Cubo Matemdtica Educacional
Vol., 4. N° 2, Junio 2002

CONVEX MATRIX FUNCTIONS

Frank Hansen
Institute of Economics, University of Copenhagen,
Studiestraede 6, DK-1455 Copenhagen K, Denmark.

1 Convex functions and Jensen’s inequality

Let [ be a real interval. A function f: I — R is said to be convex, if
(1.1) FE+ (1= A)s) < Af() + (1= A)f(s)

for all ¢, s € I and every A € [0,1]. Notice that the definition, in order to be
meaningful, requires that f can be evaluated in At+(1—\)s, or equivalently
that / is convex. But this is satisfied because the convex subsets of R are
the intervals. If f satisfies (1.1) just for A = 1/2, then f is said to be
mid-point convex. It is easy to establish that a continuous and mid-point
convex function is convex. The geometric interpretation of (1.1) is that the
graph of f is below the chord and consequently above the extensions of the
chord. This entails that a convex function defined on an open interval is
continuous. Condition (1.1) can be reformulated as

f(t) f(s) f(r)
>
(t—s)(t—r1) ¥ (s=t)(s—r) £ (r=t)(r—2s) 20
for all mutually different numbers t,s,r € I. If we for such numbers define
the divided difference [ts] of f taken in the points t,s as

oy = L0210

(1.2)

and the second divided difference [tsr] of f in the points ¢, s, 7 as
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then the left hand side of (1.2) is equal to [tsr];. The function f is thus
convex, if and only if its second divided differences (evaluated in mutually
different points) are nonnegative, or equivalently that the slope of its chords
are increasing to the right. If f is differentiable, this is equivalent to the
requirement that f’ is non-decreasing, and if f is twice differentiable, it is
equivalent to f” > 0. The form of condition (1.2) shows that the set of
convex functions on I is a convex cone which is closed in the weak topology
of pointwise convergence. A function f is said to be concave if — f is convex.
J.L.W.V. Jensen (1905) [13] proved the following inequality:

Theorem 1.1 (Jensen’s inequality) Let f : I — R be a convex function
defined on a real interval I and let n be any natural number. The inequality

n n
(1) £(Em) < Ense
is valid for any set of nonnegative real numbers Ay, . .., A, with sum one and
all points ty,...,t, € I.

The inequality (1.3) reduces for n = 2 to the convexity condition (1.1)
and it follows in general by induction. The opposite inequality is obtained
for concave functions. Jensen realized the importance of his inequality as a
vehicle to collect a number of known, but seemingly unrelated inequalities
under the same umbrella as well as a generator of many new inequalities,
each generated simply by choosing appropriate convex (or concave) func-
tions. The function f(t) = t* defined on the real line is convex, and Jensen’s
inequality for this function gives Cauchy’s inequality [13, p. 181]

2 n n
(i ﬂibi> < Zafzbf
i=1 i=1 i=1

stated for real numbers ay, ..., a, and by,...,b,. The function f(t) = logt
defined on the real positive half-line is concave, and Jensen’s inequality for
this function gives Cauchy’s inequality

oty

t
(o84l

between the geometric and arithmetic means of real positive numbers.
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2 The functional calculus

2.1 Functions bf one variable

Consider a quadratic matrix A. It is natural to define A as the matrix AA
and A® as the matrix AAA. In continuation of this idea we set Ak = A¥~1A
for k > 2 and

p(A) = aoB + a1 A + agA? + - - + q AF

for a polynomium p(t) = ag + ait + agt? + - - - + axt* where E denotes the
identity matrix. We have thus learned to take a polynomium of a quadratic
matrix. Notice that p(A) and A commute.

If in particular A is a real symmetric (and thus hermitian) matrix of
order n, we may apply the spectral theorem and write A on the form

A=QDQ!

where @ is an orthogonal matrix, that is @' = Q' where Q' denotes
the tranposed of @, and D is a diagonal matrix with the eigenvalues of
A counting multiplicity as diagonal elements. Setting

At
D=
An
we calculate
A
A*=QDQ'QDQT' = QD*QT = Q @
: X
and more generally
M
A* = QD Q' = Q Q!
Ak
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p (M)
p(A) = Qp(D)Q™' =Q @)
P (An)

for any polynomium. We may use this construction to define the functional
calculus for any function f defined on the spectrum of A simply by setting

(M)
f(AH=0Q Q™
f ()

If f is a polynomium, then this definition of f(A) coincides with the ele-
mentary calculation given above.

