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1 Introduction

T'he scattering operator S()) constitutes a mathematical model for the data
obtained in a scattering experiment. The kernel of S(A) — I is given by the
senttering amplitude a(\, 0, w) which roughly speaking is the leading term of the
asymptotic of an outgoing solution vy(rf,A) as |z| = r — oco. In the obstacle
seatteriog the perturbation is a bounded obstacle K with a connected complement
3 and S0A) s related to the boundary problems for the wave equation in © x R
(see 410 For the inverse scattering problems it is rather important to describe
A seartening data which we can observe. In this direction the sojourn times of
the so called (w,0)-rays present a natural observable data. In the last twenty
years the progress of the microlocal analysis led to many new ideas and results
concerning the asymptotics of the scattering amplitude and the singularity of the
Fourier transform s(t,0,w) of s(\, 8, w) called scattering kernel. The singularities
of «(£.8, ) are included in the set of sojourn times of the (w, 0)-ra;

3. The purpose
of this article is to present a brief d.

iption of some results in this direction and
to motivate the study of the inverse scattering problems.

2 Scattering amplitude for strictly convex obstacles

Let K C R be l\»!)mlml«‘(l domain with €™ boundary 0K and connected
complement = R*\ K. We will consider the Dirichlet problem for the Laplacian.
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To introduce the scattering amplitude a(A,#,w), 0,w € 5%, consider the outgoing
solution v, = vy(x, A) of the problem

(A +A)v, =0 in Q,
vy + e NE@) = 0 on IK (2.1)

satisfying the so called (i\) - outgoing Sommerfeld radiation condition. This
condition means that as |z| = 7 — oo we have

e~iAr

u,(r0,A) = (n(,\.ﬂ,w)+0(}_)). =r0.

n
We can interpret v; = e~"A<%%> ag an incoming plane wave, while v,(z, A) is the
outgoing wave obtained after the impact of v, on K. To obtain a formula for the
leading term a(A, 0, w) we apply the Green formula combined with the outgoing
condition and deduce the following representation

02, 2) = [y [Ba@ =) 4 0 ) - B @ - vl V] aS,,  (22)
where E,(x) is the outgoing Green function

ll"’\'

Ex@) = -

and »(x) is the unit normal to x € K pointing into 2. Next, we multiply (2.2)
by ¢'Vr, put = = r0 and taking the limit r — oo we get

a(\,0,w) = =3k [y (A < (@), 0 > N I-> 4 NP (7, 3))dS, , (23)
where < e, > denotes the scalar product in B
In the physical literature a(A, 0, w) is called scattering amplitude and the analysis
of the leading term of the asymptotic of a(A, 0, w) as A — 400 in the mathematical
physics has a long tradition. The simplest case to deal with is that when 0 # w
and K is a strictly convex obstacle. First consider the integral

tA ¢
1) = —’—/ < u(z),0 > eP<T-=>gs,
A Jox
The phase function < 7,0 — w > |;cax has two critical points ry with

<T4,0—w>= min <y, 0 ~w >,
yeaK

<z_,0-~w>=max < y,0 -w >,
yeoK
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; 0—w
vles) = G

floge «° denotes the point in the illuminated region (see Figure 1)

0K (w) = {y € 0K :< v(y),w >< 0}

relnted to w, while 2 lies in the shadow region

IK_(w) = {y € 9K :< v(y),w >> 0}.

Figure 1

Applying & stationary phase argument we obtain
I()\) = .124"’\<“'0"“’>K(m+)"”2 < v(zs),0 > (2.4)

~ =0 (g )12 < iz ),0.> +OAY),

Kly) > 0 being the Gauss curvature at y € 9K.

