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1 Introduction 

In this paper , 1 would i>ke to show how sorne techniques from the tlieory of 
Gróbner bases can be 1.:lsecl to attack and salve sorne probl'ems in al!lailysis 
und in the theory of parrtiail differential equations. 
The di.fferential equa:t.ioros I will be dealing with are very simple1 since t.hey 
me both linear and with constamt coefficients. On the ot.her h&nd, they 
present sorne interestiag problems, because 1 will be dealing wi th systems 
of d.ifferential equations and 1 wihl be asking sorne rather deep questions 
In this paper, 1 will show how well known techniques from algebraic analysis 
(mostly developed in the 60's and 70's by matbeniaticia,¡;¡s such as Ehren­
preis, Malgrange1 and Palamodov) can now be made effective and compu­
t.ational. 
This will allow us to do sorne concrete computations and salve problems 
which appear otherwise intractable. Since research has proceeded very 
rapidly in this area in the last couple of years, I will only provide what 
could be considered an introduction, and I wiJI refer the reader to my forth­
coming book [6) for more details as well as for the most. updated result.s in 
t.he field. 

2 Two concrete examples 

Let me begin with two concrete examples The first one1 well known, is t.he 
Cauchy Riemann system which defines holomorphic functions. 
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]f z = (z,, ... ,zn) < IC", z; =x;+iy; (j= l, ... ,n), afuncti0n 

J: IC"--> IC 

f = u(JI;¡, ... , Xn; y¡, ... , Yn) + iv(x¡, ... , Xn; y¡, ... , Yn) 

is said to be h0lom0rpkic if i•t saitisfües the Cauchy-Riemann system 

~ (.§}_ + i a¡) := a¡ =o, j = 1, ... 'n 
2 ax; ay; Oz; 

or, equivalently ¡ ::, = :;, 

j = 1, 
ou av 
ay, - ax, 

. ,n 

which gives a system ©f 2n ¡;Jif.fer.e:atial eql!lations in 2 unkn0wn foocti0ns 
(u and v). On the other haFJ.d, in iits complex form, we ha ve n dMfenential 
equations far 1 unknown f""1ction f ( c0mplex valued). 
These two systems ca.FJ. IDe re¡D11eseNte©., im matrix form 1 by 

8 - 8 

8 8 

éJyn axn 2nx2 

or, with the use of comJDlex coordinartes, 

a . a 
ax, +•ay, 

a . a -+i­
axn ayn nxl 

[lL 
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Tbis system is so well known that entire books are devoted to it and, in fact, 
entire courses are devóted to it. There are a few properties of the solutions 
of this system, i.e. of holomorphic functions, whlch 1 would like to state 
(though well known) as they offer us an example of what we will be looking 
for. 
Property 1: Removability of compact singularit ies. The famous Hartogs' 
theorem (1906) shows that if K is a compact subset of en such that en \ 
f{ is connected, and if n 2: 2, then every holomorphic function in en \ f{ 
extends uniquely to an entire fWlction (i.e., a function holomorphic on ali 
of e"). 
This means that holomorphic functions in several variables do not allow 

-compact singi.tlarities (in striking contrast with the !-variable case where 
f(z) = ~ obviously has an isolated compact singulari ty). 
Property 2: Compatibility conditions for solutions of the non-homogeneous 
Cauchy-Riemann system. Let's consider, far simplicity, n = 2 and the 
nonhomogeneous Cauchy-Riemann system ¡ 8/ =91 

érz, 

8/ 
-=92 
Oz2 

with f unknown and 91, 92 given on a convex set in C2 (maybe the entire 
e2) . lt was shown in the late 50's that such a non-homogeneous system has 
a solution f if, and only if, 

89, 892 
a.,= a., · 

In other words, the obviously necessary compatibility conditions are also 
sufficient. More generally, if we consider the case of n ~ 2 equations ¡ 8/ 

a., =91 

81 = 9n 
Ozn 
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then it is known that the system has a solution f if, and only if, a.II the 
obvious compatibility conditions are satisfied , i.e. if and only if 

og; = ag. . k = 1 Ozk Ozi J, ' ... ' n . 