There is a certain ambiguity in the diagonalisation of A because the
diagonal elements in D can be permutated corresponding to permutations
of the columns in (). However, the definition of f(A) is unaffected by this
ambiguity. It becomes easier if we consider the spectral representation of A
given by

A=Y NP
i=1
where Ay,..., A, are the eigenvalues of A (not counting multiplicity) and
Py, ..., P, are orthogonal projections with the identity matrix as sum. This
representation is unique and
m

FA) =3 f()P.

i=1

The functional calculus can be extended to self-adjoint operators acting on
an infinite-dimensional Hilbertspace, but we will consider the theory only
for matrices in order to avoid unnecessary complications.

Definition 2.1 A real function f defined on a real interval [ is said to be
matrix monotone of order n, if

@<y = f(z) < f(y)

(T
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for all hermitian n x n matrices z, y with spectra contained in I.

We say that a function is operator monotone, if it is matrix monotone
of arbitrary order.

2.2 Functions of several variables

Let us consider the function f(t,s) = ts of two variables and two quadratic
matrices A and B of orders n and m. We would like to define the matrix
f(A, B). What would be a good definition? Koranyi [14] proposed that the
definition should be the tensor product

f(A,B)=A® B
of A and B. If
an Qin
A= :
Qny Qnn

then the tensor product is given by the block matrix

anB - a,B
A® B = i
@B - an.B

which is of order nm. If f = fif; can be written as the product of two
functions each depending of only one variable, then we set

f(A, B) = fi(A) ® fa(B).

The definition can then be extended by linearity in f ( we want the map-
ping f — f(A, B) to be linear) and continuity. We may also extend the
definition to functions of more than two variables and obtain:

Definition 2.2 Let f : I X --- X [, — R be a real function (of any kind)
defined on a product of real intervals, and let = = (z,...,zx) be a k-tuple
of real symmetric matrices such that the eigenvalues of z; are contained in
I, for i = 1,..., k. We say that such a k-tuple is in the domain of f. If

_ A
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Pi
T=> NPy i=L.oyk

ti=1

is the spectral resolution of z;, we define

P1 Pk
F@ =YY fOure M) P ®: - @ Py

ti=1  ty=1

as the function f applied to the k-tuple z = (z1,...,zk).

If the k-tuple z = (21, ...,2) is of order (ny, ...,nk), then f(z) is a real
symmetric matrix of order ny, ..., n.

It is not obvious to extend the concept of monotonicity from functions
of one variable to functions of several variables. This is so because there
is no natural order structure on tuples of matrices. It is completely trivial
to define the notion of matrix convexity for functions of several variables,
simply because the definition of matrix convexity only involves the order
structure for matrices.

Definition 2.3 A function f: [; X -+« x I; — R defined on a product of
real intervals is said to be matrix convex of order (n,...,n), if the matrix
inequality

fOz + (1= Ny) < Af(2) + (1= ) f(y)

holds for any A € [0,1] and all k-tuples of matrices z = (z,...,2x) and
y = (y1,...,yk) of order (ny,...,nx) in the domain of f.

The definition is meaningful since also Az + (1 — A)y is contained in the
domain of f. We say that f is operator convex, if f is matrix convex of
every order (ny,...,ng).

3 Some matrix inequalities
Lowner (1934) [16] proved that a function defined on an open interval is

operator monotone, if and only if it allows an analytic continuation into
the complex upper half-plane with nonnegative imaginary part, that is an

(T
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analytic continuation to a Pick function [3]. The function f(t) = t? is
not even matrix monatone of order 2 on any interval, while the function
f(t) = t* is operator monotone on the positive half-axis, that is

(3.4) mi=i=—n <) ae0,1]

for positive matrices ,y. The result follows from Léwner’s theorem, but,
this was not realized at the time when Lowner published his article. The
inequality was independently proved by Heinz (1951) [12], and it is today
known as the Lowner-Heinz inequality.

