every @ € D the line (PQ) intersects the conic X in P and in another point,
@Q'. If Q is defined over L, then @' is defined over L because a degree 2 polynomial
f(x) € L{z] with coefficient in L and with one root defined over L has both solutions
defined over L. Viceversa, for every Q' € (X\{P}) the line (PQ’) intersects D in a
unique point, Q; if Q' € X (L), then (PQ’) is defined over L and hence Q is defined over
L. To the point P € X (L) we associate as line (PP) (which is not defined) the tangent
line T, X to X at P. Since P € X(L) even T,, X is defined over L because the coefficients
of its equation are obtain taking derivatives from the coefficients of the equation of X
and the coordinates of P; both may be taken as elements of L. This construction (called
the stereographic projection of .\ from P onto D) induces the isomorphism of X and P!
and it is defined over L.

In particular by 2.1 over any algebraically closed field there is a unique smooth genus
0 curve: P!

Example 2.2. Let X be a genus 1 smooth projective curve defined over the field L and
assume X(L) # 6. X may be seen as a plane cubic curve X = {f(x,y,2) = 0} C P?
with f degree 3 polynomial with coefficients in L. Take P € X (L) and consider the ]inv
T,.X tangent to X at P. If P is a flex for X, i.e. if T,, X has order of contact 3 with X" at
P, we are stuck. However, if P is not a flex of X' we may find another point, @, of X (L)
in the following way. The restriction of f(x,y.z) to T,, X is a degree 3 polinomial, f, on
the line T, X with coefficients in L and with a double root, P, defined over L. Hence
[ has all three roots defined over L. Since P is not a flex of X, f has at P exactly a
double root, i.e. the other root of f defines a point Q@ € X (L) with QP. If Q) is a flex of
X, we stop. If @ is not a flex of X' we may continue and find other points of X(L). This
is called the tangent method. Similarly, if we know P, Q € X (L) with P # Q, the line
(PQ) is defined over L. If this line is not tangent to the cubic X' at P or at Q, then it

233



231 E. Ballico

interseets X ar a point different from P and from @ and defined over L. This is called
the chordal method.

If we know O € X(L) with O flex point of the plane cubic X, then we may define in
the following way a composition law which make X(L) an abelian group for which O is
the zero element. Fix P.Q € X(L). It is casier to define —(P + Q) for this law. It is the
unique point, R, of X(L) such that the points P, @ are collinear; here if P = @ we take
as I the third intersection point of the line with X'; hence 3P is zero if and only if P is
a flex point of the cubic .X. Now we need to define —A for any A € X(L). If A = 0, set
—4=0. If 4 # 0, let —A be the third point of intersection of the cubic X with the
line (AQ) which is defined over L.

The fundamental trichotomy (genus 0 or 1 or > 2) is deeply related to X(L) if L
is a finite extension of @ or of a function field F, () in one variables over F ; here ‘Bl
denotes the field with ¢ elements and ¢ must be a power of a prime. If g = 0 by 2.1 either
X(L) = ¢ or X(L) = LU {co} is infinite. If g = 1 and L is a finite extension of @ either
N(L) = ¢ or X(L) is a finitely generated abelian group (Mordell (1922) - Weil (1928)
corem). If g > 2. then X (L) is finite; this is a famous theorem of Faltings (1983) for
ion of @ and a famous theorem of Grauert (1966) and Manin (1963) for L
finitely generated extension of C or of F,.

Now we will give a proof due to Ax of a classical theorem of Chevalley - Warning
(see [Gr], p. 11, or [Ax]. For the proof we need the following two lemmas.

Lemma 2.3. Let L be any field and w: F* — L* be any non-trivial homomorphism
hetween the multiplicative groups of the two fields. Then 3, p. h(x) = 0.
i

Proof. By hypothesis there is y € F* such that h(y) # 0. Since the multiplication by

v is a bijection of onto itself, we have 35 p. h(@) = ¥, cp. h(wy) = (X, ep. h(@)A{):
p b

Since L has no zero-divisor and h(y) # 1, this implies 3

B rer- (@) =10:

Lemma 2.4. For cvery integer m > 0 we have Yeer, #™ = =1 if g — 1 divides m and
a

Yrcr 2™ =0 if g — 1 does not divide m.

