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Since its creation by S. Eilenberg and S. MacLane [EM], category theory
has brought a number of important concepts. Accessible categories are
among them and we are going to show how they can help to treat injectivity
in algebra, model theory and homotopy theory.

1 Three situation

1.1 Injective modules. Injective modules were introduced by R. Baer
[B]. A left R-module M is called injective if for each injective homomor-
phism f : A — B and each homomorphism g : A — M there is a homo-
morphism h : B — M such that h- f = g.

The category R-Mod of left R-modules has enough injectivities, which
means that for every R-module A there is an injective homomorphism
A — M with M injective. This was also proved by Baer [B] using his
criterion for injectivity.

Baer’s Criterion. A left R-module M is injective iff for every left ideal
A of R, every homomorphism A — R can be extended to a homomorphism
R — M. One can learn about injective modules and their use in any
monograph about module theory (see, e.g., [F]).
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202 Injectivity and accessible categories

1.2 Saturated models. Let T be a first-order theory of a countable
signature . Let Mod(T') be the category of models of the theory T' with
elementary embeddings as morphisms. For an uncountable regular cardinal
A, a T-model M is called A-saturated if for each elementary embedding f :
A — B with cardA, cardB < X and each elementary embedding g : A — M
there is an elementary embedding h : B — M with h- f = g.

We have not used the original definition of A\-saturated models (due to
Morley and Vaught [MV]) but the characterization given in [S] 16.6. The
category Mod(7') has enough A-saturated models in the sense that each
T-model has an elementary embedding into a A-saturated model.

1.3 Kan fibrations. The category SSet of simplicial sets is defined as the
functor category Set®” where A is the category of non-zero finite ordinals
and order-preserving maps. The simplicial sets A", n > 0 are defined as
A™ = Y(n + 1) where Y : A — SSet is the Yoneda embedding. The
simplicial subsets A} € A™ n > 0, 0 < k < n are obtained by excluding
the identity morphism A™ — A™ and the morphism A" — A™ given by
the injective order-preserving map n — n+ 1 whose image does not contain
k. A morphism p: M — N of simplicial sets is called a Kan fibration if it
has the right lifting property w.r.t. each embedding i} : A} — A™ n >0,
0 < k < n. It means that for every commutative square

AT g M

.n
i y

AM———— N

there exists a diagonal
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making both triangles commutative.

If N = A° then the unique morphism p : M — A® (A° is a terminal
object in SSet) is a Kan fibration iff for each i¢, n > 0, 0 < k < m and
for each morphism g : A} — M there is a morphism h : A® — M with

hig=g
i
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e
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M

Such simplicial sets M are called Kan complezes. SSet has enough Kan
complexes in the sense that each simplicial set A has an embedding f :
A — B into a Kan complex. Moreover, this embedding f is an anodyne
eztension, which is defined by having the left lifting property w.r.t. each
Kan fibration p. It means that for every commutative square

A—Et—s M

J '

DT evuban 2

there exists a diagonal h making both triangles commutative. Of course,
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every embedding A} — A™ is an anodyne extension. The just explained
property of having enough Kan complexes can be equivalently formulated
in the way that each morphism A — A° has a factorization

AT 2l yp ik wrubyAQ

where f is an anodyne extension and p a Kan fibrations. More generally,
every morphism A — N of simplicial sets has a factorization
f jd
A—— B ——N

where f is an anodyne extension and p a Kan fibration (see, e.g. [GJ]).
Kan fibrations were introduced D. M. Kan [K].

2 Accessible categories

An object K of a category K is called A-presentable, where X is a regu-
lar cardinal, provided that its hom-functor hom (X, —) preserves A-directed
colimits. A category K is called it A-accessible provided that

(1) K has A-directed colimits,

(2) K has a set A of A\-presentable objects such that every object is a
A-directed colimit of objects of A.

A category is called accessible if it is A-accessible for some regular cardi-
nal A. Accessible categories were introduced by C. Lair [L] and their theory
was created by M. Makkai and R. Paré [MP]. We will use the monograph
[AR]. The first steps towards the theory of accessible categories were made
by M. Artin, A. Grothendieck and J. L. Verdier [AGV] and especially by P.
Gabriel and F. Ulmer [GU].

