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1 Convex functions and J ensen 's inequality 

Let. I be a real interval. A function f : I --+ R is said to be convex, if 

(11) f (>.t + (1 - >.)s) S >.f(t) + ( 1 - >. )f(s) 

for ali t 1 s e 1 ancl every >. e: [01 l ]. Not ice t hat the defini t ion 1 in arder to be 
mcaningful , requires that f can be evaluate<l in >.t +( l - >.)s , or equivalently 
Lhat. 1 is convex. B11t this is satisfied beca11se the convex subsets of R are 
the intervals. lí f satisfies (1.1) just for >. = l / 2, then f is said to be 
mid-point, convex. It. is easy to establish that a continuous and mid-point 
convex function is convex. The geometric interpretation of (1.1) is that the 
graph of f is below the chord and consequently ab_ove the extensions of the 
chord. This entails t hat a convex function defined on an open interval is 
continuous. Condition (1.1) can be reformulated as 

( 1.2) J(t ) + J(s) + J(r) > 0 
(l - s)(l - r ) (s - l)(s - r) (r - t)(r - s) -

for ali mutually different mnnbers t, s, r e: I . If we for such numbers define 
the divided difference [tsJ oí J t.aken in t.he points l , s as 

[ts]¡ = f (l ) - f (s) 
l - s 

and t.he second divide<l difference [tsr] oí f in t he point.s t , s, ras 

[lsrJ¡ = [tsJ¡ - [sr ]¡, 
t - r 
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then the left hand side of (1.2) is equal to [tsr]¡. The function f is thus 
convex, if and only if its second divided differences ( evaluated in mutually 
different points) are nonnegative, or equivalently that the slope of its chords 
are increasing to the right. If f is differentiable, this is equivalent to the 
requirement that f' is non-decreasing, and if f is twice differentiable, it is 
equivalent to !" 2: O. The form of condit ion (1.2) shows that the set of 
convex funct ions on 1 is a convex cone which is closed in the weak topology 
of pointwise convergence. A function f is said to be concave if - f is convex. 
J.L.W.V. J ensen (1905) [13] proved the following inequality: 

Theorem 1.1 (Jensen's inequa lity) Let f : I ~ R be a convexfunction 
deji.ned on a real interual l and let n be any natural number. The inequality 

(13) 

is valid for any set of nonnegative real numbers .\1 , . , An with sum one and 
all points ti, . 1 tn E J. 

The inequality (1.3) reduces for n = 2 to the convexity condition (1.1) 
and i t follows in general by induction. The opposite inequality is obtained 
for concave funct ions. Jensen realized the importance of his inequality as a 
vehicle to collect a number of known, but seemingly unrelated inequalities 
under the same umbrella as well as a generator of many new inequalities, 
each generated simply by choosing appropriate convex (or concave) func­
tions. The function f(t) = t2 defined on the real line is convex, and Jensen's 
inequality for this function gives Cauchy's inequality [13, p. 181] 

stated for real numbers a1, . . ,an and b¡, , bn. The function f(t) = logt 
defined on the real positive half-line is concave, and Jensen's inequality for 
this function gives Cauchy's inequality 

(t, · ·t,.)'l":o; t, +· ·· +t,. 
n 

between the geometric and arithmetic means oí real positive numbers. 
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2 The functional calculus 

2.1 Functions of one variable 

Considera quadratic matrix A. It is natural to define A' as the matrix AA 
and A3 as the matrix AAA. In contin.uation of this idea we set Ak = Ak~ t A 
fork2:2and 

p(A) = a0E + a1A + a2 A2 + · · · + a,A' 

for a polynomium p(t) = a0 + a1t + a2t2 + · · · + a,t• where E denotes t.he 
identity matrix. We have thus learned to take a polynomium of a quadratic 
matrix. Not.ice that. p( A) and A commute. 

lf in particular A is a real symmetric (and thus hermitian) matrix of 
order n, we may apply the spectra\ theorem and write A on the form 

A = QDQ-1 

where Q is an orthogonal matrix 1 that is Q- 1 = Qt where Qt denotes 
the tranposed of Q, and D is a diagonal mat rix with the eigenvalues of 
A counting multiplicity as diagonal elements. Setting 

we calculat.e 

and more generally 

and 
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( 
p(>.¡) 

p(A) = Qp(D)Q- 1 = Q ) 
Q- 1 

p(>-n) 

for any polynomium. We may use this construction to define the functional 
calculus far any function f defined on the spectrurn of A simply by setting 

( 
f (>-1) 

J(A) = Q 

J (>,n) 
) 

Q- 1 

If f is a polynomiurn , then t.his definition of f(A ) coincides with the ele­
mentary calculation given above. 