Property 3: Vanishing of n-dimensional cohomology. T his last property 
(known as the Malgrange Theorem) is much more abstrae\ and hard to 
describe than the previous ones. Nevertheless 1 it seems worth spending 
a couple of minutes on it. In one complex variable, it is well known that 
every open set is a domain of holomorphy. This fact can be stated in several, 
equivalent, ways: 
3. 1. for any open set n, there is a function J, holomorphic on n, which 
cannot be continued outside of .n. 
3.2. the equation~ = g can be solved in any open set n, for any C"' 
function g. 
3.3. for every open set n <;:; <C, it is H 1 (f!, O ) = O. T his symbolic expression 
means the following: 
Iet {U, } be a reasonable open covering for n , and consider a collection {!;, } 
of fu nctions which are holomorphic on U; n U; (whenever U; n U;# <ji) with 
J,1 = - f1¡. Then if, for any indexes i 1 j 1 k such that U, n U1 n Uk #: </> we 
ha ve 

/;¡ + f ;• + f •; = o on U; n U; n u.; 
then there are holomorphic functions h; < O(U;) such that 

/;¡ = h; - h; on U; n U;. 

As it turns out, properties 3.11 3.2 . and 3.3 are true for any open set 
i_n <C, but not for any open set in cu. In fact , the Hartogs1 phenomenon 
shows us that an open set such as n = <Cn\f( would not satisfy 3. 1. It is 
nevertheless true that 3.1, 3.2, and 3.3 are equivalent for any open set n 
~ <C'l _ Interestingly enough1 a very good geometrical characterization exists 
110\V for the open sets n <;:; en for which 3.1 ( and t herefore 3.2 and 3.3) hold. 
These sets are called "pseudoconvex.11 In the sixties1 however, Malgrange 
discovered how to correctly generalize property 3.3 to the case of ali open 
sets in C". While it is not true that H 1{!1,C'1 ) =O íor every open set in 
C" 1 it is true that 

H"(n,cn) = o for al i open sets n <;:;en. 
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Ratber than explaining the general result, !et me quickly say what it means 
forn=2. 
Take an open covering {U;} of !1 <;; en and take any family 

UotJ-r: J.µ, 'O(U. n Uµ n U,), and for every permutation "· 

Ío~o = sgn (cr)Ja(o/Yr) } ·~o . 

Then Malgrange's The0>em says tbat if 

then we can fiad a collectio" 

such that 

The road to the generalization for n ~ 2 is now clear ( though not necessarily 
pleasant to write) . Is this an important and interesting result? The answer 
is yes, as it is the basis for the theory of hyperlimctions, but 1 will not be 
able to explore this concept in this paper (and see, e.g. [2] and [ll]). 
Let me now get to a second concrete example1 for which much less is known 
(or, maybe 1 should say, was known) and which was one of the motivations 
for most of my research in these last few years. 1 want to introduce t.he 
Cauchy-F\ieter operntor. This operator was originally defined asan attempt 
to extend complex analysis to the case of the skew-field of quaternions 
defined by IHI = {q = xo+ix1 +jx2+kx3 : Xo, ... ,x, f IR}. where i,j, and k are 
three imaginary units. There are, in complex analysis 1 two complementary 
points of view which one can adopt. The Weierstrass approach, which 
defines holomorphicity in terms of the convergence of Ta:ylor series, and the 
Cauchy-Riemann approach, which defines holomorphicit.y in terms of the 
Cauchy-Riemann system. In seeking a naive theory of quaternion analysis, 
it was immediately apparent that the Weierstrass route was not available 
(it would coincide with the theory of real analytic functions). On the other 



218 ComputationaJ algebraic analysis o( systems of... 

hand, one could consider a new Cauchy-Riemann like operator which could 
act on functions 

f : lHI---> lHic =lHI ®•C= {q=zo+iz1 +jz,+kz,: ZQ , .. ., z3 <C} . 

