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1 Introduction

In this paper, I would like to show how some techniques from the theory of
Grobner bases can be used to attack and solve some problems in analysis
and in the theory of partial differential equations.

The differential equations I will be dealing with are very simple, since they
are both linear and with constant coefficients. On the other hand, they
present some interesting problems, because I will be dealing with systems
of differential equations and I will be asking some rather deep questions

In this paper, I will show how well known techniques from algebraic analysis
(mostly developed in the 60’s and 70’s by mathematicians such as Ehren-
preis, Malgrange, and Palamodov) can now be made effective and compu-
tational.

This will allow us to do some concrete computations and solve problems
which appear otherwise intractable. Since research has proceeded very
rapidly in this area in the last couple of years, I will only provide what
could be considered an introduction, and I will refer the reader to my forth-
coming book (6] for more details as well as for the most updated results in
the field.

2 Two concrete examples

Let me begin with two concrete examples The first one, well known, is the
Cauchy Riemann system which defines holomorphic functions.

.
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If z=(21,...,2n) € C% z; =g;+1y; (j =1,...,n), a function
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is said to be holomorphic if it satisfies the Cauchy-Riemann system
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which gives a system of 2n differential equations in 2 unknown functions
(v and v). On the other hand, in its complex form, we have n differential
equations for 1 unknown function f ( complex valued).

These two systems can be represented, in matrix form, by
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This system is so well known that entire books are devoted to it and, in fact,
entire courses are devoted to it. There are a few properties of the solutions
of this system, i.e. of holomorphic functions, which I would like to state
(though well known) as they offer us an example of what we will be looking
for.
Property 1: Removability of compact singularities. The famous Hartogs’
theorem (1906) shows that if K is a compact subset of C™ such that C* \
K is connected, and if n > 2, then every holomorphic function in C* \ K
extends uniquely to an entire function (i.e., a function holomorphic on all
of C™).
This means that holomorphic functions in several variables do not allow
-compact singularities (in striking contrast with the l-variable case where
f(2) = £ obviously has an isolated compact singularity).
Property 2: Compatibility conditions for solutions of the non-homogeneous
Cauchy-Riemann system. Let’s consider, for simplicity, n = 2 and the
nonhomogeneous Cauchy-Riemann system
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with f unknown and gi, g2 given on a convex set in C? (maybe the entire
C?). It was shown in the late 50’s that such a non-homogeneous system has

a solution f if, and only if,

09 _ 0ga

622 azl‘

In other words, the obviously necessary compatibility conditions are also
sufficient. More generally, if we consider the case of n > 2 equations
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then it is known that the system has a solution f if, and only if, all the
obvious compatibility conditions are satisfied, i.e. if and only if

dg; _Ogk ., _
P Jrki=liy g ng

Property 3: Vanishing of n-dimensional cohomology. This last property
(known as the Malgrange Theorem) is much more abstract and hard to
describe than the previous ones. Nevertheless, it seems worth spending
a couple of minutes on it. In one complex variable, it is well known that
every open set is a domain of holomorphy. This fact can be stated in several,
equivalent, ways:

3.1. for any open set €, there is a function f, holomorphic on §, which
cannot be continued outside of €.

3.2. the equation%é = g can be solved in any open set Q, for any C*
function g.

3.3. for every open set  C C, it is H'(2,0) = 0. This symbolic expression
means the following:

let {U;} be a reasonable open covering for €2, and consider a collection {f;;}
of functions which are holomorphic on U; N U; (whenever U; NU; # ¢) with
fi; = =[5 Then if, for any indexes %, j, k such that U; N U; N Uy # ¢ we
have

Jij + fik+ fo = 0on Uy N U; N Up;
then there are holomorphic functions h; ¢ O(U;) such that
fi = hi — hy on Uy N Uj.

As it turns out, properties 3.1, 3.2. and 3.3 are true for any open set
in C, but not for any open set in C*. In fact, the Hartogs’ phenomenon
shows us that an open set such as @ = C"\K would not satisfy 3.1. It is
nevertheless true that 3.1, 3.2, and 3.3 are equivalent for any open set §2
C C". Interestingly enough, a very good geometrical characterization exists
now for the open sets 2 C C" for which 3.1 ( and therefore 3.2 and 3.3) hold.
These sets are called “pseudoconvex.” In the sixties, however, Malgrange
discovered how to correctly generalize property 3.3 to the case of all open
sets in C". While it is not true that H'(2,C") = 0 for every open set in
C", it is true that

H™(£2,C") =0 for all open sets Q C C".

