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Abstract

Explicit Runge-Kutta pairs are the most popular methods for
integrating non-stiff initial value problems. Basic theory concerning
its accuracy, stability and other properties is presented here as long
as with implementation issues. Finally a new pair of orders 5(4)
suitable for oscillatory problems is presented and tested.
Keywords: order conditions, truncation error, stability, embedded
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1 Introduction.

The general class of initial value problems of first order can be written as:

v'=fz,y), ylzo) =y €R™, € [z, (1)
where f: R x R™ — R™.
Explicit Runge-Kutta (RK) pairs are widely used for the numerical so-
lution of the initial value problem (1). These pairs are characterized by the
extended Butcher tableau [2, 3]:
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with 67, b7, c € R* and A € R*** is strictly lower triangular. The procedure
that advances the solution from (zn, Yn) t0 Tnt1 = Tn+hn computes at each
step two approximations Yp1, Jn41 10 Y(zn+1) of algebraic orders p and p—1
respectively, given by

Ynpl = U+ hn il b; frs (2)
and !:
Dndial = Ut ilin Zl‘)ifm"
with e
-1
i = f(@n + Cihn, Yo + hn; ij fns) ®)

for i = 1, 2,..,5 > p. In the following we use letters with cups to de-
note quantities pertaining to the lower-order method of a pair. The me-
thods studied in this article obey the simplifying assumption A - e = ¢,
=il 1) e R
From this embedded form (called RKp(p— 1)) we can obtain an estimate
By = [Yns1 = sl
of the local truncation error of the p — 1 order formula. So the step-size

control algorithm

TOL

fnga = 0.9+ P+ (4 )ip, (4)
n+1

is in common use, with TOL being the requested tolerance. The above
formula is used even if TOL is exceeded by By, but then k., is simply the
recomputed current step. See (25] for more details on the implementation
of these type of step size policies.

2 Trees theory for RK methods

2.1 Taylor series expansions

Setting ' = 1, then problem (1) reduces, without loss of generality, to
the more convenient autonomous problem y' = f (y) . When advancing the
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p—order RK method (2-3), applied to the latter problem, we actually try
to approximate the corresponding Taylor method of the form

(Ena) S Y @)+ by (o) + Y (o) o 2 ), (9

On the other hand we may expand fn; around the point (z,,¥») and derive
from (2) the expression

Uns1 = Un + hauyp + hPaayy + h* (q:nf’f i ‘hzf”fz) A (6)

with ¢,; depending exclusively on the coefficients A, b, c.
Verify now,

oo BEQED _0F . .
=3 =15

o
v o= Lo+ Ly pnsres,
v = SLan+ L LAy

= "(LED+FFEF+ P +3F(FF. 1),

where the elementary differentials f” (f, f), f” (f, £, f), f'f" (£, f), f" (f'f,
f) are Frechet derivatives, (9, pg 158].
After matching (5) and (6) we arrive at

¥(@ns1) = Ynpr = h(qu — 1) f + 12 (qm-%) §§f+
0 of & :
AR (A i
So requiring ty = gu —1=0,tn = qgun—3 =0, ts = g —§ = 0,

tsa = qua — ; = 0 we conclude to the order conditions we have to satisfy
for constructing a third order method. The order conditions up to fourth

@
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Table 1: The equations of condition of Runge-Kutta methods, for orders

1-4.
canion e T
th=b-e—1 be fe
l21=b'6—% | e fo f
ty =3b.c?— 1% b.écc fﬁZ}

¢32=b~A<c—é b./QC fl./‘(’f

tio=1b-A-c*— % bo—fg f"—f/"f
to=b-C-Ae=} | bell® !

f
g = b A2 ol L b/ﬁ/C f'ff

order are listed in first column of Table 1. In this table we denote by ¢' the
componentwize multiplication ¢: ¢ - - ¢ (i-times, assuming ¢® = e), for which
we allow a higher order of precedence over the regular (matrix-to-matrix or
matrix-to-vector) multiplication (dot product). Moreover, the same symbol
will be used here to denote both types of multiplication. Whenever both
types of multiplication are found simultaneously in a relation and there is a
possible conflict, we distinguish the order of precedence, by the proper use

of parenthesis. We also define C = diag (c).
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2.2 Trees and Rooted trees
Equation (7) has the form

V) =thas =3 T Wi (8- =) P
i=17€T, 7(7)
where T; is the set of rooted trees of order i [18], o, v are integer-valued
functions of 7, ® is a certain composition of A, b, ¢, the skeleton of which
depends only on 7 and F is an elementary differential [4].
We then consider that a Runge-Kutta method is of order p if and only
if

X{(r)= 3 r) (‘P( )—-7—(17_—))=0, for every 7 € T;, for i = 1(1)p,

The above relation defines a set of order conditions, which are linear in the
components of b and nonlinear in the components of A, ¢ (see, for example,
Hairer, Nrsett and Wanner (7] or Butcher [4]). In the following the symbol
T denotes a vector whose elements are all the elements of the set X (7})
in some prescribed (but otherwise arbitrary) order.

