Behavior of multiple solutions for systems of semilinear elliptic equations. *

Gastón E. Hernández

Abstract.

In this work we present some partial results that will appear in a completed form in a forthcoming paper, [7]. We discuss the existence and particularly the multiplicity of solutions for the nonlinear system of elliptic equations

$$\Delta_w + \lambda f_i(x, u_1, \dots, u_m) = 0 \quad \text{in } \Omega \tag{1.1}$$

$$u_i \mid_{\partial\Omega} = 0, i = 1, \cdots, m$$
 (1.2)

where $f_i(x,0,\cdots,0)>0$ for all $x\in\Omega$, $i=1,2,\cdots,m$. The functions f_i , $i=1,\cdots,m$, satisfy the quasimonotone condition and a certain blow up rate as to be made precise in the assumptions (H1) and (H2) below. Then results similar to those of the scalar equation case (see [6]) can be established. It should be noted that unless $\frac{\partial f_i}{\partial x_i} = \frac{\partial f_i}{\partial x_i}$ for all $1 \le i,j \le m$, the problem cannot be formulated in a variational form, hence techniques associated with variational structure are not applicable.

^{*}Research supported in part by grant 1941044 of Fondecyt, Chile and by grant 95.12.23 of UTFSM, Chile.

1 Introduction

We will now make our assumptions more precise.

For equations (1.1) and (1.2) defined in a smooth bounded domain Ω in \mathbb{R}^n , $n \geq 2$, we assume

(H1) For $\vec{x} \in \bar{\Omega}$, $1 \leq i,j \leq m$, $\vec{u} \geq \vec{0}$ (i.e. $u_i \geq 0$ componentwise), let $f_i \in \mathcal{C}^3(\bar{\Omega} \times \mathbb{R}^m)$, $\frac{\partial f_i}{\partial u_i}(x,\vec{u}) > 0$ and \vec{f} satisfies the quasimonotone condition $\frac{\partial f_i}{\partial u_j}(x,\vec{u}) \geq 0$ for $i \neq j$. For sufficiently large M > 0, there exist constants c_1 , $c_2 > 0$, independent of \vec{x} , such that when $u_i \geq M$, i = 1, ..., m, then

$$f_i(\vec{x}, \vec{u}) \le c_2 ||\vec{u}||_s^s = 0 = (4.3)$$

$$c_1 u_i^s \leq f_i(\vec{x}, 0, ..., 0, u_i, 0, ..., 0) \text{ for all } \vec{x} \in \Omega,$$
 (1.4)

where $1 < s < \frac{n}{n-2}$ for n > 2, and any $s \in (1, \infty)$ for n = 2. Here $\|\vec{u}\|_s = \left(\sum_{i=1}^m u_i^s\right)^{\frac{1}{s}}$ and $\vec{f} = (f_1, \dots f_m)^T$.

(H2) Ω is convex , $\partial\Omega$ has positive curvature everywhere, and there exist $r, \delta > 0$ such that for all $\vec{u} \geq 0$ and all $\vec{x} \in \Omega_r \equiv \{x \in \Omega | \mathrm{dist}(\vec{x}, \partial\Omega) < r\}$, i = 1, ..., m,

$$\nabla_x f_i(\cdot, \vec{u}) \cdot \vec{\mu} \leq 0,$$

where $\vec{\mu}$ is a unit vector satisfying

$$|\vec{\mu} - \vec{n}(\vec{x})| < \delta, \tag{1.5}$$

and $\vec{n}(\vec{x})$ is defined for $\vec{x} \in \Omega$ to be $\vec{n}(\vec{y})$, which is the unit outward normal

vector at $\vec{y} \in \partial \Omega$ with \vec{y} defined by $|\vec{y} - \vec{x}| = \operatorname{dist}(\vec{x}, \partial \Omega)$ (the question of well definedness of $\vec{n}(\vec{x})$ is discussed in [4].)

Under these hypothesis, it is proven in [7] that there exists a $\lambda^*>0$ such that for $\lambda<\lambda^*$, there are at least two solutions, for $\lambda=\lambda^*$, there exists at least one solution, while for $\lambda>\lambda^*$, there is no solution. Here we discuss in detail the case that strict convexity of \vec{f} is assumed, i.e., $\left(\frac{\partial^2 f_0}{\partial u_1 \partial u_k}\right)_{j,k=1,\dots,m}$ is a positive definite matrix for each $i=1,\dots,m$, then the previous statements can be made more precise for $\lambda=\lambda^*$: there exists exactly one solution for such λ , and it is a simple turning point.

