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The Problem

To solve a linear equation ax + b = 0, just take

—b
zT=—.
a

To solve a quadratic equation az? + bz + ¢ = 0, take

oy —b+Vb? — dac

2a

In each case z can be found from an algebraic formula involving only the
coefficients of the equation.

This paper tells of the discovery of similar formulas for the cubic equation
az®+br®+cx+d = 0 and for the quartic equation az®+bz®+cz’+dz+e = 0.

The Ancients

How nice it would be if we could start the story of algebra by identifying
who first solved linear equations, then who worked out quadratic equations,
then proceed to the solvers of the cubic equation, the main topic of this
paper. There is a great satisfaction in putting a name and a face to those
who developed the ideas we study. However, in the very earliest mathemati-
cal sources we have from Egypt and Babylon, dating from perhaps 1800
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30 The Solution of the Cubic Equation:...

BC, anonymous solutions to quadratic and linear problems appear. They
are stated entirely in words, except for number symbols, and we will likely
never know whose words they are.

It is actually a bit anachronistic to call these writings solutions to equa-
tions, since equations as we would recognize them did not appear until the
evolution of algebraic notation in the sixteenth and seventeenth centuries
AD. But this language will serve our purposes here, and the interested reader
can pursue the finer points in historical books. Our subject, the solution of
the cubic equation, was itself a major force in the expansion and refinement
of algebraic notation.

The ancient Greek mathematicians, such as Euclid (c. 300 BC), Archime-
des (c. 287-212 BC), and Apollonius (250-c. 174 BC) mostly emphasized
geometry. Their version of linear and quadratic problems related to line
segments and squares. Our phrase “z squared” for 2, which we usually
think of as “z multiplied by itself,” reflects the Greek idea of the area of a
square having a side of length z.

The geometric investigations of Archimedes and Apollonius led them to
take results about squares into the third dimension, thus obtaining results
about cubes. Looking at their conclusions and questions, modern mathema-
ticians can interpret them algebraically as involving cubic equations, while
still recognizing the exclusively geometric character of the originals.

Mathematicians in China were also working on similar problems, though
lack of communications left both the West and China ignorant of the other
until around 1300 AD. There are no documents remaining of ancient Chinese
mathematics. In works from the eleventh century, Chinese scholars had
found excellent methods for approximating the solution for polynomials of
any degree. They do not seem to have been greatly interested in the problem
of finding a formula to give an exact solution, however.

The Islamic World

Beginning around 1000 AD, mathematicians of the Islamic world took
the Greek work (and perhaps some sources from India) and began to de-
velop powerful techniques. Beside using geometry, they developed a kind of
reasoning that led to our modern algebraic approach. In fact the very word
algebra comes to us from the work of al-Kwarizmi (c. 780-805), who used
the term al-jabr to represent the operation of moving a subtracted quantity
from one side of an equation to the other side as an added quantity. It is
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easier for us to see this in symbols than in words:

' 72+3=5-2z becoming
9z+3=5

is an example of al-jabr in modern notation.

Except for numerals, all this Islamic work was done in words. Impor-
tantly, although subtraction was well understood, the free use of negative
numbers was not. This directly affected the way problems were considered.
For example, we know the single general quadratic equation

ez’ + bz +c=0.

But an early mathematician, such as al-Kwarizmi, would assume all quan-
tities to be positive (unless he was Indian, but that’s another story for the
interested reader to pursue). So anyone who presented this expression would
seem absurd. How can three positive numbers, az®, bz, and ¢, ever add up
to 07 The early mathematician would surely think we were quite ignorant
to suggest this, despite our clever notation!

Let us see how al-Kwarizmi viewed linear and quadratic problems.” He
saw six types of problems, involving numbers, roots(z) and mal, or the
square of the mot,(:::"):

1. mal equal to roots (az® = ba)

2. mal equal to numbers (az® = ¢)

3. roots equal to numbers (az = b )

4. mal and roots equal to numbers (az?® + bz = c)

5. mal and numbers equal to roots (az? + ¢ = bz)

6. roots and numbers equal to mal (bz + ¢ = az?)