The unique matching between a rooted tree 7 and an order condition,
comes clear after putting b at root, A at internal nodes c at leaves and using
a prefix multiplication. Then we produce the single @ (7) from the order
conditions. For example using the following tree 7 we name its nodes

~at
b, ANe
and we produce ® (1) = bC A%c?.
In the same sense we derive the corresponding elementary differential.

We put at every node (including root and the leaves) f*) where k is the
number of successors of the node. Using the same tree and putting the

derivatives
w f
W

we conclude to the elementary differential F () = " (f, f'f" (£, f)).

The two columns at right of table 1, show this relation for order condi-
tions up to four.

-
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The number of equations of condition (equals the number of rooted trees)
for orders up to ten are given in the first row of table 2.

Now observe that F (tsa) = f'f" (£, f) # " ('f, £) = F (tas) for sys-
tems of ODEs enforcing two separate equations t4, and t43. But this is not
necessary in the scalar case since ' f/ (f, f) = f"- f'- f2 = f"(f"- £, f),
and these equations may combine in t4p + t43. The enumeration of order
conditions is based in the relevant theory of unrestricted partitions of a
number [18, pg 122]. The number of order conditions up to tenth order, for
the scalar autonomous problem, are listed in the last row of 2.

3 Runge-Kutta methods for Periodic Pro-
blems

In a previous work [11] we have considered the problem of the construction of
specially designed methods for periodic initial value problems. The methods
were designed in such a way that for linear systems with f(z,y) = Ay+g(z),
where A is a matrix with pure imaginary eigenvalues, the phase error of
the free oscillations in the numerical solution is small. A second class of
problems with a solution described by free oscillations of high frequency
and forced oscillations of low frequency can be efficiently integrated by these
methods also. In all other cases the greater the ratio min |Ay(w)/g(x)| the
better the efficiency of the methods. RK methods for problems of this type
were introduced by Houwen and Sommeijer in [8].

The study of RK behavior when applied to oscillatory problems is ana-
lyzed through the scalar test problem,

Y =iwy, wewR i=V-I, (8)

Table 2: The number of order conditions for systems and scalar autonomus

equation.

order [1..2. 844 15046 4 Tl SINNONET 40
system 1 1 2 4 9 20 48 115 286 719
scalar aut. | 1L 208 & 51T L6830
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which yields the numerical solution y, = (P(v) +1Q(v))" yo = R" (v) %o,
with v = wh. The polynomials P, Q are

P@) = 5 (-1/v¥t, QW) =3 (-1 ¥,
=0 =

where t', = 0, t, = 1 and tj = bA’'e. So the numbers t; depend only
on the coefficients of the method. Actually t’s are parts of order conditions
since t] = ®(tn), th = ®(ta), thy = P(tg), ty = (ta), t§ = P (tso),
ete. It must be observed that for explicit methods (that is for A lower
triangular), the summation in the determination of P (v) and Q(v) above
is finite (specifically, j runs from 0 through s).

The phase-lag (or dispersion) order of a RK method is defined as the
order of approximation of the argument of the exponential function by the
argument of R along the imaginary axis. Symbolically, the phase-lag order
of a method is g, whenever 6 (v) = O (v**!), for § (v) = v —arg (R (v)). For
RK methods this notion has been introduced in [8]. The imaginary stability
interval of a RK method I; = (0, ) is defined by the relations |R (v)| < 1
and |R (vg + 0)| > 1, for every v € I; and every suitably small positive 0.
A method characterized by a non-vanishing imaginary stability interval is
called dissipative. High order methods of this type can be found in (23, 24].

Although for a RK method the phase-lag property is defined for the
special problem (8), as it was shown by the numerical tests presented in
[11, 15] RK pairs of high phase-lag order exhibit a remarkable numerical
performance on a much wider class of test problems. This results was re-
cently extended even for multistep methods [26]. It seems that for a certain
class of initial value problems (as those whose solutions are described by free
oscillations or free oscillations of high frequency with forced oscillations of
low frequency superimposed, over long integration intervals), it might be ad-
vantageous to use pairs of methods of high phase-lag order with minimized
leading truncation error coefficients instead of pairs of the same algebraic
order as the latter, but with a phase-lag order equal to the minimal allowed
by the number of stages and their algebraic order.

