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1 Introduction.

Let X be a topological space and f : X — X a continuous map. Many
interesting problems in mathematics are related to the existence of fixed points
of certain functions, or even to the existence of periodic points, that is, fixed
points of f" = fo..o f, the iteration of f r-times. Another important question
is to find the minimal number of fixed points among all maps f', where f' is a
deformation of the map f.

We will start by giving examples of problems which can be analyzed using
the theory of fixed points.

Problem 1 - Let X be a compact differentiable surface, like for example the
sphere S? or the torus 7' in R* or in general, let M be a compact differentiable
manifold. One would like to know if M admits an everywhere-nonzero vector
field.

One particular case of this problem is when the space is the sphere. The
solution corresponds to know if one can globally comb in a continuous way a ball
which has hair at every point. In gei

sral, suppose this problem has a positive
answer and denote by v(z),z € M, an everywhere-nonzero vector field. So for

(A



204 Daciberg L. Gongalves

cach @ € M.v(r) is a nonzero vector in the tangent space of M at the point
r. Under certain mild conditions on the vector fields, for each point zy € M
there is a unique curve v : (—¢e,e) = M such that v(0) = zo, v'(t) = v(y(t)) for
t € (—¢,¢) and v is injective. In principle, this positive number € depends on
the point xg. Nevertheless it can be shown (see [11] for more details about this
matter) that there is an € > 0 which is the same for all points 29 € M, once
we have assumed that M is compact. Now we can define a map f, : M - M
as follows: given x € M let f(x) = 7:(5), where v, is the unique curve which
satisfies v.(0) = = and v,(t) = v(7.(t)). Because v(x) is everywhere-nonzero,
it follows that f has no fixed point. Also, we observe that the map f; can be
deformed into the identity map. In fact, let fi(z) = 7:((1 — #)(5)) for ¢ € [0,1].
For t = 0 we have fo(z) = f(z) and for t = 1 we have f; = id = identity map.
We conclude that the existence of an everywhere-nonzero vector field implies the
existence of a map f : M — M which can be deformed into the identity and
with no fixed point. Therefore, if every map f : M — M which can be deformed
to the identity has a fixed point, then M does not admit an everywhere-nonzero
vector field.

Problem 2 - Given a topological compact group G (this includes the compact
Lie Group G), go € G and a positive integer n, we would like to know if there
exists g, € G such that g]} = go. As a particular cas , given a matrix M and a
positive integer n, one might be interested in knowing if there is a n — th root of
M. ie., if there is a matrix N such that N = M, where M is cither a complex
matrix of U(n) (the unitary matrices) or a real matrix of SO(n) (the orthogonal
matrices). Another example is the case where the group G is the product of n
circles S', for an arbitrary multiplication on G, not only the one given by the
usual multiplication on ' on each coordinate.

This problem can be rephrased as follows: let y,,c¢ : G — G be the maps
defined by y,(x) = 2™ and ¢(g) = go the constant map. We would like to
know if this pair (7y,,¢) has a coincidence i.c.. if there exist gn € G such that
Yulgn) = clgn) or gl = go. Hence, we are dealing with a coincidence problem,
which can also be regarded as a fixed point problem, by taking falg) = _t/”“_r/l;l.
Problem 3 - There is an important concept called topological entropy of a map
f:X — X where [ is continuous and X is a compact metric space. From [9] we
have:

Definition: Let (X,d) be a compact metric space and T : X — X continuous.
A set E C X is (n,€) separated if for any x,y € E with x # y there is a Js
0= j <n. such that d(T7(z),T?(y)) > ¢. Let S, (¢) denote the largest cardinality
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of any (n.€) separated set in X, and let

S(T) = lim sup n~'logS,(e).

The topological entropy of T, h(T), is given by the formula:

()= lamme=0Se(T):

The problem is to find or estimate A(T).