Proof. The function = - 2™ is a homomorphism of the multiplicative group F* into
itself. Since 1 eyclic group of order g — 1, this homomorphism is the identity if and
ouly if m is divisible by ¢ — 1. If m is d ble by g — 1 the sum is g — 1 because 0 goes
to 0 and #(F?) = g — 1. If m is not divisible by m, use lemma 2.3.

Theorem 2.5. (Chevalley - Warning) Let f be a polynomial in n variables with cocffi-
cients in the finite field F | with g = p°, e > 1. Set d := deg(f). Let N(f) be the number
of distinct zeros of f in F . If n > d, then N(f) =0 mod(p).

Proof. We have #(F") = ¢" = 0mod(p). Let N(f)" be the residue class of N/(f) mod(p)-

Since F7 is a cyclic group of order ¢ — 1, for every n—ple xé F"* we have 1— f(z)i~! = 1
a

if f(‘r‘ =0 and 1 = f(x)? ’ = 0/if f(x) # 0. Thus, taking the sum ¥ of all elements

of F7' we obtain N(f)' = (1 - f()1=)) = = ¥ f(x)7~}. We will sce the last sum,




Algebraic curves, differential geometry in positive charac... 29

Si /). as an clement of F, and we must prove that this element is zero if deg(f) < n.
Since deg(fe)?') = d(g = 1), S(f) is a F -linear combitation of terms S(m) with
m monomial of degree d(g — 1) in n variables x,,....r_. Thus it is sufficient to prove
that S(m) = 0 for every monomial m of degree d(g — 1). If m = T3 ] tin, then
ol 00 oD €F, 7, Since d < n, at least one exponent, say a, is
By Lemma 2.4 the i-th factor of S(m) is 0 and hence we conclude.

In Projective Geometry homogeneous polynomials are the main topic. Hence it is
worthwhile to single-out the following corollary of Theorem 2.5.

t most g — 1.

s in the
a zero

Corollary 2.6. Let f be a homogeneous polynomial in n variables with coe,
finite field ¥ . Set d := deg(f). If n > d, then f has a non-trivial zero,
#(0......0)

Proof. Since fis homogeneous, it has (0,....,0) as a zero. By Theorem 2.5 f must have
t p — 1 other zeros, where p := char(F,).

Now we summarize some results on the integers #(.X'(L)) when a smooth curve
defined over a finite field. Let X' be a smooth projective geometrically irreducible curve of
penus g defined over F, . A. Weil proved that [#(X (F,)) —g— 1| < 2g(q)"/? (the so-called
Riemann’s hypothesis for curves). Thara [Th] proved that, when g is large compared to
. this bound can be significantly improved. Set n := #(X(F;)). Given X and a so-

called linear system |L| on X one can construct a linear code over F, (see [M1] , [LV]
ov [MV]). This code is a matrix on vectors in the space F. Thus the larger is n, the
better is the code. This ]7ldllh one reason for the interest in finding X' with large
#(\(F ) If ¢ = p* and & = p/ with f > e, then F, is an extension of F,. The
curve X is defined even over F | too, and hence the integer #(X(F,)) is defined. We
may consider the set S(q,g) of all integers #(X(F,)). where g is fixed while .\ varies
among all smooth curves of genus g defined over F . Let N (g) be the minimum of
't Alg) == limsup, N, (9)/g. We used N_(g)/g in the definition of A(q) by
nate [#(X(F,)) — ¢ = 1] < 2g(q)"/*. Serre proved that A(q) > 0 for cvery q
[Se]. Drinfeld and Vladut proved that A(g) < (¢)'/* — 1 for every g [DV]. Several people
independently proved that if ¢ is a square, then A(q) = (g)'/? =1 (see for instance [GS]).

neral upper bound for A(g) is known but, unless ¢ is a square, nobody knows
t value of A(g). We stress that this wa ted before the applications to coding
: the theory is nice, the results are amusing and it was a big help to be able say in
the introduction of the paper that “ this paper improves a Theorem of Serre " (see lines

15-20 of the first column of the interview with J.-P. Serre listed as [CF]). This seems to be
occured quite often in the interraltions between pure and applied mathematics. However,
sometimes applied mathematics (and quite often theoretical physics) had applications to
pure mathematics.