(T
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Rather than explaining the general result, let me quickly say what it means
for n = 2. A
Take an open covering {U;} of 2 C C" and take any family

{fapy ¢ fapy € O(Ua N Up N U,), and for every permutation o,

Jopy = 897(9) fotapn) }ap, -
Then Malgrange’s Theorem says that if
f816 — fooys + fops — fapy = 0V (@, B,7) sit. Us N U NU, N Us # ¢
then we can find & collection
{hag thap € O(Ua N Up) hag = sgn (o) h”(“ﬂ)}a,ﬂ
such that
sy = By = hoaoy + hag on Up N U N UL, # ¢.

The road to the generalization for n > 2 is now clear ( though not necessarily
pleasant to write). Is this an important and interesting result? The answer
is yes, as it is the basis for the theory of hyperfunctions, but I will not be
able to explore this concept in this paper (and see, e.g. [2] and [11]).

Let me now get to a second concrete example, for which much less is known
(or, maybe I should say, was known) and which was one of the motivations
for most of my research in these last few years. I want to introduce the
Cauchy-Fueter operator. This operator was originally defined as an attempt
to extend complex analysis to the case of the skew-field of quaternions
defined by H = {q = 2o+12,+ jzs+kas : 2o, ..., z3 € R}, where, j, and k are
three imaginary units. There are, in complex analysis, two complementary
points of view which one can adopt. The Weierstrass approach, which
defines holomorphicity in terms of the convergence of Taylor series, and the
Cauchy-Riemann approach, which defines holomorphicity in terms of the
Cauchy-Riemann system. In seeking a naive theory of quaternion analysis,
it was immediately apparent that the Weierstrass route was not available
(it would coincide with the theory of real analytic functions). On the other

..
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hand, one could consider a new Cauchy-Riemann like operator which could
act on functions

fH—Hc=H®rC = {g=2+i21 + j22 + k23 : 29,..., 23 € C}.
If ¢ = (q1,.,9s) € H" and q = zo, + iz1e + j22 + kzge (t = 1,...,n) &
function

f:H" — Hc

f = folar, 1 qn) +if1(q1, - @) + 3 f2(q1, -, Gn) + K f3(q1, ., n)
is said to be regular (or quaternionic-holomorphic) if
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Given the quaternionic decomposition of f, this last equation can be re-
written in matrix form as:
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Let me point out that the solutions of this system are actually physically
significant as they represent massless, right handed, neutrino fields.

So one might want to ask for these object the same questions we just saw
are well known for the case of the Cauchy-Riemann system. In the next

sections, we will explore exactly these questions.
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3 A primer of algebraic analysis

Let us now proceed to talk about the algebraic treatment of differential

equations. i
As we saw in the previous two examples, our differential operators (cons-

tant coefficients and linear) appear as follows. let P = [P;;] be an 7y X 1y ma-
)

trix of polynomials in, n complex variables, and let D = (—ig%, o
Then

P(D) = [P5(D)]

is an 7y X 1o matrix of differential operators (2n x 2 or n x 2 in the case of the
Cauchy-Riemann operator in C*, 4n X 4 in the case of the Cauchy-Fueter

operator in H™).
If we apply the matrix P(D) to a “set” S of functions, we can define a

sequence of maps as follows:

pIEE G L ok

[l
ker {P(D) : S — S}

For our purposes, S really needs to be a sheaf of functions, but we do not
need to be concerned about this detail at this stage. Just think of S as, for
example, the space of C* functions.

If we want to study the analytical properties of S¥ through algebraic me-
thods, we need to introduce a new polynomial matrix P* := [P;;(z)] and
look at the dual of the previous sequence: set R = C [z;, . . . , 2] and
consider

s Rro L RTI'

Rro
0 «— M = Coker P'= PR

A famous, fundamental, result of Hilbert, known as the Hilbert's syzygy
theorem, states that it is possible to continue this last sequence to a finite

resolution

Oo—Alo—H"’qu"ep—;R"&R"c—---iﬂ'"‘O—O

.. o
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with m < n and P, = P. Note that Hilbert ’s theorem ensures us of the
existence of the sequence (which is not unique), and of a bound on its length,
but does not say anything about its concrete construction.