A number of different proofs of the Lowner-Heinz inequality are known.
The following proof gives a useful integral decomposition of the inequality
in terms of functions belonging to the extremal rays in the convex set of
operator monotone functions defined on [0,00[. Since inversion is matrix
decreasing, the functions t — ¢ (t + A) " are operator monotone on [0, 0|
for A > 0. The identity

(3.5) 1o — s"“”r/ L g
5 ol et

follows by making the substitution 2 — ¢~'\ in [5, Integral no. 3.222 (2)].
We thus obtain that f(t) = t* is operator monotone for o € [0, 1]. Pedersen
(1972) [17] gave a truly elementary proof of the Léwner-Heinz inequality.

Let f be a real function defined on the positive half-line with f(0) > 0.
If f is matrix monotone of order 2n, then the inequality between n x n
matrices

(3.6) f(a*za) > a*f(z)a

is valid [6] for any contraction a and any real symmetric matrix  in the
domain of f. If on the other hand the same inequality is satisfied for 2n x 2n
matrices, then f is matrix monotone of order n, cf. [10, p. 233]. Notice
that the function f(t) = ¢* is matrix monotone of order 1 on [0, co[ but does
not, satisfy the inequality for z = 1 and a = 1/2.

Davis ( 1957) [2] proved that a continuous function defined on an interval
containing zero satisfies the pinching inequality

(3.7) pf(pzp)p < pf(z)p

for orthogonal projections p and real symmetric matrices z in the domain
of f, if and only if it is operator convex.

_ (T
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Theorem 3.1 A function f defined on an interval I containing zero is
operator corwez with f(0) < 0, if and only if it satisfies the matriz inequality

(3.8) fla*za) > a* f(z)a
for contractions a and real symmetric matrices z in the domain of f.

It is essential in the two above theorems that no bounds are given on the
order of the matrices. The last result is known as Jensen’s matrix inequality
for functions of one variable 10, 8]. The above matrix inequalities have
extensions to functions of several variables [1].

4 Differentiable matrix functions

Let X and Y be Banach spaces. We say that a function f : A — ¥ defined
on a subset A of X is Fréchet differentiable at an inner point zg € A, if there
exists a bounded linear operator df (zg) ¢ B(X,Y) such that

lim [[A]| = (f (2o + h) = f(20) = df (zo)h) = 0.

Likewise f is said to be Fréchet differentiable in an open set A, if f is
Fréchet differentiable at every point zo ¢ A. We say that f is continuously
Fréchet differentiable, if the differential mapping Az — df(z) € B(X,Y)
is continuous. The exponential function in a Banach algebra is an example
of a continuously Fréchet differentiable function.

Proposition 4.1 If A is a Banach algebra, then the exponential function
& — exp(x) is continuously Fréchet differentiable, and

1
dexp(z)h = / exp(sz)hexp((1 — s)z) ds

for allz and h in A.

An interesting and non-trivial question is to specify conditions under
which the map 7" — f(T") is Fréchet differentiable, where f is a real
function defined on an open interval I and T is in the domain of f. It is a
necessary but not sufficient condition that f is continuously differentiable,
cf. [19]. However, if we restrict ourselves to consider hermitian matrices of
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a certain fixed order, then the function ' — f(T') is Fréchet differentiable
if and only if f is continuously differentiabe and

(4.9) df(T)S = fU(T) o S
where o is the Hadamard product and
(4.10) FIT) = (A1)

is the Lowner matrix [ 11] defined from the (not necessarily distinct) eigen-
values Ay, ..., A, of T. The definition of the divided differences introduced
in section 1 for an arbitrary real function defined on an interval I and mu-
tually different real numbers in I can for a differentiable function defined
on an open interval be extended by setting

f#) = f(s)
(4.11) [{,S]/={ ey for t#s
F @) for t=s

for anyt, s € I. It is tacitly assumed in equation (4.9) that the Fréchet diffe-
rential is identified with its matrix representation in a basis of eigenvectors
for T' corresponding to the eigenvalues Ay, ..., A,.

