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Behavior of multiple solutions for systems of

semilinear elliptic equations. *

Gastén E. Herndndez

Abstract.

In this work we present.some partial results that will
appear in a completed form in a forthcoming paper, (7).
We discuss the existence and particularly the multiplicity
of solutions for the nonlinear system of elliptic equations

Ay, + Afi(x, 1y 00 tm) =0 in Q (1.1)
4 Jop=10,i=1,---,m (1.2)
where fi(z,0,::+,0) > 0 for all 2 € Q, i = 1,2,--+,m.
The functions f;, 2 = 1,:::,m, satisfy the quasimonotone

condition and a certain blow up rate as to be made pre-
cise in the assumptions (H1) and (H2) below. Then results
similar to those of the scalar equation case (see [6] ) can
be established. It should be noted that unless gl = g{i‘-
for all 1 < ¢, 5 < m, the problem cannot be (ormula.)ted ina
variational * form, hence techniques associated with
variational structure are not applicable.

*Research supported in part by grant 1941044 of Fondecyt, Chile and by grant 95.12.23 of UTFSM,
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1 Introduction

We will now make our assumptions more precise.
For equations (1.1) and (1.2) defined in a smooth bounded domain @ in A",
n > 2, we assume

(H1) Forze€Q,1<4,j5<m, @>0 (i.e. w; > 0 componentwise), let
fieC¥(@xR™), -gﬁ(:,ﬂ) > 0 and f satisfies the quasimonotone condition

%(z,ﬂ) > 0 for ¢ # j. For sufficiently large M > 0, there exist constants

¢1, ¢ > 0, independent of &, such that when w; > M, i = 1,..,m, then
fi@ ) < el (1.3)

au! < fi(@,0,...,0,u;0;...,0) for all ze€ R, (1.4)

where 1 < s < 25 for n>2, and any s € (1,00) for n=2.

L
Here |Jii], = (Z u;) and = (fi,fm)"-
=
(H2) Q is convex , 9 has positive curvature everywhere, and there exist

r,6 > 0 such that for all @ > 0 and all £ € Q, = {z € Q|dist(F,09) < r},

Vo fi(, ) B <0,
where /7 is a unit vector satifying
| = #(@ <, (1.5)

and 7i(%) is defined for # €  to be 7i(¥), which is the unit outward normal
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vector at 7 € ON with § defined by |7 — &| = dist(&, 9Q) (the question of well
definedness of 7i(%) is discussed in [4] .)

Under these hypothesis, it is proven in 7] that there exists a A* > 0 such
that for A < A*, there are at least two solutions, for A = A*, there exists at
least one solution, while for A > A*, there is no solution. Here we discuss in
detail the case that strict convexity of f is assumed, i.e., (%h)j.kﬂ...,,m is
a positive definite matrix for each i = 1, ...,m, then the previous statements
can be made more precise for X = A*: there exists exactly one solution for
such A, and it is a simple turning point.

Finally we remark that similar techniques can be applied to study the ex-

istence and multiplicity of the system of quasimonotone semilinear equations

A+ 8- Vi + Mi(@, w1, ooy m) =0 in Q (1.6)

tilen = (0F =1 m (60

where b € C!(Q) satifies the additional condition

b-ji >0,

in assumption (H2).
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2 Existence, multiplicity and A-priori Bounds of So-

lutions

For simplicity we use the vectors I = (1,1,...,1) and 0 = (0,0,....,0). When
A =0, i = 0 is the unique solution. Let S denote the set of nonnegative A for
which equations (1.1)-(1.2) have a nonnegative solution. We shall begin by
proving that Sis a bounded interval. The following lemma is a condensation

of three lemmas in (7).

Lemma 2.1. i). If A is sufficiently small, then A € S.
11)If a solution of the equations (1.1) — (1.2) ezists for X > 0, then solution
exists for all X such that 0 < ) < e

11). S ts bounded.