Interestingly, we will see a similar analysis later in the study of cubic
and higher equations.

Al-Kwarizmi developed different approaches to handle each of the six
types. Those involving squares are calculationally equivalent to our use of
the quadratic formula. He was even able to handle the cases where the

*Modern interpretations are given in parentheses. After this, most equations and
formulas will be in modern form. The historical evolution of notation is a fascinating
subject, but using each author's version would make this paper unreadable. For more on
notation see the references, especially Cajori.
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quadratic has two positive roots. The Babylon sources, of which he seems
to be aware, never gave more than one answer.

Successors of al-Kwarizmi in the Islamic world were able to solve a num-
ber of equations of higher degree. Some were quadratics in disguise, such
as ' + 22° = 1, but deep analyses of cubics were also undertaken. Around
1100 AD, Umar al-Khayyami wrote the most influential treatise on the cu-
bic equation until the problem was finally settled in the sixteenth century.
It has long been assumed he was also the author (known in the West as
Omar Khayyam) of the poem the Rubaiyat; but modern scholars have cast
doubt on this.

Al-Khayyami classified cubic equations into twenty-five types, allowing
only positive coefficients; this is something like al-Kwarizmi’s list of cubics.
His study proceeded geometrically, discussing how many solutions each type
would have and giving methods of intersecting conic sections to obtain so-
lutions. For the case “cube and side equals a number” (2% + az = b), he
obtained a solution by intersecting a parabola and a semi-circle. From our
point of view, al-Khayammi considered only solutions that occur in the first
quadrant, not any that involve negative numbers. His influential work was
studied by the Italian Scipione del Ferro, of whom we will hear later, since
he was the first to find an algebraic solution (c. 1510). Al-Khayammi was
also studied by René Descartes and Isaac Newton.

The Islamic algebraic work was further refined by Sharif al-Din al-Tusi
(c. 1200), who also showed how to find approximate solutions to equations.
Unfortunately it does not seem that later European mathematicians had
access to al-Tusi’s insights.

Medieval Europe

The Middle Ages in Europe saw the beginnings of the great universities.
Paris, Oxford, and Bologna had all been founded by the early 1200s and
many others grew up in the next centuries. Translations of some Greek
and Islamic mathematical texts into Latin were made in the twelfth and
thirteenth centuries. In the fourteenth century Italian mathematicians, be-
ginning with Leonardo of Pisa (better known as Fibonacci), introduced the
Hindu-Arabic numerals and the calculation techniques devised by Islamic
mathematicians to Western Europe. This led them to a closer study of
al-Kwarizmi and other Islamic algebraists.

In 1494, Luca Pacioli published Summa de Arithmetica, Geometrica,
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Proportioni et Proportionalita. This attempted to summarize all that was
known at the time about mathematics. It even included a detailed intro-
duction to double entry bookkeeping for which Pacioli has been called “The
Father of Accounting” . In fact little, if any, of the Summa is original
work of Pacioli’s, but it served as a very important compendium for the
next generation of mathematicians. Pacioli gave solutions for linear and
quadratic problems and for special cases of equations of higher degree. He
seems to have concluded that the general problem of the cubic would never
be solved.

Of course, it is always dangerous to say something can’t be done! Soon
after, somewhere between 1500 and 1515, Scipione del Ferro, a professor at
Bologna, was able to find a solution to the case z* + az = b.

Today a mathematician making such a great discovery would rush to
publish it, partly to share the excitement and partly to ensure proper credit
for the discovery. For del Ferro, however, the opposite was the case. Not
only did he not publish the solution, but he told only a few trusted students
that he had even succeeded. We shall see he had a good reason for such
secrecy.