The analysis of the term involving %'-,‘ is more complicat In the mat-
hematical physics many efforts have been concerned with the construction of an
approsimative outgoing solution wo(x, A) of the problem

{(A + A)ug = f(z,A) in Q,

wo + M) = g(z,\) on IK
with fx.A) € C(Q), g(x,A\) € C®(AK). This leads to considerable difficultics
when we must describe the form of the solution wy in a domain close to the

grazing submanifold

G(w) ={y € 0K : < v(y),w >= 0}.

| mmme——
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In the seventies the progress of the microloeal analysis led to the investigation of
the above problem without a precise information for wy in a neighbourhood of
G(w). This was given by Majda [5] exploiting the works of Hormander (3], Ta-
ylor [17] and Melrose (7] for the propagation of the singularities. We will expose
briefly the approach of Majda and refer to (5] for more details.

Consider the boundary problem

(0 = A)up = F(x,t) in A xR,
up + 0(l— < wyw >) = G(x,t) on K x R,

where F(z.t) € C™(2 x R) vanishes for t < —tg, G(z,t) € C°(0K x R) and to
is chosen so that

supp, J(L— < rw > [.eak) C {t:|t] < to}.
Taking a partition of unity {1, (, L))“’ on K x [—tg, tg), we pass to the analysis
of the solutions of the localized prublenw

(0} = A)uy = Fy(x,t) in Qx R,

uy + P;0(l= < a,w >) = Gj(x,t) onIK x R, (2.5)
with F(z,) € C®(Qx R), Gj(x,t) € C3°(9K x R) and F; = 0 for ¢ < tg. Then
using the decay of local energy for strictly convex obstacles we get

dv,
aw |,

v

Z/ it (2, t) dt+ O(A ™), VN.
OK xR

The results for the propagation of the wave front set W F(u,) of the solutions of
(2.5) (see [17], [7]) say that
gl L 2 & ) : g
W r(mt]mm) C WE(wyd(t= < 7,0 >)lox<w)- (2.6)

In the case supp 1; N (G(w) x R) = { the above relation follows from the
pseudo-local property of pseudo-differential operators [3] since we have modulo
smooth terms the representation

@ ‘m "’[""“"" <zw >)‘e-m.n]. (2.7)

B; being a first order pseudo-differential operator, while for suppys; 0 (G(w) *
R\) # @ we apply the results of Taylor [17] and Melrose [7). Thus we are going

to study the expression

T [ fox e- <= RLdtdS;, (2.8)
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et AL
where the integral is interpreted in the sense of dlStnl{uFlOns. By using
definition of the wave front it is easy to see that the condition

2
(o t,d,®,d®) NWF(u) =0, y € DCR
implies
/ / e N Du(y!, )dtdy’ = O(N™), YN .
RJD
In order to apply this assume that in local coordinates U; N 0K is given by
s =9'), v = (1, 12) €D C R

Then (2.6) yields

ll'l"((ﬁ‘l\ )C((y,t.f,-r)ET'(BKxR): =T
W lokxr

v € supp ¥;(y, < yyw >), (€,7) = £(—w' — Vg(y)ws, 1)} .

= !
Clearly, for the phase function ¢ = t— < y,w > lyev;nak we have d® = (-6’ —

. . Ou
Vo105, 1) which coincides with the directions of the wave front of o P
only in the case

~w' = V(i )ws = —0' — Vg(y/)s.
Thus we deduce immediately

0-w iy
=l =+v(y.9(v)).

The assumption 0 # w says that for y € G(w) the last condition is impossible.
Moseover, the same argument shows that supp ¥, (Y, < y,w >) must be included

in small neighbourhood Uy of 4 with Yilu,<yw>)=1lina neighbourhood
of z,

Since 2 lies in the shadow region we have < v(z_),w >> 0 and the

solution
of the wave equation which is smooth for t < 0 in

a small neighbourhood of
(2., < x_,w>) has the form u_ = =d(t— < z,w >). Thus we obtain
v,
b —iA<x W
v v.rox A Svw> BTy ok
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and replacing ‘1:7’,‘?|4~_,-\¢.,\- in the expression (2.3) we see that the shadow region
gives no contribution to a(A, 0, w) since

< w(x.),0+w>=0.