There is a certain ambiguity in the diagonalisation of A because the 
diagonal elements in D can be permutated corresponcling to perrnutations 
of the columns in Q. However, t.he definition of J(A) is unaffected by this 
ambiguity. It becomes easier if we consider the spectral representation of A 
given by 

p 

A = l:Vl 
1= 1 

where .-\ 1, .. . 1 >.p are the eigenvalues of A (not counting multiplicity) and 
P1 , . , Pp are orthogonal proj ections wi th the identity matrix as sum. This 
representat ion is unique and 

m 

f (A) = 2:: f (>.,) P;. 
i = I 

The funct.ional calcuh1s can be extended to self-adj oint operators ac ting on 
an infinite-dirnensional Hilbertspace, but we will consider the theory only 
for matrices in arder to avoid unnecessary complications. 

D efinition 2.1 A real function J defined on a real interval l is said to be 
mat.rix monotone of order n, if 

X$ y =O> f (x ) $ f (y) 
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for all hennitian n x n matrices x, y with spectra contained in I . 

We say that a function is operator monotone, if it is matrix monotone 
of arbitrary arder. 

2.2 Functions of severa! variables 

Let us consider the function f(t, s) = ts of two variables and two quadratic 
matrices A and B of orders n and m. We wottld like to define the matrix 
f(A , B). What would be a good definition? Korányi [14] proposed that the 
definition should be the tensor product 

J(A,B)= A ® B 

of A and B. lf 

A = ( ª" .... a1. ) 

ª111 ... ª1111 

then the tensor product is given by the block matrix 

( 
a11B 

A ®B = a.1B 

which is of arder n.m. If J = /1/, can be written as the product of t.wo 
íunctions each depending of only one variable, then we set 

J(A, B) = f 1(A) ® h(B). 

The definit.ion can then be extended by linearity in f ( we want the map­
ping f ~ f (A, B) t.o be linear) and continuity. We may also extend the 
definition 1.0 functions of more t.han two variables and obtain: 

Defini t ion 2.2 Let. f: 11 x · · x h ~ R be a real funct.ion (of any kind) 
defined on a prodnct. of real int.ervals, and !et x = (x1, . .. 1 xk) be a k-tuple 
of real symmet.ric matrices such that. the eigenvalues of X¡ are contained in 
l, for i = l , ... , k. We say t.hat. such a k-t.uple is in t.he domain off. If 
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p; 

Xi= L>..t,iPt¡i i = 1, .. ,k 
t; =l 

is the spectral resolution of Xi, we define 

PI Pk 

f(x) = L · · · L .f(>,,,, ... , >.")?"' 0 · · · 0 P,,. 
t; = l t1< = l 

as t. he function f applied to the k-tuple x = (x, , .. ,xk). 

If the k-tuplex = (x ,, .. ,xk) isoforder (ni, . ,nk), then J(x) isa real 
symmetric rnatrix of order n 1, 1 nk. 

1 t is not obvious to extend the concept of monotonicity from functions 
of one variable to ftmctions of severa! variables. This is so because there 
is no nat.nral order structure on t11p les of matrices. It is completely trivial 
to define the not,ion of matrix convex.ity far functions of severa! variables, 
simply because the definition of matr ix convexity only involves the arder 
struct.ure for matrices. 

D efinition 2.3 A function f : 11 x · · · x h ----> R delined on a product of 
real intervals is said to be matrix convex of arder (n1 1 ... , nk) i if the matrix 
inequality 

f(>.x + (1 - >.)y) ~ >.f(x) + (1 - >.)f(y) 

holds for any >. < ¡o, 1] and ali k-tuples of matrices x = (x,, ... , xk) and 
y = (y, , . , Y• ) of order (n1 , •.. , nk) in the domain of f. 