At this time, large sums of money and even keeping a university po-
sition often depended on defeating a rival in a mathematical duel. Each
competitor would set, the other a certain number of problems, and whoever
solved the most was declared the winner. Knowing how to solve a type of
equation your opponent could not solve was thus a decisive advantage. So
del Ferro’s discovery was best kept as a secret weapon, only to be used in
case a strong opponent emerged who threatened his prestige and academic
position.

Del Ferro died in 1526 without having needed to use his solution to
defeat a challenger. Before his death, he confided his solution to his students
Antonio Fiore and Annibale della Nave. While they too kept the solution
secret-for the same reason as del Ferro-they must have let slip some hints,
for rumors began to spread in Italy that a solution of a cubic had been
achieved.

Tartaglia

Now enters on the scene the brash and brilliant Nicolo Tartaglia (1449-
1557), a remarkable character even for the colorful scene of Renaissance
Italy. At the age of twelve in his native Brescia, which is near Venice,
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he had been seriously disfigured during an invasion by French troops. A
sabre wound to his face left a large ugly scar and caused enough damage to
his mouth that ever after he had trouble speaking clearly. His neighbors,
probably unkindly, called him tartaglia, “the stammerer.” It is a sign of his
pugnacious character that young Niccolo defiantly took the slur and used
it in place of his last name, the bland Fontana.

Tartaglia was so poor he had almost no schooling. He reports that at
the age of fourteen he quit primary school after only a few weeks due to
lack of money. But instead of returning the schoolbooks he had borrowed,
Tartaglia used them to learn to read on his own and to master the elements
of mathematics. Thus he was entirely self-taught. By dint of hard work,
persistence, and a touch of megalomania, the untutored young man became
an excellent mathematician and scientist. Although he eventually became
a teacher of mathematics in Verona and Venice, as well as at home in
Brescia, Tartaglia was unable to achieve the kind of academic success and
recognition he dreamed of. A loner and an outsider, rather rough in his
manners, Tartaglia could not bring himself to flatter and please those who
held power in the academic world.

Around 1530, Tartaglia boasted that he had solved a version of the
cubic. (It was, in fact, 2% 4 aa? = b). Could it be true, scholars wondered?
Knowing that the bold Tartaglia sometimes claimed more knowledge than
in fact he had, del Ferro’s student Fiore challenged him to a contest in 1535.
Each man was to set the other thirty problems with thirty days allowed to
solve them. The stakes were somewhat unusual, and certainly expensive:
the loser would buy the winner and his friends thirty banquets! But it was
the unspoken stakes-professional renown for the winner-that mattered most
to Tartaglia.

The Duel

Here are three of Fiore’s problems, numbered as they appeared on his
list [Fauvel and Gray]. First a purely mathematical question:

1. Find me a number such that when its cube root is added to it the
result is six.
Let z be the cube root of the desired number and you can see this leads to
23+ =6.

Now a practical problem, though I’ve yet to meet a merchant who uses
this particular method for setting prices:
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15. A man sells a sapphire for 500 ducats, making a profit of the cube
root of his capital. How much is his profit?

As in the previous problem, this leads to z* + = = 500.

Next comes a scientific application. The loggers in those days must have
had a remarkably good mathematics background! Consider:

17. There is a tree 12 braccia high, which was broken in two parts at
such a point that the height of the part standing was the cube root
of length of the part that was cut away. What is the height of the
part that was left standing?

This leads to 2® + 2 = 12.

The cubic solution given him by del Ferro seems to be the only trick
Fiore knew. Each of his problems reduced to the solution of an equation
of the form 2® + @ = b. Wily Tartaglia’s problems were much more varied,
coming from different areas of mathematics, including cubics of the form he
had solved, namely 2* + az? = b.

Despite his boast, Tartaglia had no idea how to solve the version of the
cubic Fiore handed him. Days of frantic effort turned to weeks with no
success. At last, just before the deadline, he cracked it and was able to
solve all thirty of Fiore’s problems in short order. Fiore proved himself a
poor mathematician, as he solved almost none of Tartaglia’s wide-ranging
problems. Thus Tartaglia won the contest handily.