More details about this number can be found in [9] where one reads “the
topological entropy essentially gives the asymptotic exponential growth rate of
the number of orbits of 7' up to any accuracy and arbitrarily high period”. We
will not solve this problem here but by the end we will be able to understand a
Theorem from N. V. Ivanov (3], which describes a lower bound for this number
in terms of an invariant which arises from fixed point theory. We also compute
the entropy of an explicit example.

In what follows we will present some ideas and results of the theory for fixed
points, including the Nielsen Theory, and at the end we will illustrate how we
solve or at least approach the problems mentioned above from the point of view of
Nielsen Theory. Finally let me point out that for a more complete and advanced
expository paper about Fixed Point theory see [2].

2 Examples on D" and S!

Given f : X — X when does it have a fixed point? If every map f has a
fixed point, then we say that the space X has the fixed point property (denoted
by fpp).

Definition: The map g : X — X is a deformation of f : X — X if there t
H: X x I — X such that H(z,0) = f and H(x,1) = g. In this case we say that
[ is homotopic to g.

Let D™ be the closed unit disk in the Buclidean space R™. If n = 1 let us
denote D' by I = [~1,1]. The following interesting result catches our attention:

s ¢ € I such

Theorem: Let f: I — I be a continuous function. Then there exi
that f(x) = x, 1.e. f has a fized point.

The original proof of this result goes back to Bernard Bolzano 1817. The
proof is quite simple nowadays and can be done as follows. Consider the map
g(x) = . — f(z). Either f(1) = L, so we have a fixed point or g(1) = 1— f(1) > 0.
Similarly, either f(—1) = —1 or g(—1) < 0. By the intermediate value theorem

T, $ 2090 Y
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in caleulus we have that g vanishes in some point = € I. So it follows that f has
a fixed point.

[t was a challenge to study the similar problem for n > 2.

In the beginning of this century Brouwer proved what is now called:

Brouwer Fixed Point Theorem: Let D" be the unit disk in the Euclidean
n-space R™ and let f: D" — D™ be any map. Then f has a fized point.

An clementary proof for the case n = 2 can be done using the intuitive idea
of continuity, without being very rigorous.

Let f: D? — D? be a continuous map. Suppose it does not have fixed points.
Let the boundary of D? be denoted by 9D?, which is homeomorphic to the circle
S'. Consider a self map of the boundary of D2, defined as follows:

ol i e [z
p:S =585, p) e

— z||

Observe that ¢(x) # z, for all x.

If A:S" — S' denotes the antipodal map. i.c., A(z) = —z, we can deform
@ to A because the angle between ¢(z) and —w is always less than J. See figure
below:

But A : S' — S'is just rotation of degree 7 and hence can be deformed to
the identity map.

Let S'(r) be the circle of radius 0 < 7 < 1 inside of D?. By continuity, the
map @, : S'(r) = S'(r), defined in a similar fashion, can a be deformed to the
identity for all 0 < r. This implies that the map ¢, is surjective. The origin 0
is the limit of any sequence {x;}, where {a;} € S'(r;) and the values r; converge
to zero. Using the fact that all ¢, are surjective, it is not difficult to find two
sequences {a; }, {b;}, a;,b; € S'(r) so that the vectors ©r, (a;) and also o, (b;)
hu\:o constant directions, but different ones. Both converge to the direction of
f(0) =0 = f(0). This forces _[([i) = (0 which contradicts the initial hypothesis.

Yaamw "
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The arguments given above cannot be used for n > 2. Other ingredients

shonld be introduced in order to solve the problem when n > 2.

Based in the Brouwer Fixed Point Theorem we have that any map f: D" —
D" has a fixed point. This means that D" has the fixed point property (FPP).
Despite the fact that a given function f can have many fixed points, one observe
that there is a map f’ which is a deformation of f which has exactly one fixed
point, namely the constant map at value 0, i.c. f/(£) =0 for all Z This minimal
number of fixed points among all maps f' which are a deformation of a given
function f. is a meanfull number. This number will be more interesting in the
next example.

The next space which is interesting to be analised is the circle. In fact, this
example will bring a new feature that did not appear in the study of maps on
the unit ball D".