The notion of higher order Fréchet differentiability can be defined in
a very natural way. The Fréchet differential df of a Fréchet differentiable
function f: A — Y defined on an open subset A C X is a function from
A into the Banach space B(X,Y) of bounded linear functions from X to Y.

If df is Fréchet differentiable, then we define the second Fréchet differ-
ential of f, denoted by d*f, to be the Fréchet differential of df. The sec-
ond order Fréchet differential can be considered as a function d?f : A —
By(X,Y) from A into the Banach space of bounded bilinear functions from
X to Y. The second Fréchet differential d*f(z) is symmetric in the sense
that d*f(z)(h, k) = d*f(z)(k, h), cf. [4].

Proposition 4.2 Let A be an open conver subset of a real Banach space
X and let H be a Hilbert space. A twice Fréchet differentiable function
f:+A— B(H) is convez, if and only if

d*f(z)(h,h) >0

for eachz € A and all h € X.

_ [
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The result follows by adapting the reasoning of classical analysis to the
present situation and can be found in [4, Exercises 3.1.8 and 3.6.4]. The
author [7] gave the following sufficient conditions for second order Fréchet
differentiability.

Theorem 4.3 Let f ¢ CP(I) where I = I; X -+ x Iy is a product of
open intervals and p > 2 + k/2. The function x — f(z) defined on k-
tuples of self-adjoint matrices © = (zy,...,xx) in the domain of f is twice
continuously Fréchet differentiable.

The above theorem can be extended, ad verbatim, from matrices to
self-adjoint operators on Hilbert spaces. For matrices of a fixed order the
condition p > 2 + k/2 may be somewhat relaxed. However, we shall make
use of a type of Fourier expansion of the second Fréchet differential for which
the stated condition is the proper one.

5 The second Fréchet differential

Let f be a twice differentiable real function defined on an open interval
I € R. The divided difference [Au]; of f in the points A, p € I defined in
equation (4.11) is a symmetric function of the two arguments with partial
derivatives in each of the two variables. The second divided difference [Au(]y
of f in the points A, p, ¢ € I is defined as

Puly = [y g

NG A#C
0
ucly = { grs for A=(C#p
%f”(/\) for A=(=p.

It is a symmetric and continuous function of the three arguments.

Let f: I, x -« x I, — R be a function defined on a product of open
intervals with continuous partial derivatives up to the second order. We
define the partial divided difference of f in the points p; and p; by setting

(Ml [zl - My = [apals

where
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(1) = F(A1y ey Micay By Aigy -+ Ak)-

We similarly define the second partial divided difference of f in the points
J, Ho and pg by setting

Pl |papzpal - - [N} = (r1p2ms],-
Partial divided differences are similar to partial derivatives, and we may

define also mixed second partial divided differences for a function of several
variables. They are defined by setting

Pl [pagpal - [aal - INGF

=[/\1|"'lull €&l My = Pl Ll - 1ol - I
M1 —

for p1; # p2 and otherwise

Pl el - 61l - IN]F = 7[A1| el &l - AT

where the p’s are in position 7 and the £’s are in position j for 7 # j. The
notation does not imply any particular order of the coordinates ¢ and j. We
have defined the mixed second partial divided differences by first dividing
in coordinate j and then in coordinate ¢, but we get the same result by
reversing the order. This can be considered as a generalization of Young’s
theorem for partial differentials.

An element A € I7" x -+ x I* is called a data set of order (ny,...,nx)
for f. We may write it in the form

(5.12) A= (O (D)i=1r- -2 e (K))i=1)-

A data set A(z) € IT" x -+ x I’* can be obtained from a k-tuple o =
(2, ...,2x) of self-adjoint matrices of order (ny,...,n) in the domain of
[ by choosing the numbers A(i),..., A, (i) as the (possibly) degenerate
eigenvalues of z; for eachi =1,...,k

__ ([
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5.1 Generalized Hessian matrices

Definition 5.1 Let f : I; X+ - - x Iy — R be a function defined on a product
of open intervals with continuous partial derivatives up to the second order,
and let

A= ((’\mx(l)):nl,:h o (’\m.(k) :f,=1)

be a data set of order (ny,...,nx) for f. We define for each k- tuple of
natural numbers (my,...,mg) < (nq,...,nx) a generalized Hessian matrix
H(m,, ..., m;) associated with f and the data set A by setting

Hlm ..., miy) = (s o iy e =y
where Hy (m,,...,my) is a n, X ny matrix with entry
Huys(may -« .y Mk )puj,

= s (D] [Amy ()2 (8)] -+ [ gy, () Ay ()] =+ [ A (R

for s # u and entry

Heg(my, ... ;mi)pso = 2my (1)) - - A (8) A0 ()5, ()] - - [ Ay ()]

for u = s.

