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Abstract
Since the time of René Descartes, anlaytic geometry , which
is based on the Euclidean metric, has been a popular area of
research. In recent years, mathematicians begin to investigate
geometry using other metrics such as the taxicab metric. In this
paper, results from the research in taxicab metric and related
areas are presented. Various ideas and directions for research
in taxicab geometry are introduced and discussed to stimulate
further research interest in this area.
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1. Introduction. In La gémétrie, René Descartes revealed many of
his contributions in analytic geometry, which opened up new avenues to the
study of Euclidean geometry. In the late 1800s, Herman Minkowski [17]
published a whole family of metrics providing new insight to the study of
analytic geometry. Among them, taxicab metric becomes the most popular
within the mathematics community, thus it is worthwhile to investigate the
importance of taxicab geometry.
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In the following sections, many important and interesting results from
taxicab geometry and trigonometry, their applications, and their related
topics will be presented and discussed. Furthermore, ideas, problems, and
directions for future research will be discussed.

Let X be an non-empty set. A metric d on X is a function from X x X
to [0, 00) satisfying the conditions:

(1) d(P,Q) = 0 if and only if P = Q;
(2) d(P,Q) = d(@, P);
(3) d(P,Q) < d(P, R) + d(R, Q) for all P, @, R, in X.

In particular, if X = R" for some natural number n, then the function
dp : R™ x R" — [0, 00), defined by dr(P,Q) = >, |pi — ¢:| where P =
(Py, ..., P,) and Q = (q1,...,¢n), is called the taxicab metric defined on R".

2. Taxicab metric and taxicab geometry on the plane

Although Minkowski [20], Blumenthal [3], and Jacobs [13] have discussed
distance goemetry besides the traditional analytic geometry, Krause [17]
should be credited for his contribution in popularizing taxicab geometry
in recent years. After defining the taxicab metric in ? and comparing it
to analytic geometry, Krause discussed, without giving much details, how
taxicab geometry can be used in real-life applications and how it can provide
simple examples in non-Euclidean geometry. To fill in the missing details,
S. So, & Z. Al-Maskari [25] constructed two simple examples showing why
taxicab geometry is non-Eulidean.

Inspired by Krause [17], Reynolds [23] defined and studied conics by
means ofthe taxicab metric as follow.

Definitions. Let (h, k) ¢ ®R?, and r > 0. Then the set C' = {(z,y) : dr((z,y),
(h,k)) = r} is called a tazicab circle with center (h,k) and radius r; let
Fy(hy, ky), Fa(ha, k2) € R? and ¢ > 0. Then the set B = {P e R? : dp(P, Fy)+
dp(P, F,) = c} is called a tazicab ellipse with foci Fiand F; and associated
constant c; the set H = {P € R? : dp(P, F1) — dp(P, F») = *c} is called a
taxicab hyperbola with foci Fy and F; and associated constant c; let F(h, k)
€ R? and D be a line on B2 Then the set K = {P ¢ R? : dp(P,F) =
dp(P,D)} is called a taricab parabola with focus F and directriz D, where
d(P, D) is the distance from P to the point on D which is closest to P.
Reynold [23] then observed that taxicab circles are in “diamond shape”;
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taxicab ellipses are in “diamond”, hexagonal or octagonal in shape. Con-
cerning taxicab hyperbolas, she concluded that their shapes depend on both
the associated constant ¢ and the taxicab distance between the foci. In her
thesis, Liu [19] determined exactly when a taxicab ellipse is 4-sided, 6-
sided, and 8-sided as summarized in the next theorem. She also determined
exactly how the shapes of taxicab hyperbolas vary according to the associa-
ted constant ¢ and the taxicab distance between the foci. The figure below
shows a sample of the graphs of taxicab ellipses and hyperbolas determined
by Reynold and Liu.

Theorem 2.1. Let E be a tazicab ellipse with foci Fy(hy, ki) and
Fy(ho, ks) and associated constant ¢ > 0. (1) If Fy = F, then E is 4~
sided, a tazicab circle. (2) If hy = hy or ky = ko, then E is 6-sided. (8) If
hy # hy and ky # ke
then E is 8-sided.
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Figure 1.
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Figure 2.