Finally we remark that similar techniques can be applied to study the existence and multiplicity of the system of quasimonotone semilinear equations

$$\Delta u_i + \vec{b} \cdot \nabla u_i + \lambda f_i(x, u_1, ..., u_m) = 0 \quad \text{in } \Omega$$
 (1.6)

$$u_i|_{\partial\Omega} = 0, i = 1,..,m$$
 (1.7)

where $\vec{b} \in C^1(\bar{\Omega})$ satisfies the additional condition

$$ec{b}\cdotec{\mu}\geq 0,$$

in assumption (H2).

2 Existence, multiplicity and A-priori Bounds of Solutions

For simplicity we use the vectors $\vec{\mathbf{I}}=(1,1,...,1)$ and $\vec{\mathbf{0}}=(0,0,...,0)$. When $\lambda=0, \vec{u}\equiv\vec{\mathbf{0}}$ is the unique solution. Let S denote the set of nonnegative λ for which equations (1.1)-(1.2) have a nonnegative solution. We shall begin by proving that S is a bounded interval. The following lemma is a condensation of three lemmas in [7].

Lemma 2.1. i). If λ is sufficiently small, then $\lambda \in S$.

ii) If a solution of the equations (1.1) – (1.2) exists for $\tilde{\lambda} > 0$, then solution exists for all λ such that $0 \le \lambda \le \tilde{\lambda}$.

iii). S is bounded.

It should be noted that the monotone iterations methods used in [7] give minimal positive solution for each λ for which solution exists: There exists a minimal positive solution \vec{v} of (1.1)-(1.2) that satisfies $0<\vec{u}\leq\vec{v}$ in Ω (componentwise) for all positive solution \vec{v} of (1.1)-(1.2). It is also clear from the monotone iteration technique that $\vec{u}_{\min}^{\lambda_1}<\vec{u}_{\min}^{\lambda_2}$ in Ω for $\lambda_1<\lambda_2$, where $\vec{u}_{\min}^{\lambda_1}$ is the minimal positive solution for $\lambda=\lambda_j$, j=1,2.

We establish that there is a second solution besides this minimal positive solution.

The next lemma is also a condensed form of some lemmas in [7].

Lemma 2.2. For $\lambda \geq \varepsilon > 0$ there exists a $C_1, C_2, C_0, C_s > 0$ such that for all solutions of (1.1)-(1.2),

$$i$$
). $\|\vec{u}\|_{L^1} \leq C_1$

$$||\vec{u}||_{L^s} \leq C_s$$
.

$$\|\vec{u}\|_{\mathcal{H}^1} = \sum_{i=1}^m \|u_i\|_{\mathcal{H}^1} \le C_2.$$

$$||\vec{u}||_{C^{2+\alpha}} = \sum_{i=1}^{m} ||u_i||_{C^{2+\alpha}} \le C_0$$

(where s is the blow up rate of \vec{f} as defined in the assumption (H1).)

An immediate consequence of Lemma 2.1 is the existence of solution for $\lambda = \lambda^{\bullet}.$

Using the previous a-priri bounds for the solutions together with some Degree Theory methods it is shown in [7] the following multiplicity result: Lemma 2.3 There exists at least 2 solutions of the equation (1.1)-(1.2) , for λ in the range (ε, λ^*) .

3 Behavior of the Solution for $\lambda=\lambda^*$ for Strictly Convex \vec{f}

In this section we assume that for each i=1,...,m, the matrix $\left(\frac{\partial^2 f_1}{\partial u_j \partial u_k}\right)_{j,k=1,...,m}$ is positive definite and that $\frac{\partial f_1}{\partial u_j} > 0$ for all $1 \le i,j \le m$. Then as in the case of a scalar equation (see [7]) we can prove the following properties of the solution set,

- (i) The solution for $\lambda = \lambda^*$ is unique.
- (ii) Around a neighborhood of $\lambda = \lambda^{\bullet}$, the solution set can be parametrized by $\lambda = \lambda(s)$ and u = u(s) for $-\delta < s < \delta$ for some $\delta > 0$, with $\lambda(0) = \lambda^{\bullet}$. Further, $\lambda(s) < \lambda^{\bullet}$ for $s \neq 0$ in that neighborhood. Hence $\lambda = \lambda^{\bullet}$ corresponds to a simple turning point.

To prove these claims, we define

$$\vec{F}(\vec{x}, \vec{u}, \lambda) \equiv \Delta \vec{u} + \lambda \vec{f}(x, \vec{u})$$
 (3.1)

for \vec{u} in $(C^{2+\alpha}(\bar{\Omega}))^m$ with zero Dirichlet boundary condition.