The generalized Hessian H(my, ..., my) is a real and symmetric matrix
of order ny + --- + ny. If the order of the data set A is (1,...,1), then
there is only one generalized Hessian matrix H(1,...,1) and the data set A
is reduced to the k numbers A (1),..., A (k). The submatrix Hy(1,...,1)
is a 1 x 1 matrix with the partial derivative fl,(A(1),..., Ai(k)) as entry,
and H(1,...,1) identifies with the usual Hessian matrix of f at the point
M(1),-.., A (n)).

Let us look at some examples. For typographic reasons we will in some
formulas write \; as shorthand for \;(s) and ignore the intrinsic ambiguity
in the symbol. We may also omit the subscript representing the function
f in the divided differences when there is no possibility of confusion. If we

set k = 2 and n; = ny = 2, then
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LAY 2NN fL(L D) AN
A= | MM 2D AR DM
DEIBON MM oBBa 2
ZAVIERTERT T 2 s Kl e B sl ariab)

and
AL AD 2NN IMATINSN] fla(A1 A2
(L2 | ZAMI 2D DN NN
d MATINAS] - MAAAS] 2(AHASATAT] 2\ ASATAG)
LA AN 2NN S5 (M A9)

Similarly for H(2,1) and H(2,2). Notice that the ordinary Hessian

ne (000 BOLE )
BOLM) TR0

is the principal submatrix of H(1,1) obtained by selecting rows and columns
number 1 and 3. Likewise, it appears as the principal submatrix of H(1,2)
obtained by selecting rows and columns number 1 and 4. This is a reflection
of a completely general phenomenon as we shall see in the next section. If
we consider a generalized Hessian matrix H(my,. .., my) associated with
a data set A written on the form 5.12, then the ordinary Hessian of the
function f at the point (Hp, (1), ..., Hm,(k)) appears as the k x k principal
submatrix of H(my,...,my) obtained by selecting the rows and columns
numbered by my,ny + mg,ny +np +ma, ...,y + e+ gy + My

We have the following structure theorem for the second Fréchet diffe-
rential of the functional calculus mapping.

Theorem 5.2 Let f ¢ CP(Iy X+ -+ x Iy) where I, . .., I are open intervals and
p > 2+k/2. The function z — f(z) defined on k-tuples of matrices in the
domain of f is twice Fréchet differentiable. Suppose that x = (zy,...,xx)
acts on fired Hilbert spaces H,y, ..., Hy of dimensions (ny,...,ny). A vector
 in the tensor product Hy®- - -® Hy. 1s specified by a function p(my, ..., my)
of k natural numbers by setting

m e
p= Z"'z‘P(ml,v--ymk)ein,‘l':"'k‘je‘;k

my=1 me=1

I




where (e}, ...,e},) is an orthonormal basis for H, consisting of eigenvectors
for z, for each s =1,...,k. The expectation value is given by
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(@*f(z)(h, h)elep)
= il i;(H(ml,...,mk)‘bh(ml,...,m;,)|¢"(m,,...,mk))

where H(my,...,my) are the generalized Hessian matrices associated with
f and A(z). The vectors

S (ma, ..., mi)
(.. my) = :
‘I’L'("h, P )

are for each s =1,...,k and m; = 1,...,n, given by setting the entry

Bh(ma, ..., M)z, = By, (M1, ooy a1, Gy a1y o« s TR)

forja=1,...,n,.

