Hamiltonety and automorphims group of graph preserved by substitution. *

Eduardo Montenegro V.

Abstract.

The substitution is a graph operation. This operation consists in replacing a vertex by a graph. The aim of this work is to analize the preservation of certain properties in the substitution of a graph. Specifically, these properties are: (i) hamiltonety and (ii) group of automorphisms of a given graph G.

1 Introduction

The graphs to be considered will be in general simple and finite, with a nonempty set of edges. For a graph G, V(G) denote the set of edges. The cardinality of V(G) is called order of G and the cardinality of E(G) is called order of G and the cardinality of E(G) is called size of G. A (p,q) graph has p order and q size. Two vertices u and v are called neighbors if $\{u,v\}$ is an edge of G. For any vertex v of G, denote by N_v the set of neighbors of v. To simplify the notation, an edge $\{x,y\}$ is written as xy (or yx). Other concepts used in this work and not defined explicitly can be found in the references.

^{*}Partial grants by DGI UPLACED, Project No 139495.

2 The substitution

8

Assume that G and K are two disjoint graphs by vertices. For a vertex v in V(G) and a function $S: N_v \to V(K)$ it will be defined the substitution [9] of the vertex v by the graph K, as the graph M = G(v, s)K such that:

- (1) $V(M) = (V(G) \cup V(K)) \{v\}$ and
- $(2)\ E(M) = (E(G) \{vx: x \in N_v\}) \cup \{xs(x): x \in N_v\}$

The vertex v is said to be the vertex substituted by K in G under the function s and this function is called of substitution.

Now let v_1, \cdots, v_n be the vertices of a graph G and H_1, \cdots, H_n a sequence of graphs with no common vertices among themselves or with G. It will be denoted by $M_k = M_{k-1}(v_k, s_k)H_k$ the graph which is obtained by substitution of k vertices of G by graphs H_i , $1 \le i \le k$, where $M_0 = G$. In other words, M_1 denotes a graph obtained by substitution of only one vertex of G, M_2 denotes a graph obtained by substitution of only one vertex of M_1 , and so on. Note that every vertex substituted must belong to V(G).

It can be said that an edge of the substitution M_p is an internal edge if it is of the forms $s_i(x)s_i(y)$. The edge in M_p that are not internal edge will be nominated external edge. Let G be a graph whithout isolated vertices. If each vertex v of G is substituted by a graph complete with val(v) vertices, through an injective function, it will be said that the graph G has been expanded. It will be noted such graph by \tilde{G} . To be worth while to observe that the type of graphs constructed by Sabidussi [4] will be isomorphic with the expanded graph constructed by substitution.

3 The problem

Let G be a (p,q) graph, connected, hamiltonean and $\delta(G) > 3$.

- If $\{S_i\}$ is a sequence of graphs with no common vertices among themselves nor with G, then
 - (i) Is M_n(G) hamiltonean? and
 - (ii) $Aut(M_p(G)) \approx Aut(G)$?

3.1 Complete graph case

In this case G is a copy of the complete graph K_p , $p \ge 3$, and $\{S_i\}$ is a sequence of graphs with no common vertices among themselves nor with G where each S_i is a

copy of a complete graph (or each S_i is a copy of a cycle).

Theorem 3.1 Let G be a copy of the complete graph K_p , $p \ge 3$, whose vertices are labeled v_1, \dots, v_p and $\{S_i\}$ is a sequence of graphs with no common vertices among themselves nor with G, where each $S_i \approx K_{p-1}$, then

9

- (i) Mp(G) is a hamiltonean and
- (ii) $Aut(M_p(G)) \approx Aut(G)$.

Proof

- (i) Since G is a complete graph then it has a generator cycle denoted by C(G). Also each S, have a generator cycle denoted by C⁽⁰⁾(G). Through an suitable selection of the substitution functions, the cycle C(M_p(G)) defined by C(M_p(G) ≈ ∪^{*}_{i=1}C⁽⁰⁾(G) is a generator of M_p(G).
- (ii) The only one admissible movement in M_p(G), through a symmetry of its vertices that preserve edge, are the induced by symmetry of the vertices of G that preserve edge. In fact the internal edge of a block of M_p(G) only may be interchanged by internal edges of other block of M_p(G) [12]. By this reason G and M_p(G) have the same group of automorphisms, S_p.

Theorem 3.2 Let G be a copy of the complete graph K_p , $p \geq 3$, whose vertices are labeled v_1, \dots, v_p and $\{S_t\}$ is a sequence of graphs with no common vertices among themselves nor with G, where each $S_t \approx C_{p-1}$, then

- (i) Mp(G) is a hamiltonean and
- (ii) Aut(Mp(G)) not always is isomorphic with Aut(G).