If q = {q1, ... , q0 ) < lHI" and q, = Xot + ixu + jx,, + kx31 (t = 1, . . ,n) a 
function 

f : lHI" ___, 1Hic 

f = fo(q¡, · ., qn) + i f¡(q¡, ···• qn) + jf,(q¡ , ... , Qn) + k!J(q¡ , .. . , qn) 

is said to be regular (or quaternionic-holomorphic) if 

a¡ := ~ (!}_ + ;!l_ + j!}_ + k!}_) = º· t = 1, ... ,n. 
Oc¡, 4 8xo, ax lt ax,, ax,, 

Given the quat.ernionic decomposition of / , this last equation can be re­
wri t t.en in matrix for m as: 

8 - 8 - 8 -8 
8xo1 8x 11 8x2 1 8x3 1 

8 8 - 8 8 
8x11 8xo 1 8x31 8x21 

8 8 8 -8 
az,, 8x3¡ 8xo1 8x u 

U;J 4Xl 
8 -8 8 8 

8x31 8x21 ~ 8xo 1 

8 4" xl 
Bxon 

8 - 8 8 

4nx 4 

Let me point out that t,he solutions of this systcm are actually physically 
signifi cant as they represent massless, right handed 1 neulrino fields. 
So one might want to ask for these object thc same questions we just saw 
are well known for the case of the Cauchy- Riemann system. In the next 
sections, we will explore exactly these questions. 
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3 A primeF of algebraic analysis 

Let us now procee<l to talk about the algebraic treatment of differential 
equations. 

As we saw in the previ0l!ls tw0 examples, our differential OJilerators ( c0ns­
tant coefficients ano! line1>r) appear as follows. !et P = IP;;] lle an r1 xr0 ma­

trix of polynomia1s in, n complex variables1 and let D = (-ik, ... , -i~,,). 
T hen 

P(D) := IP;;(D)] 

·is an r 1 x r0 matrix of filHfer.eatial OJilerators (2n x 2 or n x 2 in the case Qf the 
Cauchy-Riema.nFl operator i•l'l en, 4n X 4 in the case of tfu.e Cal!lahy-Fueter 
operator in IH11 ) . 

If we apply the matrix P(D) to a "set" S of functions, we ""'"define a 
sequence of maps as follows: 

Q _,. Sp ~ 5ro ~ 5r1 

j¡ 
ker {P(D): S'• ~ S'• ) . 

For our purposes, S really Heeds to be a sheaf of functions, bl!lt we do not 
need to be concerned ah>0>1-t t.his detail at thls stage. Just thlnk of S as, for 
example, the space of C00 flrnctions. 
If we want to study the !>naJlytical properties of sP througli !>lgebraic me­
thods, we need to intFodl!lce a new polynomial matrix P' := IP;;(z)] and 
look at the dual of tlle pvevious sequence: set R = IC lz1, • , z,.J and 
consider 

nro pt 
o- M = Coker P' = -- +-- Rro +- Rr1 • ptRri 

A famous, fundamenta:!, 1•es11lt oí Hilbert, known as the Hilbert's syzygy 
theorem, states that it is possible to continue this last sequence to a finit.e 
resol11tion 
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with m '."'. n and P1 = P. Nete that llilbert 's theorem ensures us of the 
existence of tbe sequence (w•hlóh is n0t unique), and of a bound 0n its length1 

but <loes not say anything aID0ut its c0ncrete construction. 
If we now take the tranSf>©Se of thls sequence1 we obtain a very im¡¡>0rtant 
c0mplex, namely 

Once again, the com¡¡>lex is FJ.©t 11FJ.tic:¡ue1 lmt its cohomology is, an<d we clefine 

J . ·- KerPi+l 
Ext (M, lil) .- ImP; . 

Befove 1 explain the relev1>Hce of these greups for the anaJytical <¡uestions 
we discussed befer.e, let me g;i>ve a si•mple example of how to c0nstruct sueh a 

resolution. Let Q = [ ~: ] be a 3 x 1 matrix of polynomials, and suppose 

that they have no comm0n foctors. 'Fhen M = ~ = J(Qi,~2 ,Q3 ) wher.e 
I(Q 1,Q,,Q3 ) is the ideatl ge>1ernted lDy Q1,Q,,Q3 in R. To search for Pi 
means to search for tf.J.e kem.el ©f pt in R3 . It is obvious tf.i.at element.s 
such as (-Q,, Q1, O) , (-Q,, O, Q¡) , and (O, -Q,, Q2 ) belong to this kernel, 
but 1 in fact , under the :p:irevious assum¡Dtions they generate ali of it. So ow· 
resolution looks like 

o~M~R 

[
-Q, Q¡ o ]' 
-Q, o Q¡ 

cq,,q,,q,¡ Jil3 <-'~-º __ -_Q_,_Q_,--'--- R3. 