Passing to the illuminated region, denote by ¢, and By the cut-off function and
the pseudo-differential operator related to U7;. Then for the formally adjoint
operators 8% we obtain

i

// B, (E_"\(l_<‘/"”'>'U(U'w-‘))dl¢6(l— 2yl > —g(u')w:)
Us

2\ 12
x(1+ Vo)) dedy’

A MY =>4 ) O=w3)Vp (o 0)dy' + o(1)

A Ju,

with i
b0/, 0) = ~if (.0 + Va(u)0s, ~1) (1 + [VaF)
i3, being the principal symbol of B. Thus we are reduced to study an integral
having the same form as I(A).
Without loss of the generality we can assume that Vg(z!,) = 0. From the
construction of the asymptotic solution in a neighbourhood of z, we obtain

B!y, 0, ~1) =< v(x4),0 >> 0

and we conclude that

A

MY =S 49N O =) (of, 0)dy
ar Ju,

= %v"‘""""”k‘(r.) V2 < y(xs).0> .

Combined this with (2.4) we get

a(A,0,w) = <TI0 )= < p(24),0 > +O(N ).
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Fiually. in the illuminated region we have
<f-wb> 1
< v(wy),0>= W =5
aned 3 : ‘
(A, 0,w) = Fe<=H0=w>K(z ) =12 + O(INTY). (2:9)

Thus from the limit
|a(w,0)] = lim [a(A,w,0)|
A—00

we may determine the Gauss curvature K(zy) at .. If (w,0) run over a set
VeSS xS\ {lww:we S2} we may recover the Gauss curvature K(y) at
every point y € 9K if the map

0 .
V() e e o

0=
W onto. On the other hand, the knowledge of the Gauss curvature at all points
of UK determines uniquely 9K (see (5] for more details).

The case w = 0 is more complicated since the singularities associated to
diffesctive rays must be taken into account. We refer to [9] and [18] for the
results in this direction.

3 Singularities of the scattering kernel

Plroughout this section we assume that 8 # w. To study the general case
of woneconvex obstacles it is more convenient to consider the scatbering kernel
slh 8w defined as the Fourier transform

8(t,0,w) = Faort (iA Zm)

(2m) =" [ e"™\p(N)dA for functions ¢ € S'(RM).
s, A) be the solution of the problem

where Fy_yp(A) =
Let V(z.1) =

(0 =AYV =0 in QxR
V4 o(t+ < w,w>) =0 ondK x R,

Vilie=t =10t

Then we have

1 oV av
s{t.0,w) = —— = ’. e o
. ) A /m\'(c')l Sl (')l)('r‘i_<""0>)dsx'

i A
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where the imtegral is interpreted in the sense of distributions. Our aim will be to
examine the singularities of s(f,0,w) with respect to £,

First we will define the so called (w, #)-rays. Given two directions 8, w € 52,
consider a curve y € Q having the form

i m2 1,

where I, = [z;,2,41] are finite segments for i = 1,..,m — 1, z; € 9K, and
lp (resp. Iy) is the infinite scgment starting at x; (resp. at z,,) and having
direction —w (resp. 0). The curve v will be called reflecting (w, 0)-ray in Q if for
i=0,1,...m—1 the segments [; and l;4; satisfy the law of reflection at z,4,
with respect to dK. The points @), ..., £y, will be called reflection points of 5 and
this ray is called ordinary reflecting if 4 has no segments tangent to 9K.

= o A
” . \\z'
s

Y
Figure 2

Now we will define two important notions related to scattering rays. Fix an
arbitrary open ball Uy with radius @ > 0 containing K. For £ € §* introduce
the plane Z¢ orthogonal to & and such that £ is pointing into the interior of the
open half space He with boundary Z containing Up. Let m : R — Z; be the
orthogonal projection. For a reflecting (w, #)-ray v in £ with successive reflecting
points ry, ... Ty, the sojourn time T, of 7 is defined by

m-=1

T, = limu(@1) = 3l + 3 llzi = Zisrll + 12m = 7—g(2m)|| — 20.
im]