The delinition is meaningful since also >.x + (1- >. )y is contained in the 
domain of f. We say that J is operator convex, if f is matrix convex of 
every order (n 1, .. . , nk)-

3 Sorne matrix inequalities 

Lliwner (1934) !16] proved that a function delined on an open interval is 
opera tor rnonotone, if and only if it allows an analyt ic continuation into 
the romplex upper half-plane with nonnegative imaginary part, that is an 
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analyti continuatio11 to a Pick function [3]. The fu11ct ion f (t) = t 2 is 
not even matrix monotone of order 2 on any interval, while the function 
f(t ) = t• is operator monotone 011 the positive half-axis, that, is 

(3.4) a< [O, !) 

for positive matrices x 1 y. The result follows from LOwner's theorem, but 
this was not rea1 ized at the time when L6wner published his article. The 
ineq11ality was independently proved by !-leinz {1951) [12), and it is today 
known as the LOwner-Heinz inequality. 

A number of different proofs of th.e LOwner-Heinz inequality are known. 
Thc following proof gives a useful integral decomposit ion of the inequality 
in terms of functions belonging to the extrema! rays in the convex set of 
opcrator monotone functions defined on [0 1 ool. Since inversion is matrix 
decrcasing, t.he functions t ---+ t (t + Ar1 are operator monotone on [01 00! 
for ,\ 2'. O. The identity 

(3.5) 

follows by making the snbstit ution x-----> 1- 1,\ in [5, Integral no. 3.222 (2)]. 
Wc thns obtain that f(I.) = t• is operator monotone for a' [O, !J. Pedersen 
( 1972) [17] gave a truly elementary proof of the Lówner-1-Ieinz i11equali ty. 

Let f be a real function defined 011 the positive half-line with f (O) 2'. O. 
lf J is matrix monotone of order 2n, then the inequality between n x n 
matrices 

(3.6) f(a" xa) 2'. a· f(x)a 

is vaJjd l6J for any contraction a and any real symmetric matrix x in the 
domain off. [fon the other hand the same inequality is satisfied for 2n. x 2n 
matrices, then f is matrix monotone of order n, cf. [ 10, p. 233[ . No t i ce 
l.hal. the funr t.ion f(t) = t 2 is matrix monot.one of order 1 on [O, oo[ but does 
not sat.isfy the inequalit.y for x = 1 and a = 1/ 2. 

Davis ( 1957) [2] proved that. a r.ont.imt011s fnnct.ion defined on an int.erval 
cont.aining zero satisfies the pinching inequalit.y 

(3.7) pf(pxp)p $ pf(x)p 

for ort hogonal projections p and real symmet.rir matrices x in t.he domain 
of f 1 if and only if it. is operator convex. 
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Theorem 3.1 A function f defined on an interual J containing zero is 
operator convex with f (O) '.Ó ffi, if and only if it satisfies !he matrix inequality 

(3.8) f(a•xa) ~a· f(x)a 

for contractions a and real symmetric matrices x in the domain off. 
It is essential in the two aibove tfueorems that no bounds are given on the 

order of the matrices. The last res11lit is knmvn as Jensen's matrix inequality 
for functions of one variarble [1© 1 8) . The above matrix inequalities have 
extensions to functions of severail va:riables [1]. 

4 Differentiable matrix functions 

Let X and Y be Banach s~aces. We say th&t a function f : A ~ Y defined 
on a subset A of X is Fréchet diifferentiable atan inner point x0 e A, if there 
exists a bounded linear operaitor df(x0 ) ' B(X, Y) such that 

lim ilhll- 1 (f(xo + h) - f(xo) - df(xo)h ) =O. 
h-0 

Likewise J is said to be Fréchet differentiable in an open set A, if f is 
Fréchet differentiable at every point x0 t A. We say that f is continuously 
Fréchet di fferent iable, if the clifferential mapping Ax ~ df(x) < B(X, Y) 
is continuous. The exponentiail function in a Banach algebra is an example 
of a continuously F'réchet differentiable function. 