We now need to build the kernel of this last map, and argumeats as befare 
show that such a kernel is geaernteol by the map 

R'~f.l 
h(Q,,-Q,,Q¡)' <----ih 

Th.is map is obviously in~ective arnd so the resolution has iñs final forro 

[
-Q2 
-Q3 
o 

~· J, ] ' [ _°¿, l 
-Q, Q, R'~R~O. 
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This onstruct..ion is known as the Koszul complex, and if we look at the 
Cauchy-lliemann system in three variables z11 z2, za, we can apply it to 

Q¡ = i{¡ - 7)¡ Q, = i{, - 1/2 Q, = i{J - ry, 

so that 

Q1(D)=~ 
é/z¡ 

Q,(D)=~ 
élz, 

But let's now go back to the analytical meaning of the objects we have just 
c:onstructed. To begin with, a rather deep result of Ehrenpreis, H6rmander 
et al. shows that P,+1 is a compatibility system of Pi. In particular P2 is a 
compatibilit.y syst.ern for P, so that: 
Theorem: The non-homogeneous system 

P(D)J=9 

has a solution f if and only if P2(D)g = O. 
The simple I<oszul complex we have just construct.ed shows that 

8J 
é/z¡ = 91 

ha.s a solution if and only if 

8J 
-=92 
élz, 

89; 89; 
élz; = élz; 

exnctly as we mentioned in section 2. 

8J 
-= 93 
é/z3 

A second, import.ant, fact is that the removability of compact singularities 
can also be read through the resolution oí M, and precisely Ehrenpreis and 
Palamodov showed that. 
Theorem : The solutions of P(D)J = O cannot have compact singularities 
ií and only ií 

Ext. 1(M, R) = O, 

i.c., if and only if 

lmP1 = kerP2 . 
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Again, otu simple Koszul computation shows tbat th.is is the case for the 
Cauchy-Riemann system (dueto the symmetric nature of the Koszul com­
plex) as well as for other large families of systems. 
FinaUy, I mentioned earlier the vanishing of higher cohomology. I won 1t 
spend too many words now, but such vanishing is a consequence of the 
vanishing of the first few Exti(M, R) . 
Now that we see the importance of computing these resolutions, we may 
want to go back to the Cauchy-F\1eter system and see what can be said. The 
main difficul ty lies in the fact that tltis is a genuine rectangular system, and 
the simple Koszul construction will not work here. There ex.ists a similar, 
more elaborate, construction, known as the generalized Koszul cornplex 
(introduced by Buchsbaum back in the 60's) , but if we try to use it here it 
does not seem to be very effective (see [18) for a precise description of this 
complex). 

4 A lgebraic Analysis of t h e Cauchy-Fueter 
system 

For the sake of sirnplicity, let's start by looking at the case n = 2 (i.e., 8 
real varia bles) . The systern we are studying acts from S to 8 2 or, in rnatrix 
form , from S'1 to s•. 
Note that tbe "usual" constuction of syzygies won 't quite work here because 

Tn fact, it tmns out that a resolution (a minimal one, in fact) can be cons­
tructed as follows: 

where P2 is a (real) 8 X 8 mat.rix whose "quaternfonk" in terpretation is 

[ g;:: =:;:: ] = [ ~~' ~q~~¡ ] 

and ?3 is nothi ng but a variation of the Cauchy-Fueter system Qust as it 
happe.ned for the Cauchy-Riemann case), with the sarne sheaf of solutions. 
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Th re ar severa! interesting comments one could make here. Maybe the 
most important is the surprising fact that the first syzygies are quadratic. 
Wh n wc 6rst looked at this problem, we were actuaJly looking far linear 
syzygics as the Cauchy-Riemann system has taught us, while the use of the 
g n·raJized KoszuJ complex lead us to cubic syzygies. However, the case 
oí n = 2 is way too simple (and it can be uguessed" or obtained by tria! 
and error) t.o illuminate us on the entire story, nor does it allow for a direct 
gcneraHzation. 