The dissipation order of a RK method (see Houwen and Sommeijer (8])
is defined as the order of approximation of the modulus of the exponential
function by the modulus of the characteristic function P (v) of the method
along the imaginary axis. That is the dissipation order is ¢, iff a(v) =
O (v**'), for a(v) = 1 — |P (v)|. For higher dissipation order RK pairs see

- @)
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Table 3: Phase lag order conditions for a fourth or fifth order method.

order | phase lag equation
6 1/120— ¢, =0
8 1/840 — ty +t =0
10 1/2268 — t4/3 + 1ty — th =0
12 221/1247400 — t}o + th, — 2t4/15+ t4/3 =0
14 349 /4864860 — t,/3 + th, — thy — 17t4/315 + 2t4/15 = 0

16 | 74251/2554051500 — 2t}0/15 + t;,/3 — 62t} /2835 + 17t}/315 = 0

[23]. In practical situations one is interested in estimating the phase-lag and
dissipation order of a pth algebraic-order RK method. Explicit formulas for
both these quantities are offered by the following theorem.
Phase-lag and dissipation order conditions for RK methods.
A RK method is of phase-lag order 27, iff for every k =1,...,m,

Xy (k) =0 and X, (1, + 1) #0

where

K 92(k=ni1) (22(k—n+l) |
AL o s

ne=l

Bak-nt+1)tan—2 = tog_1

and By, = By, (0) are the Bernoulli numbers. Moreover a method is
{ of dissipation order 74 > 2 iff for every k = 2,...,7rq, Xq(k) = 0 and

& g k
Ka(ra+ 1) #0, where Xy (k) = & (hnathuanyict Eon it oty
Proof: The proof concerning phase lag order conditions has been given in
[11). The proof concerning dissipation order conditions can be found in [15].

If a specific method is of algebraic-order p, then one should take into
account in the previous theorem, that from the algebraic order conditions
itist, =4 for0<j<p

Interpreting the theorem above we conclude to the phase-lag order con-
ditions listed in Table 3, (8].

Actually a fifth algebraic order method satisfies phase-lag order six since
1/120 = ¢, is an order condition.
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4 Stability for Runge-Kutta methods

There are two kinds of stability when dealing with numerical methods for
ODEs. Zero stability and Absolute stability. We use them for the investi-
gation of the behavior of methods when selecting very small or large step
sizes respectively.

Zero stability is tested to the model problem y' = 0, with analytic so-
lution y (z) = y (2o) = constant. Runge-Kutta methods are zero stable by
construction. It is easy to confirm that the sequence we produce apply-
ing a RK method to the test problem is yo = yy = -+ = y, which is in
accordance with the theoretical solution. Zero stability and first order of
accuracy ensure the convergence of the method to the solution.

Absolute stability is tested to the problem

¥ =My, ReA<O. (9)
This problem has a stable fixed point at y = 0. When a discrete numerical
scheme is applied to (9), yn41 < Y is expected to hold.
Applying an explicit RK method to (9), we observe that

Yny1 = R(H) - yn
whereR(H)—l+):jr’1~{J with H = Ah. It is natural to ask for |R (H)| < 1

then. The latter oqlmhon defines a region in the complex plane which is
desirable to be as large as possible. Another measure of stability is the
length of negative real axis in that region.
For example, the two stages second order RK method
0
1 1
1)

2 2
has R(H) = 1+ H + }H? We can easily verify that |R(H)| < 1 for
H € (~2,0), which is the stability interval.

5 Runge-Kutta pairs of orders 5(4)

It is known that the minimal number of stages required for the construction
of a fifth-order RK method and a 5(4) pair is six. It is the lowest number

- @)
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of stages that can supply as many coefficients as we need for solving the
25 equations arriving after the expansion of (4) for such a pair. In general,
some norm (usually the Buclidean or the maximum) of the truncation error
coefficients of that formula of the pair that propagates the numerical solu-
tion is regarded as a good indication of its numerical performance. Among
families of pairs of the same order and of the same number of effective func-
tion evaluations, usually the best pair that can be constructed belongs to
the family with the greater number of free parameters.