Thus solutions of the equations (1.1)-(1.2) correspond to

$$\vec{F}(\vec{x}, \vec{u}, \lambda) = 0. \tag{3.2}$$

Denote the minimal positive solution for λ by \vec{u}_{\min}^{λ} . The Frechet derivative of \vec{F} evaluated at the minimal solution is given by

$$D_{\vec{u}}\vec{F}(\vec{x}, \vec{u}_{\min}^{\lambda}, \lambda)\vec{v} \equiv \Delta \vec{v} + \lambda D_{\vec{u}}\vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda})\vec{v}$$
 (3.3)

for any \vec{v} in $(C^{2+\alpha}(\bar{\Omega}))^m$, where

$$D_{\vec{u}}\vec{f}(\vec{x},\vec{u}_{\min}^{\lambda}) = \left(\frac{\partial f_i}{\partial u_j}(\vec{x},\vec{u}_{\min}^{\lambda})\right)_{i,j=1,\dots,m}$$

First we establish a lemma:

Lemma 3.1 Let $A(\vec{x})=(a_{ij})_{i,j=1,\dots,m}>0$, i.e. $a_{ij}(\vec{x})>0$ for all $1\leq i,j\leq m$. Then there exists a positive eigenvalue η_1 and a positive vector eigenfunction $\vec{\psi}$ such that

$$\Delta \vec{\psi} + \eta_1 A(\vec{x}) \vec{\psi} = 0, \qquad (3.4)$$

$$\vec{\psi}|_{\partial\Omega} = 0. \tag{3.5}$$

Proof: Define $\tilde{T}: (C(\bar{\Omega}))^m \to (C(\bar{\Omega}))^m$ by $\tilde{T}\tilde{\varphi} \equiv -\Delta^{-1}(A\tilde{\varphi})$ subject to zero Direchlet boundary conditions. Then \tilde{T} is a positive operator: If $\tilde{\varphi} \geq 0$ with at least one component not identically zero in Ω , then if $\vec{\phi} = \vec{T} \vec{\varphi}$ we have $-\Delta \vec{\phi} = A \vec{\varphi} \geq \vec{0} \text{ , with no component being identically zero in } \Omega. \text{ Hence by the Maximum Principle } \vec{\phi} > \vec{0} \text{ , i.e. each component of } \phi \text{ is positive on } \Omega.$

Since \tilde{T} is also compact, the Krein-Rutman Theorem implies the existence of a positive eigenvalue μ_1 and a positive vector eigenfunction $\tilde{\psi}$ such that

$$\tilde{T}\vec{\psi} = \mu_1\vec{\psi}$$

so

$$A\vec{\psi} = -\mu_1 \Delta \vec{\psi}$$
.

The lemma follows with $\eta_1 = \frac{1}{\mu_1}$.

For a fixed $\lambda_0 < \lambda^*$, by the previous lemma, there exists a positive eigenvalue κ_1 and a positive vector eigenfunction $\vec{\varphi}_1$ such that

$$\Delta \vec{\varphi}_1 + \kappa_1 \lambda_0 D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda_0}) \varphi_1 = 0.$$

hence for $\lambda < \min\{\kappa_1\lambda_0, \lambda_0\}$ there cannot be a nontrivial solution for the problem

$$\Delta \phi + \lambda D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) \vec{\phi} = 0$$

because of the comparison theorem 1.13 in [2] and $D_{\vec{u}}\vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda})$ being an in-

creasing function in λ for each entry in the matrix. Thus for sufficiently small λ the Frechet derivative in (3.3) is non-singular. On the other hand there should be a first $\lambda=\bar{\lambda}\leq \lambda^*$ at which $D_{\vec{u}}\vec{F}$ becomes singular. Otherwise we can continue the minimal solution branch to $\lambda=\lambda^*$ since the solution can never blow up due to the *a-priori* bound that we have established. Using Implicit Function theorem at $\lambda=\lambda^*$, we can obtain a solution of (3.2) with $\lambda>\lambda^*$, which is a contradiction.

We claim this $\bar{\lambda}$ is the first eigenvalue for

$$\Delta \psi + \lambda D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) \vec{\psi} = 0 \tag{3.6}$$

subject to Dirichlet boundary condition, and therefore its corresponding vector eigenfunction $\vec{\psi}$ is positive. If not, there exists a first eigenvalue $\nu_1 < \bar{\lambda}$ and a corresponding vector eigenfunction $\vec{\psi_1} > 0$ to the problem

$$\Delta \vec{\psi} + \nu D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) \vec{\psi} = 0. \tag{3.7}$$

However

$$\nu_1 D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) < \beta D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\beta}) < \bar{\lambda} D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}})$$

for some $\beta < \bar{\lambda}$ and close to $\bar{\lambda}$ by simple continuity.