Proposition 4.1 Jf A is a Banach algebra, then the exponential function 
x ~ exp(x) is continuously Fréchet differentiable, and 

dexp(x)h = f, 1 
exp(sx)hexp((I - s)x) ds 

Jor ali x and h in A. 

An interestiug and non-trivial question is to specify conditions under 
which the map T ~ f (T) is Fréchet differentiable, where J is a real 
ftmct.ion defined on an open int.erval 1 and T is in the dornain off. It is a 
necessary but not sufficient condition that f is continuously differentiable, 
cl. {19J. However 1 if we restrict ourselves to consider hermitian matrices of 
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a certain fixed order, then the function T ~ f (T ) is Fréchet differentiable 
if and only if f is continuously differentiabe and 

(4.9) df(T)S = j 11i(T ) o S 

where o is the Hadamard product and 

(4.10) 

is the Lowner matrix l 11J defined from the (not necessarily distinct ) eigen­
values ,\1, .• • , ,\" of T . The defini tion of the divided differences introduced 
in section l for an arbitrary real function defined on an interval I and mu-
1.ually different real numbers in 1 can for a differentiable function defined 
on an open int.erval be extended by setting 

(4.11 ) ltsj¡ = t - s { 
f( t) - f (s) 

!' (t ) 
for t # s 

for t = s 

for anyt, < 1. lt is tacitly assumed in equation (4.9) that the Fréchet diffe­
rent.ial is identifiecl with its matrix representat.ion in a basis of eigenvectors 
for T corresponding to t.he eigenvalues >.1,. • , >., •. 

T he not.ion of higher order Fréchet differentiability can be defined in 
a very natural way. The F\·échet differential df of a Fréchet differentiable 
funct.ion J : A --+ Y defined on an open subset A ~ X is a funct ion from 
A into the Banach space B(X, Y ) of bounded linear functions from X to Y . 

lf df is Fréchet. differentiable, then we define the second Fréchet differ­
cnt.ial of f , denoted by d2 f , to be t,he Fréchet differential of df. The sec­
ond order Fréchet. differential can be considered as a function d2 f : A ~ 
B2(X, Y ) from A into t.he Banach space of bounded bilinear fttnctions from 
X to Y . T he second Fréchet different.ial á' f (x) is symmetric in t.he sense 
that, á' f (x)(h , k) = d2 f (x )(k , h ), cf. l4J. 
Proposit ion 4 .2 l et A be an open convex subset of a real Banach space 
X and /et H be a Hilbert space. A t11Jice Fréchet differentiable fnnction 
f : A ~ B(H ),. is convex, if and only if 

d2 f(x)(h , h) 2'. O 

far each x < A and all h < X . 



172 Convex matrix fun ctions 

The result follows by adapting the reasoning of classical analysis to the 
present situation and can be found in [4 , Exercises 3. 1.8 and 3.6.4]. The 
author [7] gave the following sufficient conditions for second order Fréchet 
differentiabi lity. 

Theorem 4.3 Let f ' CP(I) where I = 11 x · · x h is a product of 
open intervals and p > 2 + k/2. The function x ---> f( x) defined on k­
tuples of self-adjoint matrices x = (x 1 , ..• ,x.) in the domain off is twice 
continuously Fréchet differentiable. 

The above theorem can be extended 1 ad verbati111 1 from matrices to 
self-adjoint operators on Hilbert spaces. Far matrices of a fixed arder t. he 
condition p > 2 + k/2 may be somewhat rela."Xed. However, we shall make 
use of a type of Fouri er expansion of the second Fréchet differential for which 
the stated condition is the proper one. 

5 T he second Fréchet differ ent ial 

Let f be a twice differentiable real function defined on an open in terval 
f <::; R. The d ivided difference [.\µ]¡ of f in the point.s ,\ , µ ' f defined in 
equation (4.11 ) is a symmetr ic f1111ction of the two argument.s with partía] 
derivatives in each oí the two variables. The second divided difference [>.µ(]¡ 
off in the point.s ,\, ¡t, ( ' I is defined as ¡ [.\µ]; = r(J¡ for ,\ # ( 