Let S' € C be the unit circle considered as a subset of the complex numbers.
For each integer n € Z we have a map defined as follows

fn(2) = 2"

If n = 1 we have that f; = id, the identity map. So Fixz(id) = S'. Nevert-
hels we can deform the map such that the deformed map is fixed point free,
i.c. it has no fixed point. In order to do this, take the family of maps indexed
by t € [0,1] such that 6, is the rotation of degree So 6y = id and 6; is the
rotation of 7, i.e. multiplication by the imaginary number i, which is fixed point
free.

Now let us consider n # 1. We have

s a2 —=alzl = 1}

So Fiz(fy,) is a finite set which contains [n — 1| points. We can make a first
attempt to deform f,, to f} fixed point free. In case this is not possible we can
ask what is the minimal number of fixed points among all maps f;, which are
homotopic to f. In fact we can prove:

Theorem: If a map f: S
at least |n — 1| points.

— S! is homotopic to fn for some n # 0, then f has

Proof: Consider the diagram:
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[0.1]-

where ezp : R — S! is given by exzp(t) = ¢2™ and p: [0,1] = S' is the
restriction of the map exp.

Call g, = po fn and g, = po fi. We call a lifting of a map g : 0,1] = Slial

map §: [0,1] = R such that g = ezpo g. It is well known that for given points
20 € exp(fa(1)), zh € exp~ (f4(1)) there are liftings fu, f; ¢ [0,1] — R of
gn. gl respectively, such that f,(0) = g and f}(0) = =f ( see [4]). It is simple to
see that a point e>™ of S' is a fixed point of f,, if and only if f,(t) —¢ is an integer
(the same for f/). From [4] we also have cither for f, or for any deformation
f% of fu, that f1(1) — f2(0) = n. This implies that the number of solutions of
f,’,(f) —t€ Zis at least |n — 1|.
Remark: First, let us observe that any map f : S' — S' is indeed homotopic to
some f,,, for exactly one n. Therefore, by the result above, any map f;, which is
deformation of f,, has the property that # Fiz(f!) > |n—1|. Since f, has exactly
|n— 1] fixed points, this is the minimal number of fixed points among all maps if4
which can be deformed to f,. In the next section we will define a number which
will be very useful in computing this minimal number.

3 Nielsen Theory

In the early 1920’s, J. Nielsen studied the fixed points of homeomorphisms of
compact surfaces. Due to his work a theory was developed to study the fixed
points of a finite complex and nowadays we refer to it as Nielsen Fixed Point
Theory. We will, for the sake of simp! give a description of this theory in
the case where the spaces are compact orientable surfaces. For references on the
subject we mention [1] and (7, 8].

Let f: S — S be a continuous map on a surface S and z € Fiz(f) an
isolated fixed point. Since S is a surface, there is a small neighborhood around
« homeomorphic to the unit closed disk D? of B*. Define i(x, f), the index of x,
as follows: by identifying the points of the circle S'. the boundary of D?, with
the boundary of the neighborhood above, we have a map ¢ : S' = S given by
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o) = ﬁj;:; - This map is homotopic to the map z — 2" for some n, so it has

degree n. Then we define the index of z, i(z, f), to be n.

If F ¢ Fix(f) is an isolated set of fixed points (not just a single point), we
can also define the index, i(F, f) € Z, which in the case of a finite set is just the
sum of the indices of its points. See [5] for more details.

The notion of a local index defined above, is the first ingredient to define the
notion of Nielsen number. The second one is an equivalence relation on the set
of the fixed points.

Let f: X = X be a map. Two points xy, 29 € Fiz(f) are called Nielsen
equivalent if there exists a path A : [0,1] — X such that A\(0) = zy, A(1) = w2
and A can be deformed to f(A) relative to the end points {zg,z)}.

Definition: The equivalent classes of Fix(f) given by the above relation are
called the Nielsen classes of f.

Let {F)....,F.} be the Nielsen classes of a function f. Each class F; C Fiz(f)
has an index i(F}, f) € Z.