Since

$$\nu_1 D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\nu_1}) < \nu_1 D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) < \beta D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\beta}})$$

there exist positive first eigenvalues ρ_1, ρ_2, ρ_3 to the problems

$$\begin{split} \Delta Z_1 + \rho_1 \nu_1 D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\alpha_1}) Z_1 &= 0 \\ \Delta Z_2 + \rho_2 \nu_1 D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\tilde{\lambda}}) Z_2 &= 0 \\ \Delta Z_3 + \rho_3 \beta D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\tilde{\beta}}) Z_3 &= 0 \end{split}$$

with $\rho_2 = 1$ because of equation (3.7) and $\rho_1 \ge \rho_2 \ge \rho_3$ by the comparison theorem 1.13 in [2].

Since $\nu D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\nu})$ is a continuous function of ν , and eigenvalues depend continuously on the coefficients, hence ρ is a continuous function of ν . By the Intermediate Value Theorem, there exist a $\rho = 1$ and a $\nu_1 < \nu < \beta$ such that

$$\Delta \vec{Z} + \rho \nu D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\nu}) \vec{Z} = 0.$$

But this contradicts our assumption that $\lambda = \lambda^*$ is the first value where the Frechet derivative (3.3) becomes singular. Hence we have proved that there exists a first eigenvalue $\bar{\lambda} \leq \lambda^*$ and a positive vector eigenfunction $\vec{\psi}$ such that

$$\Delta \vec{\psi} + \bar{\lambda} D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) \vec{\psi} = 0. \tag{3.8}$$

By lemma 3.1, we have the existence of a first eigenvalue $\bar{\lambda}$ and a positive vector eigenfunction $\vec{\psi}^* > 0$ such that

$$\Delta \vec{\psi}^* + \bar{\lambda} \left(D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) \right)^T \vec{\psi}^* = 0.$$
 (3.9)

Let $(\vec{f}, \vec{g}) = \sum_{i=1}^{m} f_i g_i$ denote the usual inner product in \mathbb{R}^m . Take inner product of (3.8) with $\vec{\psi}^*$ and (3.9) with $\vec{\psi}$. Integrating by parts and substracting, since $\int_{\Omega} \langle D_{\vec{e}} \vec{f}, \vec{\psi} \rangle d\vec{x}$ is positive it follows that $\bar{\lambda} = \bar{\lambda}$.

Now it can be checked that

$$ec{F}_{\lambda}(ec{x},ec{u}_{\min}^{ar{\lambda}},ar{\lambda})=ec{f}(ec{x},ec{u}_{\min}^{ar{\lambda}})>ec{0}$$

Since $\int_{\Omega} \langle \vec{\psi}^*, \vec{f}(\vec{x}, \vec{u}_{\min}^{\vec{\lambda}}) d\vec{x}$ is positive, it follows that

$$\vec{F}_{\lambda} \not\in \text{Range}\left(D_{\vec{u}}\vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}})\right)$$
.

So $\lambda = \bar{\lambda}$ is not a bifurcation point [3].

We can therefore parametrize the solution set in a neighborhood around $\bar{\lambda}$ by: $\vec{u} = \vec{u}(s)$, $\lambda = \lambda(s)$, for some sufficient small $\delta > 0$ and $-\delta < s < \delta$ with $\lambda(0) = \bar{\lambda}$ as a consequence of implicit function theorem.

With the assumed smoothness in f, we can differentiate the equation (3.2) with respect to s, which gives

$$\Delta \vec{v} + \lambda(s) D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) \vec{v} + \lambda'(s) \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) = 0$$
 (3.10)

where $\vec{v} \equiv \frac{d\vec{v}}{ds}(s)$. We evaluate the equation at s=0, take inner product with $\vec{\psi}^*$ and integrate over Ω , which results in

$$\lambda'(0) = 0. \tag{3.11}$$

Differentiate equation (3.10) once more. With $\vec{w} = \frac{d^2\vec{y}}{ds^2}(s)$ we have, after evaluating at s = 0 and using the equation (3.11),

$$\Delta w_i + \bar{\lambda} \sum_{i=1}^m \frac{\partial f_i}{\partial u_i} w_j + \bar{\lambda} \sum_{i,k=1}^m \frac{\partial^2 f_i}{\partial u_i \partial u_k} v_j v_k + \lambda''(0) f_i = 0$$

for i=1,...,m. Again take inner product with $\vec{\psi}^*$ and integrate to get $\lambda''(0)<0$ after employing the assumption that $\left(\frac{\hat{\sigma}^2f_i}{\hat{\sigma}u_j\hat{\sigma}u_k}\right)_{j,k=1,...,m}$ are positive definite for i=1,...,m.