[.\µ(]¡ = ~[.\µ]¡ for ,\ = ( # µ 

~f"(.\) fo1 A=(=µ 
2 

It is a symmetri r and contin11011s function oí the three arguments. 
Let f : / 1 x · · · x h ---t R be a íunction defin ed on a product oí open 

intervals wi th ronti n11011s partial derivatives up to t he second order. We 
define t.hc part ial div ided difference off in the points µ 1 and ¡t 2 by set.t.ing 

where 
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We similarly define the second partial d ivided difference of f in t he points 
¡; 1, µ, and µ 3 by setting 

Partial divided differences are simHar to partial derivatives, and we may 
define also mixed second partial d ivided differences for a function of severa! 
variables. They are defined by setting 

i>. il · · · lµ1µ2I · · · 1661 · · · l>.•11 

\>.d · · · lµil · · · 1€161 · · · l>.•J} -1>.d · · · lµ2I · · · 1661 · · l>-•I} 
µ¡ - µ, 

for µ 1 # µ 2 and ot herwise 

where the µ 1s are in posit ion i and the {'s are in position j for i ¡. j. The 
notation does not imply any particular arder of the coordinates i and j . We 
have defined t he mixed second partial divided differences by fi rst dividing 
in coordinat.e j and t.hen in coordinate i, but we get the same result by 
rev rsing t.he arder. This can be considered as a generalizat ion of Young's 
theorem for partial differentials. 

r 

An element A e !~1 x · · · x I~1" is called a data set of arder (n1, ••• , nk) 
for J. \A/e may write it in the form 

(5. 12) 

A data set J\(x) € 1;11 x . . x 1~1r can be obtained from a k-tuple x = 

(x1, ••• , xk) of self-adjoint matrices of order (n1, . . . , n , ) in the domain of 
f by choosing t.he numbers >.1(i), .. ,>.n,(i) as t he (possibly) degenerate 
eigenvalues of x, for each i = 1, ... 1 k. 
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5.1 Generalized Hessian matrices 

Definition 5.1 Let f : 11 x · · · x h ~ R be a function defined on a product 
of open intervals with continuous partial derivatives up to the second order, 
and let 

be a data set of arder (n1, •.. ,n,) for f. We define for each k- tuple of 
natural numbers (m11 .. , mk) ::; (n1 , ... 1 nk) a generalized Hessia.n matrix 
H (m1, .. , mk) associated with f and the data set A by setting 

H(m1 , . •• ,m,) = (H"'(m1, ... ,m,))u,•= I, .. .,k 

where Hwi(m1 , . . 1 mk) is anu x ns matrix withentry 

for s i' u and entry 

H.,(m¡,. , mk),.;. = 2[>.,,., (l)J ... J>.m.(s)>.,.(s)>.,.(s) J .. J>.m,(k)Ji 

for u= s. 
The generalized Hcssia.n H(m 1,. , mk) is a real and symmetric mat.rix 

of arder 11 1 + ... + n.,. Jf t:he arder of the data set A is {! , .. , ! ), then 
t.herc is only one generalized Hessian matrix H( J 1 ••• , 1) and the data set A 
is redured to the k nurnbers >. 1(1), ... ,>. 1(k). The subrnatrix H.,( l ,. , l ) 
isa l x 1 matrix wit.h the partial derivative f~sP1( l ) 1 ••• 1 .\1(k)) ascntry, 
and // ( l 1 .•. , l ) identifies with !.he usual Hessian matrix of J at the point 
(>.1( !), ... , >. 1(n)). 

Let us look at sorne examples. For typographic reasons we wi ll in some 
formulas write .\:as short;hand for .\¡(s) and ignore the int.rinsic a.mbigui ty 
in the symbol. \Ve may also omi t the su bscript representing the function 
f in the divided differences when there is no possibili t.y of confusion. lf we 
set. k = 2 and n1 = n2 = 2, then 
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21Al AP·llAiJ 
21Al AlAllAiJ 
IAl Al lAiAlJ 
[AlAl lAiAlJ 