Definition: We say that F; is essential if i(F;, f) # 0.
Finally we can define the Nielsen number as follows:

Definition: The Nielsen number of f, denoted by N(f), is the number of es:
tial Nielsen classes.

This number has very nice properties. Let us denote by MF([f] the mini-
mal number of Fiz(f’) where f’ runs over all maps homotopic to f. Of course
MEF(fi] = MF|f5] if fi can be deformed to f. Nielsen proved:

Theorem: The Nielsen number N(f) is a homotopy invariant, i.e. N(f)) =
N(f2) if fi is homotopic to fo. Further, N(f) < MF[f], i.e. the Nielsen number
15 a lower bound for the minimal number of fized points in the homotopy class.

The hard and important problem of computing M F[f] is a great challenge.
The above Theorem shows that the Nielsen number is an important tool to esti-
mate MF[f]. For maps f : S = S, where S is a compact surface, the problem is
still open in most of the cases.

On the other hand if the surface is the Torus, then the situation is much
simpler and we will have a full understanding of this case. For this, we need
to introduce another invariant and a celebrated result, the Lefschetz-Hopf fixed
point theorem.
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4 Lefschetz-Hopf fixed point theorem

Let X be a finite complex (i.e. a space built up from finite unions of points,
triangles. thetahedrons..... e.t.c.) and f: X — X a continuous map. We have
the induced homomorphism in homology, (f.); : Hi(X) — H;(X) for each i > 0.
Since X is a finite complex, these abelian groups vanish for 7 > n for some
integer n., and are finitely generated abelian groups. For a finitely generated
abelian group A, let F(A) be the quotient of A by it is torsion part, which is
a well defined subgroup. F(A) is a finitely generated torsion free abelian group
and therefore isomorphic to a sum of Z's, i.e. Z@® ... ® Z. Further if p: A - A
is a homomorphism, then it induces a homomorphism @ : F(A) = F(A).

For a given basis B = {e),...,en} of F(A) ~ Z & ... & Z we have the matrix of
 with respect to the basis B. This matrix Mp has a trace, which is the sum of
the elements of the diagonal. We denote this number by t7(%) where this number
is well defined, i.e., it depends only on the homomorphism of @ and not on the
chosen bases.

Now we can state the famous Lefschetz-Hopf fixed point theorem. First we
define the Lefschetz-Hopf trace.

Definition: The Lefschetz-Hopf trace of a map f: X — X, where X is a finite
o0 A sl

simplicial complez, is given by L(f) = 3 (=1)9tr(f.,), where (fiq : F(Hy(X)) =
4=0

F(H,(X)) is the homomorphism induced by f.

Lefschetz-Hopf Fixed Point Theorem: Let X be a finite simplicial complex

and f : X — X a continuous map. If L(f) # 0 then f has at least one fized
point.

This was the first moment that homology theory was used in the study of fixed
points. Let us point out that this result has the Brouwer Fixed Point Theorem
as a consequence, since we have the following:

Corollary: Let f: X — X be a continuous map, where X is a connected finite
complex. If X has the property that Hi(X,Z) is a finite torsion group for i >0,
then f has at least one fized point.
Proof: The homology H;(X,Z) modulo the torsion is the trivial group for
i > 0, and Ho(X,Z) = Z. Therefore any map f : X — X induces
(fa)o : Ho(X,Z) = Hy(X,Z), the homomorphism (f,), : Z — Z which is the
identity.

Therefore L(f) = 1 # 0 and by Lefschetz-Hopf theorem it follows that f has
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a fixed point and we have the vesult. In particular. the space D" satisfies the
lypothesis of the corollary and the Brouwer fixed point theorem follows.

As we can see the Lefschetz-Hopf Fixed Point Theorem opens many possibi-
lities to explore fixed point problems. Just to give a sample, another space that
es the hypothesis of the above corollar

s the quotient of an even dimen-
smn.\l sphere by identifying antipodal points. the even dimensional Projective
Space.

5 Maps on the Torus

Now we analyze fixed points of maps f : T — T. More details about this
can be found in [6].