5.2 Variant Hessian matrices

Let f e C*(I,,...,Ix) where I,...,I; are open intervals. We consider a
generalized Hessian matrix

H(my,...,mx) = (Hus(ma, ..., m))% o1
associated with f and matrices z = (zy,...,2) of order (n,...,nx) in
the domain of f for a k-tuple (my,...,mi) < (n,....nx). The possibly
degenerate eigenvalues of z, are denoted Ay(s),...,An,(s) for s = 1,...,k.
Each entry H,,(m,,...,my) is an n, X n, matrix with its entry labelled by
the indices p, and j, (py =1,...,04,Js = 1,...,7).

We first introduce a principal submatrix of H(m,,...,mx) by selecting
row m,, in the blocks Hyy(my, ..., mk), ..., Hu(ma,...,my) foru=1,...,k
and column m, in the blocks Hy,(my,...,mg),..., Hes(my,...,my) for s =
N a k. Indeed, these rows and colunms are numbered my,n; + ma,n; +
ng+ms,..., ny 4 -+ gy +my in H(my, ..., mg). Namely, for each u, s
we retain from the n, x n, matrix Hy,(m,,...,mg) just one entry with the
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index (pu,Js) = (mu,ms) . The resulting principal submatrix is a k x &k
matrix with entries labelled by u, s and given by

[,\1 | I)\a /\a |)\u /\u )‘:-g]su s#u

A0l P A AT e P IR s=u

e Moo M) s #u
O »/\ﬁ;k) s=u

It is thus the usual Hessian matrix for f at the point (AL, ,..., Ak, ).
Next we define a so called variant Hessian matrix as the block matrix

Vima,...,mg) = (Vus(ma, ... xmk))s,.;:l

where Vys(my, ..., my) for each u, s is obtained from Hys(my, . .., my) by re-
taining the following entries and replacing all other entries by zero. The re-
tained entries are all diagonal entries of the diagonal blocks Hys(my, . . ., my)
and one entry (pu,js) = (mu,ms) from each of the off-diagonal blocks
Hys(ma, ..., my). Notice that the entry (ps,js) = (ms,m;) in the diagonal
block Hys(ma, ..., my) is a diagonal entry and thus retained. The resulting
variant Hessian matrix is an orthogonal direct sum of the principal sub-
matrix constructed above and a diagonal matrix. The variant Hessians are
symmetric matrices of order ny + -+ - +n. If we set k =2 and ny = ny = 2,
then

i (LA 1 (1) " 12 (A1) 0
0 2[ATAA3A 0 0
V(1,1) = ” 142A2|A1

e’ AT L5 x

0 0 0 2 MAZAZA)
and

P SR R (T

i 0 2[/\}}\2)\“/\2] 0 0

Vi 0 0 2P o
F5 (AL A3) 0 0 fa2 (A}, A3)

Similarly for V(2,1) and V/(2,2).
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6 Convexity theorems

6.1 Operator convex functions
The Combination of Theorem 5.2 and Proposition 4.2 entails:

Proposition 6.1 Let f ¢ CP(Iy X - -« x Ii.) where I, . .., Iy are open intervals
and p > 2 + k/2. If for a k-tuple (ny,...,nx) of natural numbers all of
the generalized Hessian matrices associated with f and any data set A ¢
IT" %+« x I* are positive semi-definite, then f is matriz convex of order
(e

It is thus a sufficient condition for f to be operator convex that all of the
generalized Hessian matrices associated with f and any data set of any order
are positive semi-definite.

The conditions given in Proposition (6.1) for matrix convexity of a fixed
order (ny, ..., ng) of the function f are also necessary, if either (ny, ..., nx) =
(1,...,1) or k = 1. The former result is a well known part of classical
analysis, while the latter is due to Kraus [15]. It is unknown whether the
conditions of Proposition 6.1 are necessary for the matrix convexity of f in
any other case.