The most popular RK pairs currently in use are those constructed by
Fehlberg [6] and by Dormand and Prince [5]. The FE4(5)#2 pair of Fehlberg
belongs to a two-parameter family of pairs. Fehlberg selected the values of
these free parameters in order to minimize the truncation error coefficients
of the fourth-order method of the pair. It can be shown that the restriction
5 = 1 that Fehlberg imposed on the pairs of the family he proposed is not
essential, and it seems that the only reason for its use was the simplifica-
tion of the otherwise very laborious, at that time, necessary calculations.
After performing extensive numerical testing, Shampine in [19] suggested
that, from the numerical point of view, it is advantageous to propagate
the higher-order solution of a pair (Local Extrapolation or Higher Order
Mode). Later on, Dormand and Prince proposed a family that uses the
first function evaluation from the next step in order to embed a fourth-
order method to the fifth-order one, at effectively no additional cost (FSAL
device). An individual pair DP5(4), of their four-parameter family, with
minimized truncation error coefficients of its fifth-order method, is until
now widely regarded as the best fifth-order pair. This pair is undoubtedly
better than FE4(5)#2, when both pairs are applied in local extrapolation
mode.

Recently Papakostas and Papageorgiou [13], presented a very interesting
new family of orders 5(4). They reduced the number of simplifying assump-
tions and they gained one free parameter more. As a consequence they
obtained the pair PP5(4) with the minimal value of the Buclidean norm of
-ation error T“‘)”2 , 8o far. The latter pair is clearly more efficient
#2 and DP5(4).

; During the last decade some authors proposed an alternative approach
for deriving optimal pairs. They construct seven stages pairs hoping to
overcome the extra cost by the reduction of "T(“)”z. Shampine [20], sug-

the trur
than FE




o
Ch. Tsitouras 193

gests as efficiency measure the quantity eff= stages- ("T‘"" )l/5 The lower
the eff the higher the efficiency of a pair. So Bogacki and Shampine (1],
proposed the pair BS5(4) while in Sharp and Smart [22], the pair SS5(4)
was appeared. These pairs were clearly more efficient than FE5(4)#2 and
DP5(4). Interpreting the results in [13], they are more efficient than PP5(4)
also.

The New pair: The new method NEW5(4) can be based on 13 stages
8(7) pairs appeared in (25, 17]. We prefer here the PD8(7) pair [17], which
is more common to the numerical analysis community. We use the same
coefficients ¢, A which mean that we use the same 13 stages. The weight
coefficients b and b need to be determined for the new pair. These weights
are of fifth and fourth order of accuracy respectively.

Choosing b, = 0, i = 2,3,4,5 we may only solve five of the order condi-
tions:

be = 1,bc = 1/2,bc® = 1/3,bc® = 1/4,bc* = 1/5.

All the other equations of condition are automatically satisfied by the speci ml

2
properties of matrix A, such as Ac = ’,7, Ac? = =5 A A(‘ = 7,,
[17]. For example we may drop equation t; since 4 = —b A c? - ﬂ =

’I; TI - Fli = éb(‘] - ;‘] = t4;. We may also satisfy another four equations
from the phase-lag conditions of orders 8, 10, 12 and 14. So we form a linear
system of nine equations in nine unknowns. The resulting weights can be
found in Table 4. !

The fourth order weights are derived after we set b, = 0,7 = 2,3,13.
Then we solve four order conditions

be=1, be=1/2, bc* =1/3, bc® = 1/4,

and the six phase-lag conditions of orders 6, 8, 10, 12, 14 and 16, for the
ten unknowns weights. The values of b can be found in Table 4 also.

The characteristics of the pairs under discussion in this paper are listed in
Table 5. ” and ef f are small enough and ensure increased
cfficiency. The values By, Cy, B, Ey, Do concern the reliability of the pairs
and ought to be small. NEW5(4) has comparable values with other pairs
and it is expected to outperform them on ponodlr or oscillatory problems.
The value E; = o, is due to the requirement t5 e ;,—0, so the denominator

of By, |T.Tn ITf”' = 0. This could cause problems when integrating constant

L )
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Table 4: Weights for 5th and 4th order formulas.

by = 0.02099749076290023

b3 =0

bs=0

by = 0.36651164304019813

by = —3.52372952792910932
byy = 0.08981523715148630
bys = 0.06765092002320157
By = —0.11906526797642945
B3=0

Bs = 0.6677202916703168

B; = —2.8259627323720786
By = —5.506915501533943
By, = 0.061438759844964615
Bis=0

=0

by =0

bg = —1.38741197813366512
bg = 3.62247827293689219
bip = 1.77767824900707695
b1z = —0.03399030685898095

By =0

B4 = 2.9554898331075603
B = —2.4061660499314006
B = 5.58262049082311

Byp = 2.548169078914484
Byp = 0.04267109745341627

coefficients linear systems of ODEs, since only truncation errors of the form

P
t

= 7‘, and t) = % do not vanish then. So ?] =t =

1,5 =1,2,3,4,5 and

tz b %, th # %0 forms two formulas of fifth order for such type of problems
and must be avoided in general. Here we could simply avoid this using the
seventh algebraic order companion formula of the underlying 8(7) pair.