I) - The classification of maps f: 7" — T up to homotopy

One way to obtain a map f : T — T is as follows: Let F' : R? — R? be
a linear transformation such that the matrix of F is an integral matrix Mp.
Since the Torus can be regarded as the quotient of the plane R? by the subgroup
7 x Z, the linear transformation F induces a map F : T'— T. The description
of the homotopy cla of maps in the Torus can be done in a simple way based
on the fact that given any map f : T — T, there is a linear transformation
F: B2 = B? as above, such that the induced map F : T — T is homotopic
[. Also if two linear transformations Fy, £ : R induces homotopic maps
F\,Fy: T — T then Fy = Fy. To see this, for each map f : T — T we have
(fo)r 2 Hy(T) = H\(T). The group H\(T) =~ Z & Z. so (f.); is a homomorphism
[ Z @ Z. The set of homomorphisms, Hom( Z @ 7) can be identified with
5(Z). i.e. the set of integral matrices 2 x 2. It turns out that the matrix of (fi )y
is pu‘rlwly the matrix of the linear transformation £ such that F belongs to the
homotopy class of f. It is well known that if two maps f, g are homotopics, then
(fo)r. (g+)1 have the same matrices.

Now we can state the classification of the homotopy classes of maps
denoted by [T, T).

The correspondence f — (f.); induces a bijection [T, T] ¢ My(Z).

0

[T T

II) - The Lefschetz number of a map f: 7 — T.

Let a3 € H'(T) = Z ® Z be such that {a.} is a basis for the first coho-
mology group. The map f induces a homomorphism f* : H'(I') — H'(T) where
(@) = aa + bp f*(B) = ca + dp.

r 5 a c « v . . o .
[he matrix ( e > is, in fact, the one given in the classification above.
[

25
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A generator of H*(T, Z) can be obtained as a product of a by 3, a U f3, the

a C)(\ruﬂ.

cup product of o and . It turns out that f*(a U j3) = det ( bl

Then we can compute L(f):
L(f) = tr(f.o) —tr(fu) +tr(fe2) = 14+a—d+ad—bc = (a—1)(d—1) —bc =
a=1 c 4 "
det ( e & ) = det(M — I).
So, the Lefschetz number of f has a very nice formula. In particular, if we
consider the iterated of f, i.e. f" = fo..o f, then L(f") = det(M™ - I).

IIT) - The minimal problem.
Following the same idea which was used in the case of maps on the circle S!, we
will construct a particular set of functions on the Torus. Give an integral matrix

b d
which relative to the canonical basis has matrix M. Since the entries are integers,
this linear transformation Ty induces a map fy, : T — T.

M = < 80 ) of order 2 x 2, let Tys : B2 — R? be the linear transformation

Let us divide our matrices into two classes:

i) The 2 x 2 integral matrices M with det(M —I) =0
i) The 2 x 2 integral matrices M where det(M — I) # 0.

We leave to the reader to verify the following facts: In case ii), the number of
fixed points are det(M — I), therefore equal to N(f). By the Nielsen theorem it
follows that MF[f] = N(f). since we found a map in the homotopy class where
#Fiz(f) = N(f).

For the case i). f can be deformed to fixed point free.

So we can conclude that for a given map f : T — T we have |L(f)| = N(f) =

MFf).

6 Back to the original problems

We started this exposition with three problems. Now we will show how to
analyze them via the Nielsen fixed point theory.

Problem 1 - The existence of an everywhere-nonzero vector field on a compact
differentiable manifold implies that the identity can be deformed to a map f :

x
M — M which is fixed point free. But L(f) = L(id) = z(——l)—"lr(id.)q —
q=0

e &\
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i rk(H,(X)). This number is known as the Euler characteristic of X. So, in
:In:(ull'r to have an everywhere-nonzero vector field it is nece:
characteristic of X different from zero.

In particular if Sy, is the surface of genus h, we know that Ho(S)) = Z, Hi(Sp) =
Z2h Hy(S),) = Z and it follows that L(id) =1 —2h +1 =2 - 2h.