Proof

- (i) Since G is a complete graph then it has a generator cycle denoted by C(G). Through an suitable selection of the substitution functions, the cycle $C(M_p(G))$ defined by $C(M_p(G)) \approx \bigcup_{i=1}^p S_i$ is a generator of $M_p(G)$.
- (ii) By example, if G is the complete graph K₅ then Aut(M₅(G)) is the dihedral group of order 10 [Mont.,Scientia], while Aut(G) ≈ S₅.

3.2 Regular graph case

Theorem 3.3 Let G be a hamiltonean graph, r-regular, r > 2, whose vertices are labeled v_1, \dots, v_p . If $\{S_i\}$ is a sequence of graphs with no common vertices among themselves nor with G, where each $S_i \approx K_{\operatorname{pd}(v_i)}$, then

- (i) Mp(G) is hamiltonean and
- (ii) $Aut(M_p(G)) \approx Aut(G)$.

Proof

- (i) Since G is a hamiltonean graph then it has a generator cycle denoted by C(G). Also each S_i have a generator cycle denoted by C⁽ⁱ⁾(G). Through a suitable selection of the substitution functions, the cycle C(M_p(G)) defined by C(M_p(G)) ≈ ∪^p_{i=1}C⁽ⁱ⁾(G) is generator of M_p(G).
- (ii) The only one admissible movement in M_p(G), through a symmetry of its vertices that preserve edges, are the induced by symmetry of the vertices of G that preserve edge. In fact the internal edge of a block of M_p(G) may be interchanged only by internal edges of other block of M_p(G) [12]. For this reason G and M_p(G) have the same group of automorphisms.

Theorem 3.4 Let G be a hamiltonean graph, r-regular, r > 2, whose vertices are labeled v_1, \dots, v_p . If $\{S_i\}$ is a sequence of graphs with no common vertices among themselves nor with G, where each $S_i \approx \mathbb{C}_{val(u_i)}$, then

- (i) Mp(G) is a hamiltonean and
- (ii) Aut(Mp(G)) not always is isomorphic with Aut(G).

Proof

- (i) Since G is a hamiltonean graph then it has a generator cycle denoted by C(G). Through a suitable selection of the substitution functions, the cycle C(M_p(G)) defined by C(M_p(G)) ≈ ∪^p_{i=1}S_i is generator of M_p(G).
 - (ii) Is obvious according with Theorem 3.2,(ii).

References

- Babai L. On the minimun order of graphs with given group., Canad. Math., 17 467-470 (1974).
- [2] Cayley A. The theory of groups, graphical representation, American Journal of Mathematics, 1 174-176 (1876).
- [3] Frucht R. Herstellung von graphen mit vorgege bener abstrakter gruppe, Compostio Math., 6 239-250 (1938).
- [4] Sabidussi G. Graphs with given group and given graph theorical properties, Canad. J. Math., 9 515-552 (1957).
- [5] Sabidussi G. et Al. (Kollar, Frankl, Babai) Hamiltonian cubic graphs and centralizars of involutions, Cand. J. Math., 31 458-464 (1979).

enoted |

Throw

defined

mmeln

rtices dill

be interdup on C and M

thou wit

common test

or orde den

ections, the o

s. Carad. M

America is strakter policy and proper arraphs

- [6] Power D. Some hamiltonian Cayley Graphs, Annals of discrete Mathematics., 1 129-140 (1985).
- [7] Chartrand G., Lesniak L. Graphs and Digraphs, Wadsworth and Brooks/Cole Advanced Books and Software Pacific Grove C.A., (1986).
- [8] Godsil C. Graphs, Group and Polytopes, Combinatorial Mathematics V6, Camberra, (1977).
- [9] Montenegro E. Graph with given Automorphism Group and given Nuclear Number, Proyecciones, 11 № 1 21-28 (1992).
- [10] Montenegro E., Power G., Ruiz R., Salazar G. Automorphism Group and hamiltonian properties preserved by substitution, Scientia, Serie A: Math. Sciences, 4 57-67 (1993).
- [11] Montenegro E., Salazar G. Hamiltonian path of M_k − v, Revista Técnica. Ing. Univ Zulia, 16 Nº 1 27-33 (1993).
- [12] Montenegro E. A result about the incident edges in the graphs M_k, Discrete Mathematics, 122 277-280 (1993).

Dirección del autor:

Instituto de Matemática
Universidad Católica de Valparaíso
Casilla 4059. Valparaíso