3 Differential Geometry in positive characteristic

] s a polynomial in n+ 1 variables over a field K. one can take the partial
)] /9z, just formally imposing the following rules: d(x,)/0x, = 19(r;)/0x, =

derivative
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0if i # J. d(e)/dr, = 0 for every ¢ € K (i.e. the elements of K are u)nsmms) and the
Leibniz rule d(uv) /0, = ud(v)/dx, +0vd(u)/dx, for all polynomials u, v. In this way one
can use differentials and similar stuff even in Algebraic Geometry. Hm\e\'er, if char(K) =
p > 0. then a strange phenomenon occurs. By Leibniz rule we obtain 9(f?)/dx, =
pfP=Y(0(f)/9x,) = 0 (iust because p = 0) for every polynomial f. This means that there
are non-constant polynomials such that all their partial derivatives are identically zero.
Using derivatives as in Differential Topology one can define tangent spaces, differentials
of regular maps between smooth varieties and so on. However, if char(K) = p > 0
we have just seen the existence of non-constant maps (say f# : K&+ - K for any
polynomial f) such that their differentials are identically zero.
Now we will introduce a famous example.

Example 3.1. (The Fermat hypersurface). We fix a base field K with char(K) = p > 0.
Consider the homogeneous polynomial f, =€ K|z, z,] defined by f, (g, 3, )=
Yo<icn T Let X(n,m,p) the hypersurface (f 0} of the projective space P™
(over K). If m is divisible by p we have f, s+ Hence if m is divible by p
the hypersurface X(n,m, p) X(n,m/p,p) (onntod with multiplicity p. Iterating
this trick we see that it is sufficient to study the Fermat hypersurfaces X (n,m, p) for all
m with (m,p) = 1. First we well check that every such hypersurface is smooth. Take
P e X(n,m,p), .,a,), with a, # 0 for at least one index i and (m,p) = 1.
We have d(f, , )/01 () = i a”"' #0 (l)w the assumption (m,p) = 1). Thus the
hypersurface .\ (n,m,p) is smooth at P; here we use as in Differential Topology the
cobian criterion or Inverse Function Theorem to check if a zero-locus of a C* function
is smooth.

0y

In [Be] A. Beauville proved the following stricking characterization of smooth hypersur-
faces of P", n > 3, such that all their general hyperplane section are isomorphic. It is
quite easy to prove that in characteristic 0 the only possible ones are the hyperplanes
and the hyperquadrics, and this explains the restriction d > 3 in the statement.

Theorem 3.2. [Be] Let X C P", n > 3, be a smooth hypersurface of degree d > 3. The
Jollowing conditions are equivalent:
(1) All smooth hyperplane sections of X are isomorphic;
(ii) for every P € P" the polar divisor of P in X, i.e. the set of all Q € X such that the
tangent hyperplane T, X contains P is a hyperplane section of X;
(iii) char(K) > 0, d—1 is a power of char(K) and all the partial derivatives df [0w,,0 <
i < n, of the equation f of X are powers of linear forms;
(i) p = char(K) > 0, d =1 is a power, q, of char(K) and X is projectively equivalent
to the Fermat hypersurface X (n,q + 1, p).

Fix an algebraically closed ficld K and let Y € P? an irreducible curve defined over
K. We consider the following bad properties which ¥ may have.

(a) Every smooth point of Y is a flex point, i.e. for every P € VBl the tangent line
to Y at P has order of contact at least 3 with Y at P.

(b) Every tangent line of ¥ is bitangent (or worse), i.e. for a general P € Y, there
ISQEY,, suchthat Q# Pand Q€ T,Y.
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(¢) There is O € P? such that O € T,,Y for every P € Y,__; if such point O exists, ¥’
is called a strange curve and O is called the strange point of Y.

Obviously for (¢) we have to exclude the case Y a line, because every point of a line
D would be a strange point for D.

The properties (a), (b) and (c) may be stated for any irreducible curve Y of P",n > 3.
For an irreducible curve D € P", n > 3, with D spanning P, a further pathology in
principle could arise:

(d) A general secant line to D is trisecant (or worst), i.e. if you take two general
points P, Q of D, the line (PQ) meets D at least in another point; more generally,
if you take n — 1 general points P, ..., P,y of D, their linear span (P, ..., P,_1) is a
codimension two linear subspace of P"; if the linear space (P, ..., P,,_;) contains at least
another point of D, D is called very strange.