Through their research in the general equations of taxicab conic sec-
tions, Kaya, Akga, Giinaltili, and Ozcan [14] classified the taxicab conics
represented by the equation |z — hy| + |y — y1| + a(|z — ho| + [y — wel) +
B(|Az + By + C|) F ay = 0, where a ¢ {—1,0,1}, 8 = e(a® — 1)(maz |A],
|B|)=!, v <0, and e is the eccentricity of the related conic into two classes,
according to the coefficent o as follow. A taxicab conic is called a focus-
directriz tazicab conic if @ = 0 and it is called a two- foci tazicab comic if
a = +1. In particular, it is called a two- foci tazicab ellipse if @ = 1 and a
two- foci tawicab hyperbola if @ = —1. Similarly, for & = 0, a focus-directrix
taxicab conic is called a focus-directriz ellipse, parabola, and hyperbola if
0<e<1,e=1,and e > 1, respectively. The following figures show that
most of their results for taxicab ellipses and Liu’s [16] are similar, but their
results concerning taxicab hyperbolas are different from Liu’s because of
their different views on lines in taxicab geometry.
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a=0,0<e<1 a=0e=1|-%=1 a=0,e=1]|-%/<1

a=0,|-%>e>1 a=0 |- =e>1 a=0,e>|-%>1

The following result of Chen [6] shows that there are at least three
different views on lines in Buclidean geometry. (A) A line L is the set of
points (z,y) satisfying the linear equation Az + By+C =0 where A, B,C
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¢ MR with A, B not both zeros. (B) A line L is the set of points (z,y)
satisfying the conditions the if P, @, and R are three points in L such that
@ is between P and R, then the distance between P and R is equal to
the sum of the distances between P and @ and @ and R. (C) A line L is
the set of points (z,y) such that it is equidistant from two given points H
and K. Because of these different views, Reynold [22] intentionally avoided
describing taxicab parabolas in her paper. Instead, she raised the question
of how the taxicab distance between the focus and directrix of a parabola
can be obtained.

To answer Reynold’s question, Moser and Kramer [21] obtained the follo-
wing two results in their study of taxicab parabolas.
Theorem 2.2. The shortest distance from a point P(zy,y1) to a line Az +
By+C =0 in taxicab geometry is the horizontal, vertical distance from P
to the line if —4 € (—o0o, 1] U[1,00) or —4 € [=1,0) U (0, 1], respectively.
Theorem 2.3. The parabola in tazicab geometry with focus F(h,k) and
directriz y = ma with k > mh and |m| < 1 can be expressed as the union
of Euclidean rays and line segments as follows:
{((z,y) : 2 = E£ k< y}U{(2,y) 1y = 3((a—1)z+h+k), 22 <z < hJU

m—

{(@,9) 1y =1((m +1)r+k—h),h5z§;1’i}u{z,y r=$’ﬁ,k5y}~
v
£
y=mo

For the case |m| = 1, Moser and Kramer [21] simply commented that
the taxicab parabola has a different configuration and different cases can
be considered in the same way as above. However, their approach of using
condition (A) of Chen’s [6] result for the definition of straight lines is not
entirely satisying because it is unrelated to the underlined metric. Iny [12]
rectified the problem by using condition (C) of Chen’s result instead, and he
defined the distance between a point ' and the line D as the minimum of
dp(F, P) where P ¢ D. Furthermore, instead of defining an ellipse by its foci
as Reynold [23] did, Iny [12] also defined an “ellipse of the second kind” with
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respect to a given line D (the directrix), a given point F (the focus), and a
given number e (the eccentricity) where 0 < e < 1 by {P e R?: :T ::F =gy
where dp(P, D) denotes the shortest distance from P to D. By lettmg D be
the line which is equidistant from (—1,6) and (3, —4) satisfying condition
(C) of Chen, F(1,4) be the focus, and e = 1, Iny obtained an ellipse which
is a convex hexagon with vertices (1,7), (—1,5), (3%, 4), (=1, %), (1,3), and
(2,4); and it does not have the form given by Reynold [21], Liu [19], and
Kaya, Akga, Giinaltili, and Ozcan [14] as in the following figure.