J:2(Al.Ail 
IAl Al IAlAiJ 
JZ,(Al' A;J 

2IAl1AiANJ 

IAlAllAlAiJ 
IAlAllAlAiJ 
2IAl 1AlAlAll 
21Al IAlAlAlJ 

Similarly for H(2, 1) and H(2, 2). Notice that the ordinary Hessian 

H- ( J:'i (A:,AiJ ¡;',(Al.Aj) ) 
- J:2(Al. AJ) g,(Al,Aj) 
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is the principal submatrix of H (l , ! ) obtained by selecting rows and columns 
n11mber l and 3. Likewise, it appears as the principal submatrix of H (l , 2) 
obt,ained by selecting rows and columns number 1 and 4. This is a reftection 
of a completely general phenomenon as we shall see in the next section. If 
w consider a generalized Hessian matrix H{m1, . .. , mk) associated with 
a data set A written on the form 5.121 then the ordinary Hessian of the 
function f at the point (H,,., (1), , H,,.,(k)) appears as the k x k principal 
submatrix of H(m1, .. . , mk) obtained by select ing the rows and columns 
numbered by m 1, n ¡ + m 21 n 1 + n2 + m 31 • •• 1 n1 + · + nk- 1 + mk. 

We have t he following strncture theorem for the second Fréchet diffe­
rential of the fw1ctional calculus mapping. 

T heorem 5.2 Let f ' CP(J1 x · · · x h ) whern l ¡, , h are open internals and 
p > 2 + k/ 2. The function x _____, f (x) defined on k-tuples of m atrices in the 
domain off is twice F\·échet differnntiable. Suppose that x = (x1, . . . , x, ) 
actsonfixed. Hilbert spaces H11 ••• , Hk of dimensions(n1 1 •• • 1 nk). A vector 
>pin the tensor product H, 0 .. ·@H, is specified by aftm ction >p(m1, . •• , m,) 
of k natural num bers by setting 

'" = ~ ... ~ '"(m,,. ) 1 "" ,,, ' T 0 ~ y · · 1 1nk em¡ 'OI ' • ' 'OI € 111k 
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where (eL .. 1 e!J is an orthonormal basis for H, consisting o/ eigenvectors 
for x, for each s = 1, ... , k. The expectation value is given by 

(d2 f (x)(h, h)cp lcp) 

I; f; (H(m1, ... ,m,)<l>h(m1, ... ,m,)l<!>h(mi, ... ,m,)) 
m¡ = l m1r=l 

where H (mi, ... , m,) are the generalized Hessian matrices associated with 
f and ¡\ ( x). The vectors 

( 
<l>~(m 1 , .... ,m,) ) 

.,m,) = 

<l>~(m 1 , ... ,m,) 

are for each s = 11 •.• 1 k and m, = 1, ... , n.11 given by setting the entry 

forj, = l , ... ,n,. 

5.2 Variant Hessian matrices 

Let f E C2(11, ... , lk ) where 11, ... , Ik are open intervals. We considera 
generalized Hessian rnatrix 

H(m1, •.• ,m,) = (H.,(m¡, ... ,m,))~ .. ~• 

6S&>C'iated with f and matrices x = (x11 ... ,xk) of arder (n11 ... , nk) in 
lhe domain off for a k-tuple (m 1, .•• , m,) ~ (ni, .... n,). The possibly 
degenerate eigenvalues of x, are denoted .>. 1 (s), ... , ""· (s) for s = 1, ... , k. 
Each entry Hw(m1, ... , mk) is an nu. X n, matrix with it.s entry label led by 
the indices Pu. and j, (Pu= l , .. . , nu 1 j, = 11 ••• , n,). 

\ \le first introduce a principal submatrix of H (m1, ••• 1 m.1;J by selecting 
row mu in lhe blocks Hu1 (m1, ... , mk), ... , Huk(1n1i . . , mk) for u = 1, ... 1 k 
and colurnn m, in the blocks H1 ~(m 1 , ... , mk)i . . 1 H1;-,(m11 ... , mk) for s = 
1, .. _, k . lndced, thcsc rows and colunms are numb red m1, n1 + m2 1 n.1 + 
n2+m3, ... 1 n 1+···+nk_ 1+mk in H(m1, .. ,mt). amely,for cach u,s 
we rctain from the nu x n., matrix flu1(m11 .. , mt) ju.st. one entry wit,h t,hc 
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index (p.,j,) = (m.,m,) The resulting principal submatrix is a k x k 
matrix with entries labelled by u 1 s and given by 