It is known that (a), (b), (¢) and (d) are not possible if char(K) = 0 (see 3.3 for a
proof for pathology (c)), but that there are examples if char(K) > 0. Here we summarize
a few results and examples concerning the pathologies (a), (b), (¢) and (d).

(8.3) Let ¥ C P™ be a strange curve with O as strange point. The linear projec-
tion from O into P"~! has differential everywhere zero. Thus by Sard’s Theorem in
characteristic 0 these map must be constant, i.e. either ¥ is a line or char(K) > 0.
Assume char(K) = 2 and consider the smooth plane conic X = {x,z, + 22 = 0}. Since
char(K) = 2,0(x?)/dx, = 0. Thus for every P € X, say P = (a,,a,,a,) the tangent
line T,, X' has oquanon a,%, + a,x, = 0 and hence it contains the point O := (0;0;1).
Thus O is a strange point of X. Lluiss proved that this is the only example of smooth
strange curve X C P", n > 2, which is not a line; the proof of Lluiss’ Theorem given
in [L] gives the following generalization: smooth conic in characteristic 2 are the only
strange curves (apart from the lines) which have only “very mild singularities” (e.g. only
ordinary double points). However, if we allow bad singularities, then for every prime p
there is a huge number of strange singular curves defined in characteristic p. The possible
cquations of all strange plane curves are given in [BH], § 3.

(3.4) A very strange curve is strange ([R], Lemma 1.1). In particular Luiss’ Theorem
stated in 3.3 shows that there is no smooth very strange curve in P*, n > 3, and no very
strange curve exists in characteristic 0 (see 3.3). Every very strange curve has pathology
(a) ([R], Prop. 2.1). For examples of very strange curves for all integers n > 3 and all
prime p, see [R], Example 1.2.

(3.5) Let X C P™ be a smooth curve such that for a general P € X the tangent line
T, X intersects X at least at another point. H. Kaji proved that X must have genus 0
or genus 1 and that only very few elliptic curves admit an embedding in P" with such
property. The construction of the examples in the genus 1 case made in [Ka] is very
delicate. Kaji's Theorem implies that no smooth plane curve has pathology (b).

(3.6) Pathology (a) cannot arise in characteristic 0, but for all integers n > 2 and all
primes p there are examples of integral (and even smooth) curves in P" with pathology
(a); the curve is called non-reflexive if it has pathology (a) (see [K], Ch. I, for examples
and a nice historical introduction).
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4 Goppa codes

Information theory was created by C. E. Shannon around 1948. Its aim is the im-
provement or the preservation of transmission signals in space or in time. Usually, a
signal to be transmitted must be encoded and then, at the arrival, must be decoded.
Hence coding theory is fundamental. The theory was developed following two distinct
approaches.

Shannon started the study of the probabilistic approach and proved the existence of
codes whose transmission rate is as near as you want to the capacity of the transmis-
sion channel and which make as small as you want the probability of errors. However,
his theorem is not constructive and gives no idea for the construction of such good co-
des. Golay and Hamming started an algebraic approach for the explicit construction
of efficient codes. Choose your preferred mathematical theory. There are good chances
that it was used to construct codes. One may construct error correcting codes using
several algebraic tools (for instance finite groups of permutations), algebraic and geome-
trical methods related to finite fields, finite geometries, combinatorics, trees, packing of
spheres, and so on.

The main problems of coding theory are optimization problems. It is desiderable to
achieve simultaneously a high transmission speed and a large fraction of correctable errors
whereby the coding and decoding algorithms should admit simple machine realization
and have a short working time. Of course, all these demands are contradictory. The
mathematical theory of asymptotic properties of codes establishes the bounds of the
achievable. A very important problem for the real life is generating good codes by means
of algorithms which are fast. The computational aspects of the implementation of the
algebro-geometric Goppa codes (finding a good curve X, a good * linear system ” on X
and finding points on X) are studied in [MV], Ch. II. These data may be constructed
in polynomial time. However, it turns out that Goppa codes corresponding to a certain
class of curves (the so - called modular curves) have good asymptotic parameters only
for sufficiently large ¢, where ¢ is the number of elements of the field which is the base for
your code. In particular with these curves one cannot obtain good binary codes (g =2).