Obviously, T', 4 2a coincides with the length of this part of 5 which lies in H_NH _,
(see Figure 2). In fact, the sojourn time 7%, does not depend on the choice of the
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ball £y since it follows easily that

r () =2l = a+ < z1,w >, ||1Tm — mp(Tm)l| = a— < Tm, 0>

anl we obtain
m-1
T, =<z),w>+ Z [l — zitill— < Zm,0 >
i=1
which proves the independence of T of the choice of Up. ;

Nest for an ordinary reflecting (w, 0)-vay 7 set u, = 7m(z1). There exists a
sl seighibourliood W of w, in Z, such that for every u € W, there exists an!
uiieque direction 0(u) € S? and points 21 (1), o, T () which are the successive
peflection points of a reflecting (u, 0(u))-ray in Q with 7w(w1(w)) = w. We define
a smooth map

Iyt Wy D u— 0(u) € St

and A0 (ue ) is ealled differential cross section. We say that the ray v is non-
degenorate if

detd.J, (u,) # 0.

[he sotion of sojourn time as well as that of differential cross section are well
Known in the physical literature. The definitions given above are due to Guillemin
f

For stietly convex obstacles all reflecting rays have only one reflection point
¥ o the corresponding sojourn time is equal to < zy,w — 0 > . Morcover, the
stationary phase argument of the previous section implies that m has a
complete asymptotic expansion

¢
a(h,w,0) = /ST 57 62 + o(A)
=0

and we deduce

sing supp s(t,0,w) = {~T},

Ts 2w = 0 > being the sojourn time of the (w.0)-ray v, reflecting at fiji
A simple geometric argument implies that

|detdJ,, (u,,)| = 4K(z +)

369
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and for ¢ close to ~T, we have

$(0,8.) = |y, (uy, )|+ T) + lower order singularities.  (3.1)

For strictly convex obstacles 7'y is an isolated singularity of s(¢, 0, w) related
to an ordinary reflecting ray. Our purpose is to generalize this result for arbitrary
obstacles treating multiple reflecting rays leading to isolated singularities. Roug-
hly speaking the singularities of the scattering kernel are included in the set of
sojourn times of (w, 0)-rays but we must consider all rays incoming with direction
w and outgoing with direction 0 (see (12}, Chapter 9 and [8]). In general, there
exist (w, @)-rays with grazing or gliding segments (see Figure 3).

The precise definition of a (w,0)-ray is based on the notion of generalized
bicharacteristics of the operator ) = 87 — A, given as trajectories of the genera-
lized Hamilton flow 7 in © generated by the symbol 337, €2 = 72 of O (see (10
for a precise definition). In general, F; is not smooth and in some cases there
may exist two different integral curves issued from the same point in the phase
space (see [17] for an example). To avoid this situation we assume the following
generic condition.

(G) If for (£,£) € T*(0I) the normal curvature of K vanishes of infinite order
in direction &, then 8K is convex at x in direction £.

Figure 3

In the following we assume (G) fulfilled. A curve 5 = {z(1) € Q: t € R}
is called (w, 8)-ray if there exist real numbers £; < £; so that

A1) = {t.z(t), ~1,£(1)} € T*(R x )
18 a generolized bicharacteristic of O and

E)=wlor t<ty, &(t)=0for t>1;,
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proviched that the time ¢ increases when we move along 5. Introduce the set

= T

(w,0)-rays

where the union is taken over all (w, #)-rays in . The sojourn time of § € Ly, p(£2)
is defined as the length of the part of 8 lying in H. N H_.
Passing to the problem of the behaviour of s(f.8.w), assume that v is a fixed
degenerate ordinary reflecting (w,0)-ray such that
T, # Ty for every 6 € L. 0(2)\ {7} (3.2)
By using the continuity of the generalized Hamilton flow it is casy to show that

(=T = ¢, =T, + €) Nsing supp s(t.0,w) = {-T}

for ¢ > 0 sufficiently small. The analysis of the singularity of s(t,0,w) for ¢ close
to =T, is based on a global construction of an asymptotic solution as a Fourier
integral operator ([2], [11], [12], Chapter 9). It was proved in [11] that under the
assumption (3.2) we have