It should be noted that the monotone iterations methods used in (7] give
minimal positive solution for each A for which solution exists: There exists
a minimal positive solution u of (1.1)-(1.2) that satisfies 0 < @ < ¢ in Q
(componentwise) for all positive solution v of (1.1)-(1.2). It is also clear from

Ay

the monotone iteration technique that @y, < sk, in Q for A; < Ay, where

B e e, & g
Upsy is the minimal positive solution for A = A; , 7 =1,2.
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We establish that there is a second solution besides this minimal positive

solution.

The next lemma is also a condensed form of some lemmas in [7].
Lemma 2.2. For A > € > 0 there ezists a Cy,C,Co, Cy > 0 such that for
all solutions of (1.1)-(1.2) ,

D).l <6
i), il <G,
i) oo = 3= hubo < Ca
). [flowe = 3 ulesss < Co

=1

(where s is the blow up rate of f_as defined in the assumption (H1).)

An immediate consequence of Lemma 2.1 is the existence of solution for
A=A
Using the previous a-priri bounds for the solutions together with some

Degree Theory methods it is shown in [7] the following multiplicity result:
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Lemma 2.3 There exists at least 2 solutions of the equation (1.1)-(1.2)

for A in the range (g,A").

3  Behavior of the Solution for A = A* for Strictly

Convex f'

In this section we assume that for each i = 1,...,m , the matrix (B"i:é‘"—");.k=l,u.,m
is positive definite and that g& > 0 for all 1 < 7,7 < m. Then as in the
case of a scalar equation (see [7]) we can prove the following properties of
the solution set,

(i) The solution for A = A" is unique.

(ii) Around a neighborhood of A = A*| the solution set can be parametrized
by A = A(s) and v = u(s) for —& < s <8 for some§ > 0, with A(0) = \".
Further, A(s) < A* for s # 0 in that neighborhood. Hence A = A* corre-

sponds to a simple turning point.

To prove these claims, we define
F(#, it \) = Ad + A\ f(z, 1) (3.1)

for @ in (C***(Q))™ with zero Dirichlet boundary condition. h

Thus solutions of the equations (1.1)-(1.2) correspond to
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F(%,d,A) = 0. (3.2)

Denote the minimal positive solution for A by @};.. The Frechet derivative

of F* evaluated at the minimal solution is given by

DaF(Z, @, A = AT+ ADef(Z, 3),,)5 (3.3)

for any @ in (C?*2(Q2))™, where

First we establish a lemma:

Lemma 3.1 Let A(7) = (aij)ij=1,.m > 0. t.. a, (&) > 0 for all 1 <
t,) < m. Then there exists a posilive eigenvalue n, and a positive vector

cigenfunction z; such that

|

A+ mA@ = 0, (3.4)
dloa = 0. (3.5)

Proof: Define T : (C(Q))™ — (C(R))™ by T = —A~'(AF) subject to zero

Direchlet boundary conditions. Then 7 is a positive operator: If @ > 0 with
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at least one component not identically zero in  , then if ¢ = T'F we have

—~A¢ = A > 0, with no component being identically zero in 2. Hence by

the Maximum Principle o; >0, i.e. each component of ¢ is positive on (2.
Since T is also compact, the Krein-Rutman Theorem implies the existence

of a positive eigenvalue y; and a positive vector eigenfunction vj; such that

) = mi
s0
AJ: —;nALI.

The lemma follows with n; = *

For a fixed Ag < A*, by the previous lemma. there exists a positive eigen-

value x, and a positive vector eigenfunction &; such that

AG + ky hoDaf(F, 78,01 =0
hence for A < min{x;A0, Ao} there cannot be a nontrivial solution for the

problem
A¢+ ADgf(,iiN,)8 = 0

because of the comparison theorem 1.13 in [2] and Dz f(7, tiy.) being an in-
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creasing function in A for each entry in the matrix. Thus for sufficiently small
A the Frechet derivative in (3.3) is non-singular. On the other hand there
should be a first A = X < A* at which Dz becomes singular. Otherwise we
can continue the minimal solution branch to A = A* since the solution can
never blow up due to the a-priori bound that we have established . Using {
Implicit Function theorem at A = A*, we can obtain a solution of (3.2) with

A > A*, which is a contradiction.