If we now take the transpose of this sequence, we obtain a very important
complex, namely

0l — Rre 2 it g = S S o)

Once again, the complex is not unique, but its cohomology is, and we define

KerP;

Ext! (M, R) = —
3

Before I explain the relevance of these groups for the analytical questions
we discussed before, let me give a simple example of how to construct such a

i

resolution. Let @ = | @2 | be a3 x 1 matrix of polynomials, and suppose !
Qs |

that they have no common factors. Then M = QT’}?:; = I(QfngT) where

I(Q1, @2, Q3) is the ideal generated by Q1,Q2,Qs in R. To search for Pf

means to search for the kernel of P! in R®. It is obvious that elements

such as (—Q2, @1,0) , (=Q3,0,Q1) , and (0, —Q3, @2) belong to this kernel,

but, in fact, under the previous assumptions they generate all of it. So our

resolution looks like

=@ @y N0
Qs 0 @
(91,92,Q3) 0 -Q3 @

0— M«—R R? RS

We now need to build the kernel of this last map, and arguments as before
show that such a kernel is generated by the map

R®«— R
h(Qs,—Q2, @1)" —h

This map is obviously injective and so the resolution has its final form

- @ 0] Qs
Q3 0 @ Q2
Ql

0 =
L R 0.

O Wi 5 (@1,Q2,Q5) R?
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This construction is known as the Koszul complex, and if we look at the
Cauchy-Riemann system in three variables 2, 23, 23, we can apply it to

Qi=i&—-m Q=ih-m Qs=il—mn
so that
a a a
D)= — = — = —
QD)= @D=g5 KO-z
But let’s now go back to the analytical meaning of the objects we have just
constructed. To begin with, a rather deep result of Ehrenpreis, Hérmander
et al. shows that P;4, is a compatibility system of P;. In particular P, is a

compatibility system for P, so that:
Theorem: The non-homogeneous system

P(D)f=g

has a solution f if and only if P,(D)g = 0.
The simple Koszul complex we have just constructed shows that

Pl D vy L
F =1 o7, = g2 0z =93

has a solution if and only if

Agi 39,- Sl
— (o =1.2.3.
A R A Rl

exactly as we mentioned in section 2.
A second, important, fact is that the removability of compact singularities
can also be read through the resolution of M, and precisely Ehrenpreis and

Palamodov showed that.
Theorem: The solutions of P(D)f = 0 cannot have compact singularities
if and only if

Ext!(M, R) = 0,
i.e., if and only if
ImP, = kerP,.
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Again, our simple Koszul computation shows that this is the case for the

Cauchy-Riemann system (due to the symmetric nature of the Koszul com-

plex) as well as for other large families of systems.
Finally, I mentioned earlier the vanishing of higher cohomology. I won’t
spend too many words now, but such vanishing is a consequence of the

vanishing of the first few Ext’(M, R).
Now that we see the importance of computing these resolutions, we may

want to go back to the Cauchy-Fueter system and see what can be said. The
main difficulty lies in the fact that this is a genuine rectangular system, and
the simple Koszul construction will not work here. There exists a similar,
more elaborate, construction, known as the generalized Koszul complex
(introduced by Buchsbaum back in the 60’s), but if we try to use it here it
does not seem to be very effective (see [18] for a precise description of this
complex).

4 Algebraic Analysis of the Cauchy-Fueter

system
For the sake of simplicity, let’s start by looking at the case n = 2 (i.e., 8
real variables). The system we are studying acts from S to S? or, in matrix

form, from S* to S8.
Note that the “usual” constuction of syzygies won’t quite work here because

OO OO
94,09, " 07, 0g,
In fact, it turns out that a resolution (a minimal one, in fact) can be cons-
tructed as follows:
o—M—RrEplApSp g
where P, is a (real) 8 x 8 matrix whose “quaternionic” interpretation is
0@ @ | _ | ©g —A;
@90 —@q A2~
and Pj is nothing but a variation of the Cauchy-Fueter system (just as it
happened for the Cauchy-Riemann case), with the same sheaf of solutions.
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There are several interesting comments one could make here. Maybe the
most important is the surprising fact that the first syzygies are quadratic.
When we first looked at this problem, we were actually looking for linear
syzygies as the Cauchy-Riemann system has taught us, while the use of the
generalized Koszul complex lead us to cubic syzygies. However, the case
of n = 2 is way too simple (and it can be “guessed” or obtained by trial
and error) to illuminate us on the entire story, nor does it allow for a direct
generalization.