Perhaps believing this victory would assure him an attractive university
offer, Tartaglia did not insist on Fiore’s paying for the promised thirty
banquets. In the end, disappointingly, he got neither a chair at dinner nor
one in a university. Still, the competition broke open del Ferro’s secret, and
word spread that some cubics had been solved.

Cardano

Gerolamo Cardano (1501-1576) is another of the remarkable characters
that peopled Renaissance Italy. Born in Pavia, he was educated there,
including study at the University of Pavia. He then studied medicine at the
University of Padua. His attempts to secure a medical position in the great
city of Milan met with rejection, allegedly due to his illegitimate birth, but
also due to powerful enemies he had made by his public criticism of senior
doctors. He returned to Padua to practice and study, and made himself one
of the most famous physicians of Europe. Cardano made a tour of Europe
during which he treated many notable people. He cured the Archbishop of
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Scotland of a serious, chronic difficult in breathing by banishing all feathers
from the Archbishop’s bedroom. On returning to Italy, his fame was now
so great (and his tact sufficiently improved) that he was accepted into the
College of Physicians in Milan, where he settled down to enjoy his new
wealth and status.

Cardano wrote extensively on scientific and philosophical topics, inclu-
ding mathematics. Like many other mathematicians of the time he often
calculated horoscopes, believing that his superior mathematical ability en-
sured better accuracy than others could obtain. He is rumored to have run
into trouble with Church officials after casting a horoscope for Jesus, and
another tale has it that Cardano committed suicide in order to confirm his
own astrological prediction of his demise. His life was full of troubles as well.
For example, Cardano’s beloved, but wayward son, poisoned his spouse and
was put to death. Cardano’s very readable autobiography, De propria vita,
tells his version of many of the feuds, escapades, trials and triumphs of his
packed life. Disappointingly for us, it mentions his mathematical work only
slightly.

Cardano also loved to gamble. When young he squandering much of
his small store of money. Older and wiser, he turned his powerful mind to
analyzing the chances of winning in the games he had played so eagerly.
This work was published after his death as Liber de ludo aleae (The Book
on Games of Chance). It marks the beginning of the scientific study of
probability.

Cardano’s interest in algebra was of long standing. His Practica arith-
metica, published in 1539 (though written earlier), was an overview of arith-
metic and algebra, based on the great Summa of Luca Pacioli mentioned
above. In it Cardano agreed with Pacioli that the cubic could not be solved
purely algebraically. How embarrassing then to hear of the cubic contest
between Tartaglia and Fiore!

Intrigued, in early 1539 Cardano invited the victorious Tartaglia for a
visit during which he implored Tartaglia to reveal the solution. Despite this
flattering admiration, the proud and contrary Tartaglia declined repeatedly.
At last he offered Cardano several poems that gave, in somewhat obscure
terms, the recipes for solving the versions of the cubic known to him. In
return the grateful Cardano swore a solemn oath not. to publish the solution
before its discoverer Tartaglia did.

No proof or explanation of the poetic solutions was provided, so Cardano
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eagerly set to work to fill in the details. In a short time, he had not only
proved that Tartaglia’s solutions were correct but extended the solutions to
all the other cases of the cubic. One of Cardano’s important observations
was that the square term call always be eliminated. As we would say, if we
substitute © = y — & into #* + az® + bz + ¢, we obtain an expression of the
form y® + sz +t, where s and ¢ are expressed in terms of a, b and ¢. (Those
who have not seen this before will find it worthwhile to take a few moments
to work this out.) Cardano’s work was not so neatly expressed, but it was
effective in reducing his number of cases significantly.

Not content to stop here, Cardano also set his talented pupil Ferrari to
work on the quartic equation, and in a few months Ferrari succeeded in
taking care of all the cases for this problem as well.