Let py, ..., € [—1,1] and consider the function

1
fen- ot =Tly—0  tu. el -
&

i=1

of k variables. It is an exercise (7, p. 461] to calculate the generalized
Hessian matrices associated with f and any data set

Aeg—1,1Mx . x]—=1,1[™ ny,...,nk €N

given on the form (5.12). Indeed, the blocks in the generalized Hessian
matrices are given by

Hus(my, - mi) = fAmy (1), -+, Amy (K))a(u) a(s)

for s # u, and

Hy(my, ... ,mi) = 2f(Amy (1), - -+, Ami (K))a(s) a(s)

T
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for s = u, where the vector a(i) € R™ is given by

a(i) = pi (1= d @)oo (1= mdn () 7)
for i = 1,...,k and a(i)* denotes the transpose of a(i). Consequently, for
each k-tuple (my,...,mg) < (ny,...,nk) the generalized Hessian matrix

H(my,...,mg) is the product of f(An,(1),...,Am,(k)), which is a positive
factor depending on the k-tuple (m,, . ..,mx), and the matrix

2a(1)'a(1) a(1)* () ... a(l)'a(k)
2)‘ (1) 2a(2) ... a(2)'a(k)

a09Na(t) - a(RFa@). . 2alkYalH

which is independent of (my,...,my) . The latter matrix is bounded from
below by the positive semi-definite matrix

a(l)ta(l) ... a(1)a(k)

a(k:);a(l) ; a(k);a(k)

= (a(1) -+ a(k))' (a(1) --- a(k))
We conclude from Proposition 6.1 that f is matrix convex of every order
(ny,...,nx) and hence operator convex. The next result is an immediate
consequence.

Theorem 6.2 Let k be a natural number, and let v be a nonnegative Borel
measure on the compact cube [—1,1]X. The function

f(:l.u..tk>=j /Hl_w w{aigem, i

i=1

is operator convez on the open cube ] — 1, 1[*.

_L,m
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6.2 Convex trace functions

Proposition 6.3 A function f ¢ C*(Iy, . .., Ii) defined on a product of open
wtervals I, ..., I is convez, if and only if all variant Hessian matrices
asociated with f are positwe semi-definite.

Proof: The variant Hessian matrix is, as explained above, an orthogonal
direct sum of the principal Hessian matrix constructed above and a dia-
gonal matrix. The positive semi-definiteness of the variant Hessian matrix,
therefore, is equivalent to the same for the two (mutually orthogonal) sub-
matrices. The first one is the usual Hessian matrix of an ordinary function
[ as displayed above and hence its positive semi-definiteness is equivalent
to the ordinary convexity of the function f, as is well-known. On the other
hand, the (diagonal) entries of the diagonal submatrix are partial second
divided differences which are all non-negative if f is convex. Therefore the
assertion follows. QED

Theorem 6.4 Let f ¢ CP(Iy X« X Ii) where Iy,. .., Iy are open intervals
and p > 2 + k/2. The function @ — f(x) us twice Fréchet differentiable
in the domain of f. We define to each k-tuple h = (hy,... hy) of self-

adjoint matrices of order (ny,...,nx) and each k-tuple of natural numbers
(oot o my) < (na,...,ng) the block vector
Wi (ma)
Mmoo mk) = :
Wi (my)

where Wk(m,);, = hi, ;. 18 the (ms, js)-entry of the matriz variable h* for
Js=1,...,nyand s=1,..., k. The trace of the second Fréchet differential
for each k-tuplex = (w1, ..., x}) of self-adjoint matrices of order (ny, . .., ng)
in the domain of f 1s gwen by

; s Tr (d*f(z)(h, k)
= T Y (Vimay, m) PR (ma, e mi) | Uy . i)

2
mi=l  my=1

where V(my,...,my) form, = 1,...,n, and s = ,...,k are the variant
Hessian matrices associated with f and the matrices ¢ = (21, ..., 2k).
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Theorem 6.5 Let f be a conver function defined on a product Iy X -+ - X I
of open intervals. The trace function

(@1, 2k) — Tr (f(21,.. ., 2%))
18 convez on k-tuples of symmetric matrices in the domain of f.

Proof: Suppose that f is continuously differentiable of order p > 2+k/2. It
is not. difficult 9] to establish that the trace function above is twice Fréchet
differentiable with 7'r(d?f(z1,...,x))) as second Fréchet differential. We
then combine Theorem 6.4 and Proposition 6.3 to obtain the desired re-
sult. In the general case we approximate f with a sequence of convex
C™-functions (f,), which may be chosen of the form f, = f % e, for a
C>-approximate unit e, with compact support.
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