‘g2
5

Following Iny’s [12] approach on the definition of lines in taxicab geome-
try, Ho and Liu [10] continued in the study of taxicab parabolas with a given
focus F(h, k) and a directrix D determined by two given points Q(z1,y1)
and R(x,y;). Because of their work together with the work by Kaya, Akga,
Giinaltili, & Ozcan [14], and Moser & Kramer [21], the problem of determi-
ning the shapes of taxicab para.bolas is essentially solved completely, except
for the case |z; — z5| = |y1 — y2|. The following figure shows a sample of
the graphs obtained in these nmcles




86 Recent Developments in Taxicab Geometry:

Y
G
B
= x
A
¥ AL 2 ¥
£
A!A\‘ Dl o F
As 2 De
x
+
¥y 51
|33
ol F
By
Bs\_
Bad

Assume that lines on the plane are expressed in the form of condition
(A) of Chen'’s result (6] and taxicab parabolas, ellipses, and hyperbolas are
defined by a given directrix, focus, and eccentricity. Laatsch [18] investi-
gated the intersection of |z| + |y| = c|z| where ¢ > 0, a square pyramid (of
two nappes) oriented for descriptive purposes with the z-axis vertical, with
a plane of the form z = az + by + d and concluded that taxicab parabolas,
ellipses, and hyperbolas can be obtained from the intersection of a plane
with the pyramid by perpendicular projection of that intersection onto the
@-y plane as shown in the following figure. He also stated that there is an
interesting three-dimensional theory of focus and directrix of (unprojected)
Euclidean conics, originally described by G. P. Dandelin in 1822 [9], [11],
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[24], which has no analogue in taxicab geometry.

Although the investigation concerning taxicab conic sections seems to
come to an end, there are still a lot of unanswered questions in taxicab
geometry. Going back to the basic properties of circles, Tian, So, and Chen
(28] discussed the validity of the following statements in taxicab geometry:
(1) Through any two distinct points in 92, infinitely many circles can be
constructed. (2) No circle can be constructed through three distinct non-
collinear points in R2. (They used condition (A) of Chen’s [6] result for the
definition of lines.) (3) Through any three distinct non-collinear points in
2,2, one and only one circle can be constructed.

From their study, they concluded that statement (1) is valid in taxicab
geometry while (2) is not and they were able to show that statement (3) is
valid if the three points satisfy certain specified conditions.

Similarly, Sowell [26] returned to the study of the basic properties of
the plane R?. Based on the fact that there are only three regular polygons
which will tessellate the plane: the equilateral triangle, the square, and the
regular and the first two of these can be subdivided into smaller polygons
(yielding the isometrid grid and the square grid), Sowell decided to study
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taxicab geometry using the isometric grid.

In iso-taxi geometry, the distance function d; is defined as follows. For
P(zy,y1) and Q(z2,¥2), (1) di(P,Q) = dr(P,Q) if P and Q have a I-IV
orientation; (2) d;(P,Q) = |y1 — 2| if P and @ have a II-V orientation;
(3) dr(P,Q) = |z1 — 2| if P and @ have a III-VI orientation. If the two
points lie on a line parallel to the z-axis or to the y-axis, y/-axis, then (3)
or (2) will be used, respectively. In fact, dy is a metric in 2. Sowell [26]
then examined the shapes of the iso-taxi conics, the mid-point set, and the
location of the circumcenter of a triangle and its corresponding circumcircle.
The figure below shows a sample of iso-taxicab conics.
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3. Taxicab Trigonometry

In the last chapter of his book, Krause introduced the following research
direction: “Define taxi trigonometric functions via wrapping of the unit
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taxi circle, and investigate their graphs, trigonometric identities,...” Follo-
wing Krause’s suggestion, Brisbin and Artola [4] defined the Diamond Sine
and Diamond Cosine as follow. In the Euclidean approach, trigonometric
function can be defined by first considering the unit circle 2> +y* = 1 and let
0 be the angle with the positive @ axis as its initial side and the radial line
passing through a point (z,y) as its terminal side so sinf = y, cosf = z,
and the equation of the line containing the terminal side is y = tan6 - = .

By solving
{ y=tanb z
vl = =l=| + 1,
the Diamond Sine and Diamond Cosine of 8 can be defined as follows.
; sin @ cos @
In quadrant I , sin dff = S and cos dff = el
i 0
In quadrant II, sin df = ﬂ and cos dfl = —,———CO—S——.
siné — cos @ sin @ — cos @
—sinf —cos
I rant in d) = ———— and df = ————.
n quadrant III, sin df T and cos oo
S —sind cos
In quadrant IV, sin df = R and -cos df = S ool

Similar to ordinary trigonometry, they then presented the reference angle
0’ of an angle 6 and they also discussed the validity of some identities for
the Diamond Sine and Diamond Cosine such as |cos df| + |sin df| = 1;

cos d(—8) = cos db,
sin d(—0) = —sin d0.