6 Numerical results

The most widely used RK pair is DP5(4), [10]. So we tested this pair as
well as the new method on a set of five oscillatory test problems that we
have used many times in relevant papers, see [11, 24, 15].

Model problem

Y’ (z) = =25y ()

with initial conditions y (0) = 1, 3’ (0) = 0, for z € [0,1000], and theoretical
solution of this problem is y (z) = cos 5.

(T .
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Inhomogeneous equation
y" = =100y + 99sinz,

with y (0) = 1, 3 (0) = 11 for = € [0, 500]. Its theoretical solution is y/(z) =
cos 10z + cosw + sin 2.
Hyperbolic problem

The hyperbolic PDE,

dz Ir’
OIS < 18 >0

Il

u(,0) = 0, w(0,r) = sinwr?,

is discretisized by symmetric differences (with Ar = 1/50) to the system of
ODEs

"J; 0 =1 %
Ys 1 150 =1 Y2
2-50 i)

Yso =i 4 =3 Ys0

Its theoretical solution was approximated by another internal integration,
with much smaller step than the one used for the actual integration.
Bessel equation
1
i ] _)
Y ( 00 + )Y
with initial conditions y (1) = —0.2459357644513483, y' (1) = —0.55769534
39142885, for € (1, 500]. The theoretical solution of this problem is y(z) =
VzJo (10z) .
Duffing equation

¥’ =—y -y’ + 002cos1.01z,

with y (0) = 0.200426728067, /' (0) = 0, for z & [0, 1000].
Theoretical solution, [27) (the rest coefficients are smaller than 10~2):

0.200179477536 cos 1.01z + 2.46946143 - 10~* cos 3.03z
+3.04014 - 107" 05 5.05z + 3.74 - 107% cos 7.07z + - - -

O

y(z) =
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Table 5: The main characteristics of the pairs appeared in this paper.

ITOl, stsges o PR B 0 B B Dn S

FE54 [33-107° 6 1.91 6 32 14 18 64 8 -36
DP54 | 4.0-107* 6 1.25 6 15 1.7 03 74 11.6 -33
PP54 | 6.5-107° 6 0.87 6 1.8 1.8 002 28 13.7 -35
BS54 | 2.2-107° 7 0.82 6 06 06 .0003 6 12 -39
SS54 T O f 1.03 6 11 1.1 009 27 09 -39
NEW54 | 5.1-107° 13 1.80 14 12 13 01 oo 16.7 -6.0

= 7, /1, 4= 70 =7, /[ 17,
5= ol 1701, £: = 9] i, 79

1<i<9 1<i<9
Do =izt (maxla,,-[ Al ”c”w),Sn: Left point of Stability Inter-
uy

val.

The pairs were tested for tolerances 102, 107%,...,10=%. The stepsize
control algorithm (4) was used for both pairs. According to the interpreta-
tion for tests of this type used in [16], we notify the percentage difference
(among the two methods being tested) by the number of function evalua-
tions required for achieving a given maximum global error over the range of
integration. This percentage is called efficiency gain and it is recorded for
each problem and accuracy in Table 6 in units of 1%. In this table positive
numbers mean that the first of the two methods is superior. The final row
gives the mean value of efficiency gain for each problem. The final row’s first
number is the average efficiency gain for all problems. The empty places are
due to unavailability of data for the respective errors. Since DP5(4) uses
about 80% more time for achieving a prescribed accuracy, we can easily
verify the clear superiority in efficiency of the new pair in comparison to
the other pair.

7 Conclusion

Runge-Kutta pairs are the most widely used methods for the numerical
integration of Initial Value Problems. Its main competitor are multistep
methods especially implemented as Predictor Corrector schemes. The basic



Table 6: Efficiency gains of NEW5(4) relative to DP5(4)a, for the range of
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tolerances 10-3, 1074, ..., 10~°.
slobnt| model inhomog. Hyperb. Bessel Dufing
-1 140 100 126
-2 131 92 -10 113 19
=3 122 85 5 101 34

-4 | 113 78 22 90 51
—5| 104 71 41 79 70
—6| 96 64 63 69 92
=7 89 116
3 143
81 118 82 35 96 75

disadvantage of the latter methods is that they do not leave as many free
parameters as RK methods in order to deal special type of problems. These
problems may have oscillatory solutions, Hamiltonian nature, stiffness etc.
RK are suitable for fulfilling such properties then.
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