{ 
[>.~,I · · · l >.;.,>.:n. 1 ··· 1>.~.>.~J · · · l>.!;..J'" s #u 

2¡>.~,I · · · l>.;.,>.;.,>.;., I · · · l>.~.l' s =u 

={ 
!~., (>.~¡!' .. ,>.~k) s#u 

S=U 

lt is thus the usual Hessia,n matrix for f at the point (>.~,, . . , >.:;,,). 
Next we define a so crullled variant Hessian rnatrix. as the block matrix 

where Vu_,(m1 1 • , mk) for each u, s is obtained from Hus(m1, ... , mk ) by re­
taining the following entries and replacing ali et.her entries by zero. The re­
tained entries are all diagonal entries of the diagonal blocks H.u(m11 .. , mk) 
and one entry (p,,,j.,) = (m.,m,) from each oí the off-diagonal blocks 
H.,(m1, •.• , mk). Notice that the entry (p,, j,) = (m,, m,) in the diagonal 
block H,,(m1, ... , mk) is a diagonal entry and thus retained. Tlle resulting 
variant Hessian matrix is a·n orthogonal direct sum of the principal sub­
matrix constructed above aind a diagonal matrLx. Tbe variant Hessians are 
symmetric matrices of arder n 1 + · · · + nk. lf we set k = 2 and n 1 = n2 = 2, 
then 

( ¡:, l>l.>ll o f':,(>.l,>.l) 

'l'J,,,,,) V(l , 1) = J" (~' >.') 
2 [>.l>.J>.Jl>.iJ o 

21 11 l o !2', (>.l,>.l) 
o o o 

and 

- ( ¡;, 1;:.~1 o o n,1¡:.~1 l 2 [>.l>.J>.Jl>.lJ o V( l,2)- O o 2 [>.ll>.l>.i>.iJ 
!21 (>.l,>.l) o o ¡;, (>.l, >.l) 

Simjlarly for V(2, 1) and V(2, 2) . 
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6 Convexity theorems 

6.1 Operator convex fü.nctions 

The Combination of Theorem 5.2 and Proposition 4.2 entails: 

Proposition 6. 1 Let f 'CP(I1 x · · · x I.) where [ 1, . , [, are open intervals 
and p > 2 + k/ 2. If for a k-tuple (n1, . . . ,nk) of narural numbers all of 
the generalized Hessian matrices associated with f and any data set A e 
1;ii x · · · x !~" are positive semi-definite, then f is matrix convex of order 
(n 1, ,n.) . 

It is thus a sufficient conditi011J. far f to be operator convex that all of the 
generalized Hessian matrices assooiated with f and any data set of any arder 
are positive semi-definite. 

The condi t ions given in Proposition (6.1) for mat rix convex.ity of a fixed 
a rder ( n 1, ... , nk) of the functioN f ave also necessary1 if either ( n 1, ... , nk) = 
{l , ... 1 l) or k = l. The former result is a well k.nown part of classical 
analysis, while the lat ter is due to Kraus [15]. It is unknown whether the 
conditions of Proposit.ion 6.1 are necessary for the matrix convexity off in 
any other case. 

Let µ 1, ••. , µ• < [- 1, 1] and consider the function 

k 1 
J(t, , .. . , tk)= II-­

•=l l -µ,t, 
t¡, ... ,t. ' ]- 1, 1[ 

of k variables. 1 t is an exercise [7, p. 461] to calculate the generalized 
Hessian matr ices associated with f and any data set 

A ']- 1, l['"x ... x] -1, l[n' 

given on the form (5.12). lndeed 1 the blocks in the generalized Hessian 
matrices are given by 

for s '#u, and 

H,.(m1, ... , m.) = 2f(Am, (1), . , Am, (k ))a(s) 'a(s ) 
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for s = u, where the vector a(i) , R "' is given by 

for i = 1, ... , k and a(i)' denotes the transpose oí a(i). Consequently, for 
ea h k-tuple (m 1, . . , m.) ::; (n 1, .. ,n.) the generalized Hessian matrix 
H(m 1, • . • , m•) is the product oí /(.l."" (1) , . .. , Am,(k)), wh.ich is a positive 
factor depending on Lhe k-tuple (m 1, •.. ,m.), and the matrix 