Akga and Kaya [1] took a different approach in defining taxicab trigono-
metric functions. First, let Cp = {(z,y) : |z| + [yl =, z,y,7 ¢ R, r > 0}
be the taxicab circle with center at the origin and radius » > 0. To define
mp, the “taxicab 7", they used the definition that 77 = the ratio of the
circumference to radius of the taxicab circle so 7 = 4. Given an angle 0 ¢
[0, 274) whose vertex is the origin, initial side is the positive 2 axis, and is
measured in the couterclockwise direction, let P = (z,y) be the intersecting
point of the terminal side of @ and Cy.
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|z =7+ 1yl if 8 (0,77/2)
or + ﬁ:l +ly=r|

= if 6 [mp/2,71)
Then the centra angle 8 can be defined by 6 = 4ot o o]+

i 6 [mp,3m0/2)

~
67 + 2| + o] + ly+n] .
L’r’h/_' if 0 [3rp/2,2m)

Let 6 be an angle in standard position and let P(z,y) be the intersecting
point of the terminal side and the taxicab circle |z| + |y| = 7. Then the trigono-
metric functions sing, cosy, and tany are defined by sinp(6) = ¥, cosp(6) = £,

tanp(0) = %‘%.
Thus,
g if 6 e [0,2)
sinp(0) = 2—9 if0e [2,6)and
—4+% if0e [6,8),
0

_f1-2 iffe [0,4
COST(g)—{ —3+0 if0e (4,8 °

From the above discussion, a sample of identities such as

sinp(ZF — ) = cosp(6);

sing(5F + ) = cosp(6);

sing(rr - 0) = sing(6);

cosp(ZF — 6) = sinp(6);

cosp(ZE + 6) = —sing(0); and

sinp(7p — 6) = — cosp(0), as well as

singp(2kwp + 0) = sinp(0) and

cosp(2kwp + 6) = cosp(0) for any natural number k can be proved. The

following figure shows one-period of the taxicab sine and consine curves defined
by Akga and Kaya [1].
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Addition and subtraction formulas such as the following can also be esta-
blished:

If o, B, + B € [0, 2], then cosp(a+ f) = —1 + cospa + cospf3; sinp(e+ f) =
sinpa + cosp 3.

If a,8 € [2,4], a + B € [6,8], then cosp(a + B) = —1 — cosra — cospf;
sing(a + B) = —sinpa — cospf.

If a € [4,6], B, @ — B ¢ [2,4],then cosp(a—B) = —1 — cospa — cospf;
siny (o — B) = 2 + sinpa — cospf.

If o € [2,4], B, @ — B € [0,2], then cosp(a — B) = 1+ cospa — cospf3;
sing (o — B) = 2 — sinpa — cospf3.

Comparing the diamond trigonometric functions defined by Brisbin and Ar-
tola (4] to the taxicab trigonometric functions defined by Akga and Kaya (1), it
is not difficult to see that the latter is better than the former in the sense that
the latter is closer to the structure of the taxicab geometry than the former .

By considering (%2, +,:) as a vector space over the field of real numbers
with addtion and scalar multiplication defined by u + v = (u; + vy, us + v)
and ev = (cvy,cv) where u = (u3,u),v = (vj,v2) , and ¢ € R, Ekici, Akga,
& Kocayusufoiilu [8] defined the tazicab inner product and the tawicab norm of
vectors as follow:

W
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(wv)p =
|y vy| + |ugval, u,v are in the same quadrant
— |ugvy| + |uava|, w,v are in the neighbor quadrants, and, wv; <0, ugvy >0
|urvr| = |ugva|, u, v are in the neighbor quadrants, and, wjv; >0, vy <0 °
— |wyvy| = |ugwa|, wu,v are in the opposite quadrants,

The norm of v = (v, v2) is defined by [[v]|; = /(v v)r + 2 [v12].
They then proved the following familiar results in linear algebra for the
taxicab inner product and taxicab norm.

Theorem 3.1. The tazicab inmer product has the following properties:

(i) (v-v)r = 0 (being positwe definite);
(i) (u- v)r = (v w)r (symmetry);
(iii) (cu-v)p = (u- cv)p = c(u - v)p (bilinearity).