An error-control code is a mapping of one set of sequences, say of ” symbols ”, into
another set, by means of the controlled addition of redundancy in such a way that the
additional redundancy can be used to detect and/or correct. any errors which may occur
during storage or transmission of the sequenc The aim is to protect the information
contained in the orig
Pos

ginal sequence as much possible, but to retrieve as cfficiently as
ble the informations from the trasmited data (decoding). To make efficiently this
part it is essential to put some structure on these data, otherwise one would have to
on group theory, but here we will consider only
A linear code over the finite
linear subspace, V', of (F,)"; if it has dimension k, it is

storage everything. Some codes are ba

codes bases on linear algebra, the so-called linear codes.
field F, with ¢ elements
called a [n, k]—code.
The Hamming distance d(
of (F,)" is the number of indic
distant for the Hamming metric, then a certain number of transmis
detected. For instance if d(x,0) > 2k + 1 for all = € (1"\{0})

ion errors may be
and we receive an element
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y € (F,)" with d(y,V) < k, there is a unique z € V" for which d(y,z) = d(y,V) and
we may consider that z was the true message. In this sense we have an error-correcting
code. A linear [n, k]—code V- over F, is just the image of a linear map L : (F,)* — F,)"
with rank(L) = k and L just corresponds to a k x n matrix A with elements of F
as coefficients and rank(A4) = k. Around 1980 a visionary Russian electrical engineer
discovered that the theory of algebraic curves (and their jacobians) over finite fields can
be used to construct valuable codes, now named Goppa codes ([G1]). These codes where
proved to give better asymptotic bounds on the asymptotic properties of codes than the
conjectural ones made by coding theorists ([TVZ]) and this created an enormous turmoil
among coding theorists and compelled them to study algebraic curves.

We recall very briefly the definition and the main properties of the Goppa codes
which may be defined without using Algebraic Geometry ([LV], pp. 22-24). Fix a
monic polynomial g(x) € F . [z], say g(¢) = Yoc;c 92" and n distinct elements
L := (¢, -¢,_,) of (F,)". We assume g, # 0, i.e. set t := deg(g(z)). The Goppa
code I(L, g) with Goppa polynomial g(z) is the set of all words (¢, ¢,,...,c,_,) € (F )"
such that 3 .o e./(x — g,) = 0 mod(g(x)), i.e. such that the numerator of the left
hand side of the congruence (written as a(z)/b(x) with a(z) and b(z) polynomials) is
divisible by g(z). The parity check matrix for the Goppa code I'(L, g) is the ¢ x n matrix
H = (h;) with h,; = h,_,g} . By [LV], Theorems 5.6 and 5.7 at p. 23, the Goppa
code ['(L, g) has dimension at least n — ¢t and minimum distance at least t + 1; if g(z)
has no multiple root, then I'(L, g) has minimum distance at least 2t + 1. It is proven
in [LV], p. 24, that Goppa codes have the following very nice property. To state it we
need to introduce the entropy function H,. Set H (0) := 0 and for 0 < @ < (¢ - 1)/q
set H, (z) := x log, (¢ — 1) — = log,w — (1 — x) log, (1 — x), where log, is the logarithm in
base g. There exists a sequence of Goppa codes over F, with information rate tending
to 1= H (), i.e. whose rate tends to the so - called Gilbert - Varshamov bound.

These Goppa codes correspond to the genus 0 case of the following more general
construction [LV], pp. 55- Let X be a smooth projective geometrically irreducible
curve of genus g defined over F, . Fix n distinct points P,, ..., P, of and set D := P, +...+
P . Thus D is a positive divisor of degree n. Let G be a positive divisor whose support is
disjoint from D and L(G) be the corresponding complete linea em. The linear map
a: L(G) = (F,)" defined by a(f) := (f(P,), ... f(P,)) define a linear code C(D, G): the
Goppa code associated to X, D and G. The dimension dim(Im(a)) of the code C(D,G)
is given by dim(Im(a)) = dim(L(G)) — dim(Ker(a)) = dim(L(G)) — dim(L(G - D)).
Since L(G — D) = {0} if deg(G) < deg(D) = n, we have dim(Im(«)) = dimn(L(G)) if
deg(G) < n. If a word a(f) has n — d coordinates # 0, say f(P; ) = ... = f(Pi,_)=0,
then the divisor (f) +G — P, —...— P; _ is effective, where (f) is the principal divisor
associated to the rational function f. Hence, taking degrees, we obtain deg(G)—n+d > 0.
Thus the minimum distance of C(G, D) is at least n — deg(G).
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