Airead y too complex for hand-computations is the case of n = 3 (i.e. , 12 
real variables). lf U1, u,, U3 denote the 4 x 4 polynomial matrices which we 
obtain from ~1 ~' ~ with the usual substitutions, then we used CoCoA 
(a software developed at. the University of Genova, and freely available at 
http://cocca.dimc.unige. it) to compute the first syzygies for n = 3 and we 
obtained that a generating set for such syzygies was given by 

(u,u;) u, - (u;u,) u, = o 
u,u;u, + u,u¡u, - (u;u, + u,'u,) u,= o 

¡u,, u,¡ J ¡u,, 1¡ +¡u., u,¡ J ¡u,, 1¡ +¡u,, u,¡ J ¡u., 1¡ =o 

and J = [ 
~ ~ ~ ~l l 

- 1 o o o 
o o o 

Once again, we get quaclratic syzygies, and the resolution Jooks like 

O - Al - R' - R 12 - R'º - R60 - R'" - R8 - O. 

So, Itere, a ncw (surprising) phenomenon appears, namely the last ope­
rntor of the resolution is not a transpose of the first one, and we come 
to understand the wliqueness of the duali ty which occurs for t he Cauchy­
Riemann system. 
We a.re now in the position of actually discus.sing what happens for higher 
vnlues of n. The key point. here is that we need a tool to st11dy the syzygies 
of the Cauchy-F\1eter syst.em, regardless of the n11mber of variables. In 
addition, th t.wo results we jusi. d isc11ssed eem to indicate {but this is 
fortunately not. true) t:hat. os the dimension grows, new unexpected syzygies 
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might appear. Our approach, as described in detail in {2] is based on the 
study of the Gróbner bases for the module M. One can show, in fact, that 
such bases can be explicitely computed, and this computation is ali we need 
to establish our funda.mental results. 
The first, importan\, result is really an algebraic lemma ( we refer the reader 
to [l ] for the necessa.ry definitions: 
Lemma.: The reduced Gróbner bases for M are given by the columns of t he 
matrix pt 1 t.ogether with the columns of the matrices UrU, - U,Ur· 
Using this lemma one can show that for any value of n the following result.s 
hold: 
Theorem 1: Ali first syzygies are generated by the formu las given befare, 
and therefore quadratic. 
Theorem 2: Ali other syzygies are linear. 
As a coroUary of the previous results , one can actually compute the Hilbert.­
Poincare series for M , and the Betti numbers of the resolut;ions of /\1. 
One shows then that the length of the resolution for the Cauchy- F\1eter 
system in n. quaternionic variables is in fact 2n - l. The analytic conse­
quences of thjs result are quite significant and , as shown in [2], allow us 
to reconstruct a pretty complete function theory for the sheaf of regular 
function. 
Far the sake of completeness, 1 should add that there is an important rccent 
paper of Baston [3] in which a different , geometrical approach is used. Whilc 
Baston's const.ruction is not explicit, he <loes prove that the first syzygies 
are quadratic. The recent important work of Soucek and his colleagues [17] 
show in detail the way in which Bast,on 1s approach is related to onr own 
work. In particular, Baston 1s result is quite important as it uses the spc­
cific quaternionic structurc of the system, in contrasl to our more algcbraic 
npproach, in which quaternions djsappear. So, in a way, Boston 1s result 
more clearly ties quaternions to the resolution of the Cauchy-Fueter sys­
tem. On the other hand, our approach shows that both Cauchy-R.i mann 
and Cauchy-F\1eter are nothing but specific exarnples of how modern com­
putational algebra can be used to deal with systems of partial differential 
equations. Our results open a new chapter in the study of such systems 
a.nd we have shown in a series o[ articles (for exarnple [2], [5], [7], {14], {16], 
and [19]} how important systems of physical interest can be dealt. with (th 
examples include Maxwell , Dirac, Proca, Moisil-Theodorescu, and other 
systems in the context of quaternions, Clifford Algebras, and Octonions). 
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ur most recent work [15J also begius a series of applications to the variable 
cocfficient.s case. We refer the reader to our forthcoming book [6J. 
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