Now Cardano was eager to make public his results. Why keep them se-
cret? He was already a prominent physician and had no need to win mathe-
matical competition Tartaglia, however, had not yet published and seemed
increasingly unlikely to do so. He had now become absorbed in ballistics, the
mathematical study of the motion of artillery shells, an important practical
and theoretical subject as cannons came to be more accurate and powerful.
Indeed, over time Tartaglia received much more financial reward for his fi-
ring tables and analysis of the trajectory of projectiles than he ever would
expect for his solution to cubics. Perhaps reflecting his painful childhood ex-
perience, his books on military subjects indicate that he had ethical doubts
about applying his scientific expertise to improving destructive engines of
war.

Chafing at the delays this impasse was causing, Cardano now learned of
the rumors that del Ferro had solved a cubic well before Tartaglia. Jour-
neying from Milan to Bologna to investigate, he and Ferrari unearthed del
Ferro's solution among his papers. Elated by this discovery and eager to
publish, they decided that the solution was close enough to Tartaglia’s as to
invalidate Cardano’s oath. Having come so far in his own research Cardano
now proceeded to write everything up in a book called Ars Magna (The
Great Art). His generous preface gives full credit to del Ferro and Tartaglia
for their pathbreaking work as well as acknowledging his industrious pupil
Ferrari. Cardano published the book in 1545.

Outrage! Tartaglia was furious In 1546 he accused Cardano of the spiri-
tual and civil offenses of oath-breaking and plagiarism. Writing his version
of the 1539 visit with Cardano, he cast himself as the victim of an unscrupu-
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lous schemer. Ferrari, who was now seeking an academic position, took it
upon himself to make a lengthy reply in defense of himself and his teacher,
disputing Tartaglia’s story about the meeting, pointing out the clear credit
given Tartaglia in the Ars Magna, and injudiciously noting Tartaglia’s own
professional lapses. Among other misdeeds recounted by Ferrari, Tartaglia
had in 1543 published as his own a Latin translation of Archimedes done
by William of Moerbeke in 1269.

How would two Renaissance mathematicians resolve a dispute? As you
might guess, Ferrari challenged Tartaglia to a duel-a mathematical duel.
In 1547 each set thirty-one problems for the other. Neither solved all, but
Ferrari solved more. Not content with victory, the younger Ferrari publi-
cly criticized some of Tartaglia’s solutions. Continuing the battle, the two
met the following year for a public disputation, which ended with the hot-
tempered Tartaglia leaving town in a hurry.

It is not known precisely what happened, but the outcome was bad for
Tartaglia. He lost the academic position he had finally obtained in Brescia
and died in poverty a few years later. Ferrari, on the other hand, was
invited to lecture in Venice and went on to wealth and comfort, a career
in government, a post in Church administration, and finally a university
position. Alas, his life was cut short at age 43, in suspicious circumstances:
possibly poisoned for his money by his sister. Note to any aspiring writer
of mathematical melodrama: there are plots aplenty for you in the Re-
naissance!

The Complex Numbers Appear

What were the actual solutions of cubic equations that inspired so many
hot words and high emotions? Deriving them in Cardano’s own style would
be lengthy and tedious for us. For versions of his derivations in modern
dress see [Katz] and [Calinger|, among others. However, some aspects of
these solutions are worth nothing, since they led to the development and
ultimate acceptance of the complex numbers.

For equations of the form z® = az + b, Cardano’s solution would be

a|b 0 GZRNTE i b b2 gl
&= - —_——— —- == = —
2 4 2T 2 4 27
Do you see the family resemblance to the quadratic formula? Note at
the same time that the level of complexity has shot up significantly!
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For example, to solve 23 = 6z + 40, substitute to see that

o= Y20+ V392 + V20— V392,

Notice, however, that z = 4 solves the equation. (Check by substituting
4 into 2% = 6z + 40.) If you work on it a bit you can see that, in fact,

o= V204302 + Y20 V302 =4

So Cardano’s formula gives the right answer, but it does so in a compli-
cated form.