( 

2a( l )'a( l ) a(l)'a(2) 
a(2)'a(l) 2a(2)1a(2) 

a(k);a(l ) a(k);a(2) 

a( l )'a(k) l 
a(2)'a(k) 

2a(k)'a(k) 

whirh is independent of (m. 11 ... 1 mk) . The latter matrix is bounded from 
bclow by the positive semi-definüe matrix 

( 
a(l)'a(l) 

a(k)'a( l ) 

a(l )1a(k) ) 

a(k );a(k) 

= (a(l) a(k))' (a(! ) a(k)) 

Wc conclude from Proposition 6.1 that f is matrix convex of every ordcr 
(n 11 . , nk) aud hence operator convex. The next result is an immediate 
consequence. 

Theorem 6.2 let k be a natural number, and let v be a nonnegative Borel 
m easure on tite ccmpact cube [-1 , !J'. The ftmction 

f (t,, .. , t,) = J' ... ¡' rr -1- dv(µ , , .. . ,¡,,). 
- 1 - 1 i ::: J 1 - µ,t , 

is operator convex on the open cube J - l , llk . 
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6.2 Convex trace function.s 

Proposition 6.3 A fu.nction f' C 2(!1, ... , h) defined on a product of open 
interuals 11, . • , h is convexi if and only if all variant Hessian matrices 
a.sociated with f are positive semi-definite. 

Proof: The variant Hessiain rnatrix is, as explained above, an ortihogonal 
direct sum of the princi11>al Hessiarro. matrix constructed ab0ve and a dia­
gonal matrix. Tbe positive sem•i-crlefümiteness of the variant Hessian matrix, 
therefore, is equivalent to the sarme for the two {mutually orthog0nal) sub­
mat rices. The first one is the usmal Hessian matrix of an ordinary function 
f as displayed above arnd f.J.ence its positive semi-definiteness is efi!.uivalent 
to the ordinary convexity of tfo.e füaN.ction J, as is well-known. On the ©ther 
hancl , the {diagonal) entries of the diagonal submatrix are partía! second 
divided differences which are arlil moFi-negative if. f is convex. Thevefore the 
assertion follows. QED 

Theorem 6.4 Let f € C 11 (!1 X ... X h) where f¡ ' .. ' Ik are open intervals 
and p > 2 + k/2. The fun ction x ~ J(x) is twice F'réchet different.iable 
·i11 the domain of f. We defme to each k-tuple h = {h1,. , hk) of self 
adjoint matrices of order (n¡ 1 • , nk) and each k -t:uple of na.tural numbers 
(m 1,. , m.) ~ (ni, , n,,) the block vector 

when! w~(m,);, = h:,,,;, is the (m,,j,)-entry o/ the matrix variable h' for 
j, = l , ... , n, and s = 1, ... , k. The Prace of the second F'réchet differentiol 
Jor ead•k-tuplex = {x 1,. , x.) of self-adjoint matrices of order (n , , ... ,n,) 
in the domain of f is given by 

Tr (d2 f(x)(h , h)) 

f: f: (11(m 1, .. .,m.)'i'"(m1 , ... ,m,) l 'i'"(m1 , .. .,m,)) 
m1 = I m~= l 

where \l (m 1, ... , mk) form,, = 11 ••• 1 n, and s = l, ... , k are the varianf. 
Hesswn matrices associaled with f and the matrices x = (x1 1 • . , xk)-
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Theorem 6.5 Let f be a convex function defined on a product 11 x · · · x I. 
of open intervals. The trace function 

is convex on k-tuples of symmetric matrices in the domain off. 

Proof: Suppose that f is continuously differentiable of order p > 2+k/2. It 
is not cliflictdt l9J to establish that the trace ftmction above is twice Fréchet 
differentiable with Tr(d2 J (x1, ... , xk))) as second Fréchet differential. We 
then combine Theorem 6.4 and Proposition 6.3 to obtain the desired re­
sult. In the general case we approximate f with a sequence of convex 
e -funct.ions (!,,) , which may be chosen oí the form J,, = f *e,, for a 
C00-approximate unit eu with compact support. 
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