2.1 Examples. (1) The category R-Mod is Ng-accessible for every ring
R. Tt has all colimits and Rp-presentable objects are finitely presentable R-
modules in the usual module-theoretic sense. Every R-module is a directed
colimit of finitely presentable modules. The same argument applies to every

variety of universal algebras.



(2) The category Mod(T') is N;j-accessible for every first-order theory
T of a countable signature. It has directed colimits (see [AR] 5.39) and
N;-presentable objects are T-models having countably many elements. Eve-
ry T-model is an R;-directed colimit of countable T-models. This can be
found in [AR] 5.42 but it is an immediate consequence of the downward
Lowenheim-Skolem theorem.

(3) The category SSet is No-accessible. It has all colimits and No-
presentable objects are finite colimits of simplicial sets A", n > 0. Every
simplicial set is a directed colimit of finite colimits of A", n > 0. The
same argument applies to every functor category Set*” where X is a small
category.

(4) Let N be a simplicial set and consider the comma-category SSet |
N. Objects of this category are morphisms p : A — N of simplicial sets.
Morphisms (A, p) — (B, g) are morphisms f : A — B of simplicial sets with

¢ f=p
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Then SSet | N is an Ng-accessible category. It has all colimits and No-
presentable objects are f : A — N with A Rg-presentable in SSet. Every
object in SSet | N is a directed colimit of Ro-presentable objects (see [AR]
1.57).

Let H be a class of morphisms in a category % . An object M in @ is
called H-injective if for each morphism f : A — B in H and each morphism
g : A— M there is a morphism h : B — M such that h- f = g.

2.2 Examples. (1) Injective R-modules are H-injective objects in R-Mod
for H consisting of all monomorphisms.

(2) A-saturated models are H -injective objects in Mod(7") for H con-
sisting of morphisms f : A — B with cardA, cardB < A. We recall that
these objects are precisely A-presentable objects.

(3) Kan complexes are H -injective objects in SSet for H consisting
of anodyne extensions. In fact, we defined them as being injective w.r.t.
embeddings A} — A" n > 0, 0 < k < n but it immediatelly follows from

Yy 2
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the definition that they are injective w.r.t. every anodyne extension.

(4) Let N be a simplicial set and consider the comma-category SSet | V.
Kan fibrations p : M — N are H -injective objects for #{ consisting of
morphisms (A, a) — (B, b) carried by anodyne extensions f : A — B. In
fact the defining property of a Kan fibration exactly means that

(4p)—T—(5)
L
4 B
(M, p)

An accessible category does not need to have all colimits (see, for exam-
ple, 2.1(2)). We say that a diagram D' : D — K has a bound in a category
K if there is a compatible cocone (Dd L, C)aeperi I K. We say that C
has directed bounds if every directed diagram has a bound in X and that K
has pushout bounds if every diagram

A

|

(&)

B

has a bound in X.

2.3 Theorem. Let K be an accessible category with directed and pushout
bounds and H a set of morphisms in K. Then every object K in K has a
morphism K — M into an H-injective object L.

Proof. Following [AR] 2.14 and 2.2 (3), there is a regular cardinal A such
that X is A-accessible and every morphism in H has a A-presentable domain.
Consider an object K in K. Let Xk be the set of all spans

K

u
G5 2
with g € H. We will index these spans by ordinals i < ux = cardXy.




We define a chain ki; : K; — Kj, i < j < pg by the following transfinite
induction: »

First step: Ko = K.