We claim this A is the first eigenvalue for
A + ADa f(Z, i )0 = 0 (3.6)

subject to Dirichlet boundary condition, and therefore its corresponding vec-
tor eigenfunction ¥ is positive. If not, there exists a first eigenvalue v; < A

and a corresponding vector eigenfunction ¥y > 0 to the problem

A + vDaf(E, @)V = 0. 3.7

However

1 Daf(Z, i) < BDaf(Z, Wnin) < ADaf(Z, )

for some B < X and close to A by simple continuity.

Since
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D f(7, W) < i Daf(@, @) < BDaf(F. Tnin)

there exist positive first eigenvalues i, p2, p3 to the problems

AZy + pin Daf(F, @507 =0

AZy + pavs Daf(&, i) 22 = 0
AZo + paPDaf(E, Tpin) 25 =0

with p» = 1 because of equation (3.7) and py > p2 = pa by the comparison

theorem 1.13 in [2].

Since v Dz f(F, %) is a continuous function of v, and eigenvalues depend
continuously on the coeficients, hence p is a continuous function of v. By
the Intermediate Value Theorem, there exist a p =1 and a 1 < v < 3 such
that

AZ + puDaf(E )7 = 0.

But this contradicts our assumption that A = A" is the first value where the
Frechet derivative (3.3) becomes singular. Hence we have proved that there
exists a first eigenvalue A < A* and a positive vector ejgenfunction & such
that

A+ ADaf(E, i)V = 0 (3:3)
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By lemma 3.1, we have the existence of a first eigenvalue A and a positive

vector eigenfunction y* > 0 such that
e Mg 4 T
AG* + X (Daf(@ i) 6" = 0. (39)

Let (f,§) = S, figi denote the usual inner product in ™. Take inner prod-
uct of (3.8) with ¢ and (3.9) with ¢ . Integrating by parts and substracting,
since /n (Daf,§)di is positive it follows that § = A .

Now it can be checked that

(&, @5, A) = f(&, iTh,) > 0.

'min?
SHce /] (9°, (7, 6An)dF is positive, it follows that
F\ ¢ Range (Daf(7, @);,)) -
So A = A is not a bifurcation point [3].

We can therefore parametrize the solution set in a neighborhood around
A by: @ =ii(s), A = A(s), for some sufficient small § > 0 and —§ < s < §
with A(0) = ) as a consequence of implicit function theorem.

With the assumed smoothness in f, we can differentiate the equation

(3.2) with respect to s, which gives

AT+ N3) Daf(Z, @in)T + N(s) (7, i) = 0 (3.10)
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where i = 4(s). We evaluate the equation at s = 0, take inner product with

U+ and integrate over ©, which results in

N(0) = 0. (3:11)

Differentiate equation (3.10) once more. With & = s) we have, after

evaluating at s = 0 and using the equation (3.11),

Aw, +AZ w,+AZ x'u+/\"(0)/‘0
Jk=1
for ¢+ = 1,..,m. Again lake inner product with U= and integrate to get

A"(0) < 0 after employing the assumption thaf. (T‘if

)y.k_x. L are positive
definite for 7 = 1,...,m.
Thus around a neighborhood of A*,
A = X+ X(0)s? 4+ O(s2). (3.12)
So A is a simple turning point.
Finally we show that A = A%, and there is only one solution for ,\ =\,
Ihis will finish the proof of our claims.

Corresponding to A = X and A = A* we have

A, + A(F, @) = 0 (3.13)
Ay, + X f(& @) = 0 (3.14)

Substract equation (3.14) from (3.13), take inner product with ¥* which is
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the first eigenfunction for A = A, and integrate to obtain

S AP, Bh) @i = i) + A(E i) = A FE ), )5
=10
which can be written as

‘min

X [ (=7, @) + @ Thin) + Daf(F, i) (i = Thin), 971 =
SO =D w57z
By the convexness assumption on f, the left hand side is negative unless

. = u when it is zero. The right hand side is non-negative since A* > X,

and can only be zero when A* = X. Hence the above equation holds only

when A* = X, and @3;, = @A,
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