=T, € singsupps(t,8,w) (3.3)
and for £ close to =T, the scattering kernel has the form
8(t,0,w) = i(=1)™~! (‘xp(l%lj-.) (3.4)

| detdds (1) < vlq),w > -1/2

8'(t + T,) + lower order singularities.
<m0 > ¢ g

Here m, is the number of reflections of ~, q1 (resp. gy,) is the first (resp. the

last) reflection point of y and # € N. For strictly convex obstacles we have
A= -1, q =g, and < v(q),w+0>=0

4 Poisson relation for the scattering kernel

In this section we assume w # 0 and the assuwmption (G) fulfilled. First we
hawe the following relation
sing supp s(t,0,w) C {-T, : vy € L 4()} (4.1)

called Pousson relation for the scattering kernel. The proof is based on the results
of propagation of singularities and we refer to [12 Chapter 9 and (8] for more
details

For the inverse scattering problems it is natural to obtain some geometrical
information from the scattering data given by the ki
In this direction it is very important to know whenever (14) hecomes an equality,

| e

wwledge of singsupps(t, 0, w)
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that is if the singularities of 5(2, 0, w) determine all sojourn times T, ¥ € £, 5(R).
Recently, Stoyanov [14] established an impressive result saying that there exists
a subset B € 8% x §% of full Lebesgue measure in 8% x 5% such that for all
(w,0) € R we have

sing supp 8(¢,0,w) = {=T, : v € L_4(N)}. (4.2)

For this purpose first one proves that for a subset R of full Lebesgue measure
in §% x §% every reflecting (w, 0)-ray in £2 is a d ordinary reflecti
one and T, # Ty whenever y and 8 are different reflecting (w, 0)-rays (sce |l3|)
Now to apply the results of Section 3 we need the condition (3.2) since the con-
tributions related to different (w, 0)-rays with equal sojourn times could cancel.
On the other hand, the description of the singularity associated to a ray having
gliding or grazing segments is a very hard problem, especially when we have a
higher order tangent segments. Intuitively it is clear that (w, #)-rays with grazing
or ghding segments could exist only for some very specially chosen directions w
and @ and we may expect to avoid such rays for almost all directions.

Stoyanov [14] proved that there exists a subset R” € §7 x S? of full Lebesgue
measure in 7 x S such that every (w, 0)-ray with (w,#) € R” is a reflecting one.
This is a global result and the proof is based on a fine analysis of some regularity
properties of the generalized Hamilton flow 7. Now taking R = R’ NR" we are
in position to apply (3.3) for (w,0)-rays with (w,8) € R.

The scattering length spectrum (SLS) of an obstacle K is defined as the set of
real numbers

k= |J Scxw0),

(wib)Es? x 52

where
SLy(w,0) = (T, : v € L), (w,0) € S® x 52

The equality (4.2) says that for almost (w,0) we have
SLk(w,0) = sing supp s(t,w.0)
From the results of Majda (6] it follows that for arbitrary obstacles we have
max sing supp s(t, ~w.w) = ~Tylw),
where Th(w) = 2r(w) = 2mingepx < z,w > and this is the smallest sojourn time
of the (w,#)- rays incoming with direction w and outgoing with direction —w.
Since

convex hull 9K = n {y: < p.@ >2 r{w)}.

ST
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e eans recover the conver hull of an obstacle from SCx.
| Tl case of non-convex obstacles is much more complicated and in the general,
! s an example of M. Livshits shows (see [8]. Chapter 5), SLx does not determine
K uniquely. On the other side, Stoyanov (15] proved that if two obstacles K and
L have almost the same SLS then the corresponding flows )Cf") and ICE") are
| conjugated on their phase spaces minus the set of 50 called trapping points. This
! jakes possible to prove the uniqueness of the inverse scattering problem related

10 SLS for some class of obstacles. We refer to [15] and [16] for more details.
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