In fact, it is far more than merely complicated. Those of us who worry
about such things (we call ourselves mathematicians, others call us fussy)
would notice that in Cardano’s formula

B
4 27
appears inside a square root. What if this quantity were negative?

For instance, consider another equation of the same form: a° = 15z + 4.

Its solution, from the formula, is

o= Y2+v2I21+ Y2 — /=121

Again, notice that @ = 4 works. Now, Cardano knew that %/2+ /~121 +
V2 - y/-121 = 4, though we are not sure exactly how he thought about this
or calculated it. No appropriate vocabulary or notation existed. Yet this
construction forced mathematicians to grapple with complex numbers.
Negative numbers under the square root can occur in the quadratic for-
mula, but only if the resulting solutions are themselves complex numbers, so
until complex numbers were accepted mathematicians could dismiss them.
In the case of the cubic, we see that the negative under the square root
can appear even in expressing a solution that is a real number, in fact an

integer.

Bombelli

Cardano’s Ars Magna is extraordinary, but like many original works
it is not easy to read. For one thing it assumes that the reader already
has a strong algebraic background. Only a few years after Cardano’s work
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appeared, an engineer from Bologna, Rafael Bombelli (1526-1572), who
greatly admired Cardano’s mathematics, decided to write his own book
which would take the reader through all the algebraic prerequisites and
then present the solution of the cubic and quartic equations systematically
and completely. This became {’Algebra, written in five parts, the first three
of which were published in 1572 and 1576. The fourth and fifth parts, which
were not complete at the time of his death, dealt with geometric topics that
were not directly needed for the solution of the cubic-and did not appear in
print until 1929!

For us, the most interesting part of Bombelli’s book is his careful treat-
ment of quantities involving the square root of negative numbers. His no-
tation is quite clumsy to our eyes. He uses the phrase piu di meno (plus
of minus abbreviated p. di m. ) for what we would call i or v/=1; meno
di meno (minus of minus abbreviated m. di m.) stands for —i or —y/=1.
Bombelli then developed in great detail the rules for calculating with quan-
tities involving these terms, starting with the crucial calculation piu di meno
times piu di meno is —1; that is, i* = —1. He did not can these quantities
numbers, but we would: the complex numbers.

With these rules in hand, Bombelli turned to expressions such as our pre-
vious example “\/2 +v-1214 “\/2 — /—121. He assumed that there must
he numbers ¢ and s such that %/2 + /=121 = t++/=s and %/2 — /=121 =
t—+/=5. Using his rules and judicious guesswork, Bombelli was able to find
that t = 2 and s = 1. Thus

=TT e P T D L =t o e

as we suspected.

Now remember, at this time negative numbers were yet to be accepted
as real and even zero was handled with suspicion. So it is no surprise that
Cardano himself was not happy at all with this type of calculation, which
he viewed as a flaw in the formula. Even Bombelli did not seem to consider
these quantities numbers, but rather useful fictions. Later mathematicians
slowly expanded the idea of number, but full acceptance of the complex
numbers did not come until the 1800s.

Beyond the Fourth Power

The remarkable solution of the cubic and quartic equations inspired
mathematicians to set out to solve the quintic-equations involving fifth
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powers-and even higher. Despite great efforts and much improvement in
algebraic notation and technique, only some special cases could be solved.
Some began to say the solution was not possible algebraically. Recall we
heard that before, in the case of the cubic!

Alas, this time the doubters were right. In 1798 Paolo Ruffini claimed to
give a proof that the quintic was unsolvable, but no one could quite unders-
tand his explanation. Around 1820 Niels Abel gave a complete proof for all
equations of fifth degree and higher: There can be no general solution above
the fourth power. The bright side of this mathematical disappointment was
that it led to the beginnings of the modern algebra of groups, rings, and
fields. But that is a story for another time.

Here we conclude our journey into the past. As in the present, we
find mathematicians soaring blissfully in the lofty realms of pure thought,
apparently above the small details of daily life. But when they land, they
often show themselves just as capable of petty jealousy and inflated pride
as anyone else.
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