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Abstract: In text books on differential equations the system of ordinary
differential equations with constant coefficients X’ = AX is often solved by
reduction (by an invertible change of variables X = PY) to the simpler sys-
tem Y’ = JY where J is the Jordan canonical form of A. Here we do things
the other way around and deduce the existence of J and P by comparing two
types of solutions of the system X’ = AX. The proof provides a straight-
forward algorithm for calculating the matrices J and P above. Apart from
some elementary considerations on (formal) solutions of systems of ODE's
with constant coefficients, the main ingredient of the proof (and of the re-
sulting algorithm) is one which comes up in other approaches, namely the
reduction of polynomial matrices (in one variable) to diagonal form by row
and column operations.

1. Introduction

A well known application of Jordan normal form is to solving the
system X’ = AX. This system of ODE’s can also be solved directly ussing
the classical method of reduction to diagonal form via row and column
operations and the purpose of this note is to show how, conversely, this
solution leads, in a natural way, to the existence of the Jordan normal form
for the matrix A.

The idea is the following: the derivative DX of any solution X of a
system (with constant coeffcients) is also a solution. A diagonal system has
a well known basis relative to which the matrix of D is a Jordan matrix J.
Reduction of DX = AX to diagonal form takes this basis into a basis for
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DX = AX relative to which the matrix of D is also J. But DX = AX has
a well known basis relative to which the matrix of D is A. Thus A and J
are similar.

‘We begin by considering a nilpotent matrix A. In this case one need
only consider polynomial solutions X (t). In the general (not necessarily
nilpotent) case, formal power series must be used instead. But questions
of convergence and differentiability of solutions never arise. Thus, despite
the appearence of concepts related to differential equations, only elemen-
tary algebraic properties (namely linearity and the Leibniz rule) of formal
differentiation D are used.

2. Polinomial Solutions of Systems of ODE’s

The derivative D¢ of the polynomial ¢(t) is defined formally (without
any reference to limits) by the usual formula. If F(z) is a polynomial
matrix then, setting @ equal to D, we get a matrix operator F(D) all of
whose entries are polynomials f (D) in D. For example, if I is the identity
matrix then zI corresponds to the differentiation operator (also denoted by
D) which has D’s down the diagonal and zeros elsewhere. Clearly, for any
F(z), one has

R(D)D = DFE(D).

Therefore, if F(D)X = 0 then F(D)DX = 0 as well.

A basis (alias fundamental matrix) for /(D) is a polynomial matrix ®(t)
such that any polynomial solution X (t) of F(D)X = 0 is a unique linear
combination (with real coefficients) of the columns of @ (in other words,
the columns of @ are a basis for the space of solutions X of the system
F(D)X = 0). Since each column of D® is the derivative of a solution it is a
linear combination of the columns of ®. Thus there is a (unique) constant
matrix M (say) such that

Dd = dM.

In other words, M is the matrix of D relative to the basis ®. Similarly, if ®
and W are two bases for F(D) then there is a constant invertible matrix P
such that

V=P

Applying D, we have

DV = D (®P) = D(®) P = ®PMP = WP 'MP,




Derek Hacon 61

so that the matrices of D relative to any two bases for F(D) are similar.
There are two cases where bases are well known. First, if A is any nilpotent,
constant matrix then

O=TI+tA+ %t’A’+...
is a polynomial matrix which is easily seen to be a basis for D — A. Clearly
DO = 0A.

Secondly, if a diagonal matrix D(D) has a basis then none of its diagonal
entries can be zero, for otherwise there would be infinitely many linearly
independent solutions. Conversely, let f(D) be a diagonal entry of D(D) of
the form D*+ higher powers of D where k > 0. Then the row vector

(- i)

is a basis for f(D). Such bases may be assembled into a basis A for D(D).
Clearly

DA =AJ
where J is direct sum of Jordan blocks, each consisting of ones just above
the diagonal and zeros elsewhere.

In general, a basis for (D) may be obtained by reducing F' to dia-
gonal form by row and column operations. This method, which is based on
long division of polynomials, is explained in various textbooks, for example
[Jordan] (Vol.3, section 141) and goes as follows.

Let g be a nonzero entry of F. By exchanging rows of F' and then
columns of F' we may assume that g is in the upper left hand corner of I
(i.e. in the first row and column). If g divides every entry in its row and
column then, by row and column operations, all the entries in the first row
and the first column of F except g may be reduced to zero. In other words
F may be reduced to g® G (say). Otherwise, F is reduced to a matrix with
a nonzero entry of lower degree and the procedure is then repeated. Since
the degree cannot be reduced beyond zero, F will eventually be reduced
to h & H (say). Next, H is a similarly reduced and so on. In the end, a
diagonal matrix D is obtained. Thus there are polynomial matrices U(z)
and V(z) (with polynomial inverses) such that

UFV =D
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Since U and V' are invertible,  is a basis for D(D) if and only if V(D)® is
a basis for F(D).
3. Jordan Normal Form for Nilpotent Matrices

Let A be a nilpotent matrix. By reducing zI — A to diagonal form, one
can calculate explicitly U,V and D such that

U(D)(D — A)V(D) = D(D)

Now D — A has a basis, namely ©. So D(D) also has a basis. Hence A,
as defined above, is a basis for D(D). Thus V(D)A is a basis for D — A.

Therefore
V(D)AN=©OP:

where P is an invertible constant matrix. Applying D, we have

©AP = D (OP) = DV (D) A = V (D) DA = (V(D)A) J = OPJ.

Since © is a basis, this implies that AP = P.J, as required.
If needed, the matrix P may be easily calculated, because it is the
constant term of ©P and hence also of V(D)A.

4. The General Case

Here we switch from polynomial solutions to formal power series so-
lutions with D defined formally by the usual formula. Many textbooks
(for example Jordan’s Cours d’analyse) prove the basic result (due to Eu-
ler) [Euler] that the polynomial f(D) has a basis consisting of ﬁt’e“‘ for
each factor (z — a)* of f and sit’e*sin bt and 5t’e* cosbt for each fac-

tor ((z — a)® + h’).: where 0 € 7 < k. For diagonal D such bases may be

the obvious way into a basis A for D(D). Again, DA = AJ

assembled in
Jordan matrix. The rest of the argument goes through as in

where J is a
the nilpotent case
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