Theorem 3.2. Let w,v,w be vectors in R* and ¢ € R. Then

(@) [vll7 = 0;
(i) llevlly = lef vl

(iii) [l + vllp < llelly + (0]l

(@)l = vlip = lully = [[vll

() e = vy < lfullp + llollz

(Vi) flu = vllp < flw = wllp + [w = vl

Finally, in their geometric interpretation of the inner product in taxicab
geometry, they built the connection, (u - v)p = |[ul|; [[v]l; cosp 8 — Ry, be-
tween the taxicab inner product and norm, where cosy is the taxicab cosine
function defined by Akga, & Kaya (1] and Ry is a real number depending
the vectors u and v, which is called the tazicab constant by Ekici, Akga, &
Kocayusufoiilu (8] .

4. Topics Related to Taxicab Geometry and Trigono-
metry

In his book, Krause [17] raised the question of the possibility of building
a geometry which mimic the movements in Chinese Checker. In response
to Krause's proposal, Chen [6] defined a Chinese Checker metric. Follo-
wing Chen'’s idea, Bayne [2] examined some properties concerning the Chi-
nese Checker circles. Recently, Tian [27] defined the A-metric, which is a
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generalization of both the Euclidean and the taxicab metrics, and Kesh [15]
investigated a few properties concerning Tian’s A-circles.

In their recent paper, Ozcan & Kaya defined the taxicab directed dis-
tance between points P and @ on a directed Euclidean line m as follows:

dr[PQ) = dp(P,Q) if the line segment PQ and m are in the same direction
4 ~ | —dr(P,Q) if the line segment PQ and m are opposite direction.

They then established the validity of Menelaus’ and Ceva’s Theorem.

In addition to their importance in geometry, taxicab geometry and other
distance geometry also find their place in the computer age. In their pa-
per, Eisenberg and Khabbaz discussed the applications of taxicab metric
in geometry and network theorey. Similarly, Burman, Chen, and Sherwani
[5] utilized the concept of A\-Geometry and discussed its applications in the
problem of global routing of multiterminal nets.

The discussion in Section 2 and Section 3 concerning taxicab geometry
and taxicab trigonometry reveals that ideas in the following list may lead
to future research in these areas.

(i) From Chen [6], one can observe that both conditions (B) and (C) are
appropriate definitions for lines in taxicab geometry. Since So & Al-Maskari
(25) as well as Iny [12] have studied lines defined by condition (C) on the
taxicab plane, the characteristics and properties of lines defined by condition
(B) will remain to be of great interest for research.

(ii) Using Chen’s [6] condition (B) for the definition of lines on the taxicab
plane as suggested in (i) above, what would be the shapes and properties
of the focus-directrix conic sections?

(iii) Based on the definition of taxicab lines used on the plane, it is quite
possible to define taxicab line segments. What would be an appropriate
definition for taxicab triangles? Based on the definition of angle measure
developed by Akga, & Kaya (1], what are the characteristics and properties
of right triangles, isosceles triangles, and equilateral triangles?

(iv) A study of the relationship between taxicab circles and taxicab triangles
will definitely be an interesting direction for research.

(v) In his thesis, Bayne [2] has only begun the investigation of Chi-
nese Checker circles. There are still many unanswered questions in Chinese
Checker geometry which require further research.

(vi) Tian's [27] study in A-geometry, which provides the linkage between the
Euclidean and taxicab geometry, will definitely attract research interest.

~ |
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(vii) Based on Ozcan & Kaya's [22] research on directed lengths in taxicab
geometry, ideas such as the different forms and applications of Menelau’s
and Ceva’s Theorem in taxicab geometry are worthy of pursuing.

(viii) A comparison of the definitions of the diamond trigonometric functions
by Brisbin & P. Artola [4] and the taxicab trigonometric functions by Akga,
& R. Kaya [1] probably would bring forth some interesting results. i
(ix) Assume that taxicab triangles and right triangles are appropriately
defined as mentioned in (iii). Can taxicab trigonometric functions be defined
by means of taxicab right triangles? How would this definition be different
from the ones by Brisbin & P. Artola [4] and Akga, & R. Kaya [1]?

(x) According to Krause [17], Sowell’s (26] iso-grids definitely create a dif-
ferent way of solving area problems in taxicab geometry than the approach
used by Kocayusufoiilu & Ekici’s [16].
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