Hence the only orientable compact surface which might admit an everywhere-

ry to have the Euler

nonzero vector field is the Torus. By explicit construction we know that such
vector field exists. It suffices to consider at each point (rg.yg) € S' x S! the unit
veetor which is tangent to the civcle S' x yo.

Problem 2 - The case G = S' with the product given by multiplication of
the complex numbers. Given gg = ¢*™ € S' and n an integer we have ¢'(k) =
¢ R e 0, ...,n—1 the n-th roots of gy. So for this particular group structure
on S', there are n roots. Suppose now u : S' x S' — S* is another multiplication.
Does the n-root still exist? If so, how many are there? If G = S0(m), the m x m
orthogonal matrices, or G = U(m), the mn x m unitary matrices, we have the
multiplication given by the usual multiplication of matrices. It is not clear that
the n-root of a matrix exists. In [[1], IILF], one find the following result:

Theorem: Let G be a topological group which is a connected finite complex, then
G is divisible, i.c.,given any k > 2 and a € G, there is a solution of the equation
X

ot =a.

We sketch here the argument for G = S' .x 8" and for G = SU(mn).

m

For G =

51 % .. x 8", the map f: G — G given by f(x) = go.x"*! induces in
e

m
H" (independently of the multiplication) the homomorphism given by the matrix

i 1L 0
0 n+ 1

M=
n+1

Le. the diagonal matrix which has n + 1 in the diagonal. We see that L(f) =
det(M —I) =n™ # 0.

2) At least for G = U (mn) with the usnal multiplication we have that H* (U (m), R) =
A(Zy, T30 ooy Tam—1) and (far)(@oioy) = (n + ag—y. By [10], we have L(f) =
m"™ # 0 so it has a root.
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A similar proof works for S0(m), where the corresponding calculation is a
little more complicated than in the case U(m).

Problem 3 - Here we restrict ourselves to present a result due to Ivanov, see (3],
without mentioning any word about its proof. Then we exemplify its use in the
case of maps on Torus.

1
Let us define the asymptotic Nielsen number N (f) to be limsup;lo_q(N(f")),
n

From Ivanov [3] we have:

Theorem: Let f be a continuous mapping of a compact polyhedron into itself.
Then Noo(f) < h(f), i.e. the asymptotic Nielsen number is a lower bound for
the entropy.
4 3 23
Ex. Let f:T — T be a map whose matrix in homology is 1 9

(For those who have some familiarity, this is an Anosov map on the Torus).
We would like to compute L(f) and L(f") for all integer n > 1. The best way
to find the power of a matrix is to see if it is similar to a diagonal matrix. The
matrix above has eigenvalues 2 — V3, 2 + V3 and

L(f)=2-vV3-1E2+V3-1) = (1-V3)1+V3)
call \; = 2— V3, =2+3. L(f™ = (A} = 1)(A5 —1). Since AT — 0 we have
lim® log|(A7 = D)|| [A} = 1| = lim& log(\}) = lim L log(A}) = logAs. Therefore
h(t) > log(2 + V3).

Finally. it is important to mention that there

s another branch of fixed point
theory. which deals with spaces which are not finite polyhedron. It has many
relations and applications in problems in Functional Analysis. A good reference
for this matter is the article by Felix Browder. “Fixed point Theory and nonlincar
problems™ Bull. Amer. Math. Soc. 9(1983). 1-39. We finish this article with
some of his words: “Among the most original and far-reaching of the contribu-
tions made by Henri Poincaré to mathematics was his introduction of the use of
topological or “qualitative’ methods in the study of nonlinear problems in analy-
i The ideas introduced by Poincaré include the use of fixed point theorems,
the continuation method, and the general concept of global analysis. Fixed point
theory was an integral part of topology at the very birth of the subject in the
work of Poincaré in the 1880s. He showed that the solutions to certain important
analytic problems could be studied by defining a set X and a function f: X' - X
in such a way that the solutions correspond to the fired points of the function f,
that is, to the points & € X snch that f(r) = 2",
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