Already too complex for hand-computations is the case of n = 3 (i.e., 12
real vuriab]es) If Ul, Ug, Us denote the 4 x 4 polynomial matrices which we
obtain from - Bﬁ: 3 Bﬁ , 7 with the usual substitutions, then we used CoCoA
(a software developed at the University of Genova, and freely available at
http://cocoa.dime.unige.it) to compute the first syzygies for n = 3 and we
obtained that a generating set for such syzygies was given by

(UU) Uy — (UUs) Uy = 0
U, U0, + U,UU, — (U0, + UtU, )u =0
Uns Ul 3 (U 1) + Uy U J [Uns I} + U Un) T [Uss 1] = 0

b ) ) (RO RET()
=10 0 0 YRS S=]
where [ = 00 0 1 and J= 100 0
0 0 -10 Gl 10 00)

Once again, we get quadratic syzygies, and the resolution looks like
0—M«—R'«— R?— R®— R® — R¥ — R%—0.

So, here, a new (surprising) phenomenon appears, namely the last ope-
rator of the resolution is not a transpose of the first one, and we come
to understand the uniqueness of the duality which occurs for the Cauchy-
Riemann system.

We are now in the position of actually discussing what happens for higher
values of n. The key point here is that we need a tool to study the syzygies
of the Cauchy-Fueter system, regardless of the number of variables. In
addition, the two results we just discussed seem to indicate (but this is
fortunately not true) that as the dimension grows, new unexpected syzygies

..
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might appear. Our approach, as described in detail in [2] is based on the
study of the Grobner bases for the module M. One can show, in fact, that
such bases can be explicitely computed, and this computation is all we need
to establish our fundamental results.

The first, important, result is really an algebraic lemma (we refer the reader
to [1] for the necessary definitions:

Lemma: The reduced Grébner bases for M are given by the columns of the
matrix P*, together with the columns of the matrices U,.U, — U,U,.

Using this lemma one can show that for any value of n the following results
hold:

Theorem 1: All first syzygies are generated by the formulas given before,
and therefore quadratic.

Theorem 2: All other syzygies are linear.

As a corollary of the previous results, one can actually compute the Hilbert-
Poincare series for M , and the Betti numbers of the resolutions of M.
One shows then that the length of the resolution for the Cauchy-Fueter
system in n quaternionic variables is in fact 2n — 1. The analytic conse-
quences of this result are quite significant and, as shown in [2], allow us
to reconstruct a pretty complete function theory for the sheaf of regular
functions.

For the sake of completeness, I should add that there is an important recent
paper of Baston [3] in which a different, geometrical approach is used. While
Baston’s construction is not explicit, he does prove that the first syzygies
are quadratic. The recent important work of Soucek and his colleagues [17]
show in detail the way in which Baston’s approach is related to our own
work. In particular, Baston’s result is quite important as it uses the spe-
cific quaternionic structure of the system, in contrast to our more algebraic
approach, in which quaternions disappear. So, in a way, Baston’s result
more clearly ties quaternions to the resolution of the Cauchy-Fueter sys-
tem. On the other hand, our approach shows that both Cauchy-Riemann
and Cauchy-Fueter are nothing but specific examples of how modern com-
putational algebra can be used to deal with systems of partial differential
equations. Our results open a new chapter in the study of such systems
and we have shown in a series of articles (for example [2], (5], [7], [14], [16],
and [19]) how important systems of physical interest can be dealt with (the
examples include Maxwell, Dirac, Proca, Moisil-Theodorescu, and other
systems in the context of quaternions, Clifford Algebras, and Octonions).

(T
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Our most recent work [15] also begins a series of applications to the variable
coefficients case. We refer the reader to our forthcoming book [6].
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