Isolated step: K., is given by a pushout bound
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K‘J ki.i?l KPH

Koo
Cli——rD:
where kot = Kiig * Kos.
Limit step: K; is a bound of the chain
oy S0 oy e

where j <7 and ko; : Ko — K; is given by this bound.
The object K, will be denoted by K* and the morphism Koy, : K —
K* by t. Following the construction, each span (u;, g;) € X has a pushout

bound
4 .
K LI €
C ; D,
We define a chain m;; : M; — M;, i < j < A by the following transfinite
induction:

First step: My = K.
Isolated step: miy1 @ M; — Miyy is tay, : My — M.
Limit step: M; is a directed bound of the chain

Mo 7% My 5 My T (1)
for j <i < X and M, is a colimit of (1) for i = A.
We will show that mgy : K — M) is a desired morphism of K into an
‘H -injective object. Consider a span

. __ax)
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My
u
(&' = D
Since the object C' is A-presentable and M) is a directed colimit of M;,
7 < A, there is a factorization
My

.
u iA

C—T’Ms

of u through M; for some i < \. Since the span

is in the set X)y,, it has a pushout bound

Mgy
M; My

74 v
(3 ——y—»D
We have

G e ’
U=T4) U =M1\ Myig] U = Mg a0V g.

Hence u factorizes through g, which proves that M, is H -injective. O

2.4 Examples. (1) The category R-Mod is Ro-accessible and has all coli-
mits. Let H be the set of all embeddings A — R where A is a left ideal in

(T
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R. Following Baer’s Criterion H -injective modules are precisely injective
modules. Following Theorem 2.3 every R-module has a homomorphism into
an injective R-module.

To prove that R-Mod has enough injectives, we have to replace the
category R-Mod by the category R-Mod, of R-modules and injective ho-
momorphisms taken as morphisms. Following [AR] 2.3 (6), R-Mod, is an
accessible category. It has directed colimits (by [AR] 1.62) and pushouts
because monomorphisms in R-Mod are stable under pushouts. Hence, by
applying Theorem 2.3, to the category R-Modo, we get that R-Mod has
enough injectives.

(2) Let T be a first-order theory of a countable signature and A\ an
uncountable regular cardinal. The category Mod(7") has pushout bounds
(see [H], p. 288). Hence Theorem 2.3 together with Example 2.1 (2) implies
that every 7-model has an elementary embedding into a A-saturated 7-
model. Of course, we take for M the set of all elementary embedding A — B
with cardA, cardB < \.

(3) The category SSet is Rp-accessible and has all colimits. Let H consist
of embeddings A} — A™, n >0, 0 < k < n. Following Theorem 2.3, every
simplicial set A has a morphism m : A — M into a Kan complex M.

Since SSet is cocomplete, we can use colimits instead of bounds in the
proof of Theorem 2.3. Hence m belongs to the closure of H under pushouts,
compositions and colimits of chains. Every morphism of this closure belongs
to O(H" ) where the box on the right (left) means the use of the right (left)
lifting property. Hence m is an anodyne extension.

More generally, by applying Theorem 2.3 to the category SSet | N
(for H consisting of morphism carried by embeddings A} — A", n > 0,
0 < k < n), we get that each morphism A — N has a factorization

gt syl oy

where f is an anodyne extension and p a Kan fibration.

The last example gives the essence of essence of the small object argument
already present in [GZ]. This argument is commonly used in homotopy
theory (see [Ho]) but the theory of accessible categories has started to be
used in homotopy theory only recently (see T. Beke [B]). Our Theorem 2.3
is a very general formulation of the small object argument. The point is
that every object of an accessible category is presentable (= small), which

..
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makes possible to stop the construction of an H-injective object M for K.
The next example shows that it is necessary to assume that H is a set.

2.5 Example. Let Gr be the category of groups and H the class of all
injective homomorphisms. Every group K is a subgroup of a simple group
L # K (see [Sc]). If K is H-injective, the embedding f : K — L splits, i.e.,
there exists g : L — K with g - f = idk; by applying H-injectivity to

i DAL iyl
/'4
N i
i,

Since L is simple and L % K, the homomorphism ¢ has to be constant,
ie., K = {1}. Therefore the trivial group {1} is the only injective (=
‘H-injective) group. Hence the category of groups does not have enough
injectives. On the other hand, the category Grg of groups and injective
homomorphisms is accessible (following the same reasons as the category
R-Mod,) and the only obstacle to apply Theorem 2.3 is that H is not a
set..
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