Thus around a neighborhood of λ^* ,

$$\lambda = \bar{\lambda} + \lambda''(0)s^2 + O(s^3). \tag{3.12}$$

So $\bar{\lambda}$ is a simple turning point.

Finally we show that $\bar{\lambda} = \lambda^{\bullet}$, and there is only one solution for $\lambda = \lambda^{\bullet}$. This will finish the proof of our claims.

Corresponding to $\lambda = \bar{\lambda}$ and $\lambda = \lambda^*$ we have

$$\Delta \vec{u}_{\min}^{\bar{\lambda}} + \bar{\lambda} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) = 0 \tag{3.13}$$

$$\Delta \vec{u}_{\min}^{\lambda^{\bullet}} + \lambda^{\bullet} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda^{\bullet}}) = 0 \qquad (3.14)$$

Substract equation (3.14) from (3.13), take inner product with $\vec{\psi}^*$ which is

CUBO 11 71

the first eigenfunction for $\lambda = \bar{\lambda}$, and integrate to obtain

$$\begin{split} & \int_{\Omega} (-\bar{\lambda} D_{\vec{u}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) (\vec{u}_{\min}^{\bar{\lambda}} - \vec{u}_{\min}^{\lambda^*}) + \bar{\lambda} \vec{f}(\vec{x}, \vec{u}_{\min}^{\bar{\lambda}}) - \lambda^* \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda^*}) \;, \; \vec{\psi}^*) \mathrm{d}\vec{x} \\ &= 0 \end{split}$$

which can be written as

$$\begin{split} \bar{\lambda} \int_{\Omega} (-\vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda^*}) + \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) + D_{\vec{q}} \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda}) (\vec{u}_{\min}^{\lambda^*} - \vec{u}_{\min}^{\lambda}), \vec{\psi}^*) d\vec{x} = \\ \int_{\Omega} ((\lambda^* - \bar{\lambda}) \vec{f}(\vec{x}, \vec{u}_{\min}^{\lambda^*}), \vec{\psi}^*) d\vec{x} \end{split}$$

By the convexness assumption on f, the left hand side is negative unless $u_{\bullet}=u_0$ when it is zero. The right hand side is non-negative since $\lambda^{\bullet}\geq\bar{\lambda}$, and can only be zero when $\lambda^{\bullet}=\bar{\lambda}$. Hence the above equation holds only when $\lambda^{\bullet}=\bar{\lambda}$, and $\vec{u}_{\min}^{\bar{\lambda}}=\vec{u}_{\min}^{\bar{\lambda}}$.

References

- Agmon Ss, Douglis A., Niremberg L. Estimates near the boundarys for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12 623-727 (1959).
- [2] Amann H. Nonlinear operators in ordered Banach Spaces and some applications to nonlinear boundary value problems. Lecture Notes in Mathematics 543 1-53 (1976).

72 CUBO 11

- [3] Crandall M.G. An introduction to constructive aspects of bifurcation and the implicit function theorem. Application of bifurcation theory edited by P. Rabinowitz 1-33 (1977).
- [4] De Figuereido D., Lions P.L., Nussbaum R.D. A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures e Appl. 61, 41-63 (1982).
- [5] Choi I.S., Hernández G. Existence and Multiplicity of solutions for a Nonvariational Elliptic Problem. Journal of Mathematical Analysis and Its Applications 182, № 1 189-249 (1994).
- [6] Choi I.S., Hernández G. Existence of solutions in a singular biharmonic nonlinear problem. Proceeding of the Edinburgh Math. Soc. 36, 537-546 (1993).
- [7] Choi I.S., Hernández G. Existence and multiplicity of solutions for systems of semilinear elliptic equations. Submitted (1994) .
- [8] Lions P.L. On the existence of positive solutions of semilinear elliptic equations. SIAM Review 24 № 4, 441-467 (1982).
- [9] McKenna P.J., Walter W. On the Dirichlet Problem for Elliptic Systems. Applicable Analysis 21, 207-224 (1986).
- [10] Rabinowitz P.H. Minimax metfods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, AMS, Providence, (1986).
- [11] Shaker A.W. On Symmetry in Elliptic Systems. Applicable Analysis 41, 1-9 (1991) .

Dirección del autor:

Gastón E. Hernández
Departamento de Matemáticas
Universidad Técnica Federico Santa María
Casilla 110-V, Valparaíso