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Let us denote by IH® the hyperbolic three dimensional space. A good model is
given by H® = {(z,t) € €xIR; t > 0}, with the complete Riemannian metric ds? =
(|dz|*+ dt?) /t* of constant negative curvature. The group of orientation-preserving
isometries of IH® is isomorphic to the projective linear group PSL(2, C). A subgroup
of PSL(2,C) is called discrete if it is discrete as subset of the topological space
PSL(2, C). It is well known that a discrete group of PSL(2, C) acts discontinuously
on all H*. If G is a discrete subgroup of PSL(2, C), then we say that G is Kleinian
if it acts discontinuously somewhere on €. We denote by Q(G) the region of
discontinuity of G on the Riemann sphere €.

" A Kleinian group G is called a B-group if there is a simply-connected component
of its region of discontinuity that is invariant under the action of G. We say that a
group G in PSL(2, C) is a noded Schottky group (respectively, noded 79 group), if
it is a free group of finite rank (respectively, isomorphic to the fundamental group

. of a closed Riemann surface of genus g > 2) with a finited sided fundamental
polyhedron for its action on le(it must be necessarily Kleinian as consequence of
Marden'’s isomorphism theorem). A Kleinian group keeping invariant a round disc
is called Fuchsian.

To any discrete group G we have associated an 3-orbifold (with boundary a
2-orbifold)) M(G) = (H*UQ(G))/G. The interior H*/G is a hyperbolic 3-orbifold
and its boundary Q(G)/G is a Riemann surface with singularities. If G is torsion-

" free, then M(G), H/G and R(G)/G are a 3-manifold, a hyperbolic 3-manifold and
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a Riemann surface, respectively. The commutator of G, denoted by [G, G], is the
normal subgroup of G generated by the commutators aba~'b~! with a,b € G. The
hyperbolic orbifold TH*/[G, G] is called the homology cover of H*/G.

In (4] is proved the following result which can be considered as Torelli’s theorem

for closed Riemann surfaces.

Theorem 0.1 (B. Maskit [{]). Let F be a torsion-free, finitely generated
Fuchsian group. If F has no parabolic elements and it is of the first kind
(that is, the region of discontinuity is exactly the complement of the extended
reals), then the commutator subgroup (F, F| determines uniquely F. In par-
ticular, the hyperbolic structure of the homology cover of a geometrically
. finite hyperbolic three manifold N (homeomorphic to S x (0,1), where S is a
~ closed orientable surface of genus g > 2) without cusps, determines uniquely
‘[:up to isometries) the structure of N.

‘We have extended this result for more general Kleinian groups as follows.

heorem 0.2 ([1], [2] and [8]). LetG be a torsion-free, non-abelian Kleinian
group which is either
. (a) B-group; or
(b) geometrically finite and isomorphic to a Fuchsian group,
_then G is uniquely determined by its commutator subgroup [G,G). In
particular, the hyperbolic structure of a 8-manifold, which either

(1) is geometrically finite and homeomorphic to S x (0,1), where S is a
closed orientable surface of genus greater than one; or
(2) has a incompressible boundary for which the inclution map induces an
1somorphism at the level of homotopy,
is uniquely determined (up to isometries) by the hyperbolic structure of its
homology cover:
Examples of groups either with torsion or in higher dimensions where the above

results are not longer true are given in [2].
Problem. For which class of Kleinian groups holds the above rigidity property?
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We prove Theorem 2 in the case that G is a Schottky group.

Theorem 2’. Let G and H be Schottky groups of genera g and h, respectively.
Assume g and h to be greater or equal to 2, that is, G and H are non-cyclic
groups. If (G,G) = [H, H), then G=H.

Let us denote by N the or subgroup of G and H. Since N
is normal subgroup of both G and H, both have the same region of discontinuity.
Denote this region by Q. The region Q2 is nonelementary, that is, Q2 is the quotient
of the hyperbolic plane by a nonelementary Fuchsian group. In particular, the total
group of conformal automorphisms of Q2 acts discontinuously on it.

Set T'= G N H and let R be the group generated by G and H. The fact that
the group of conformal automorphisms of Q acts discontinuously on it implies that
the group R is a Kleinian group with 2 as region of discontinuity. Let us consider
the following commutative diagram

Q
|
Q/N
al
Q/T
Py P2
/G Q/H
TQ ®
Q/R

Since /G and Q/H are closed Riemann surfaces of genus g and h, respectively,
they have finite hyperbolic area. In particular, the surface /R must have finite
hyperbolic area, and the (branched) coverings ¢, and g, are necessarily of finite
degree. It follows that the groups G and H have finite index in the group R.
Group theory implies that 7' has finite index in G, H and R. As a consequence,

the (branched) coverings p; and p; have finite degree. We denote by v the genus
of Q/R.




|

10 CUBO 10 R. Hidalgo

We must also remark that the coverings p; are necessarily unbranched. This
is consequence of the fact that the coverings @ : @ — Q/T, m; : @ — Q/G and
my : ¥ — Q/H are unbranched.

Now we consider the actions of G and H as isometries of the hyperbolic 3-space
H®. Since R is discrete, it acts discontinuously on IH* U . Consider the following

commutative diagram.

HuQ
7
(H? UQ)/N
G
(HuQ)/T
Py Py

(Hu@)/G WuQ)/H

p Ny

(HUQ)/R

Since T has finite index in both G and H, the coverings P; have finite degree,
- for k = 1,2. Moreover, they are unbranched coverings as we observed above.

Consider the induced homomorphisms of the above coverings at the first homology

I fici (finite di ional since our

groups (singular h logy) with plex cox
3-manifolds are compact and homeomorphic to the connect summe of copies of
type D x S, where S is a closed orientable surface):

U wuo
(R). + Ha(F, ©) = Hi(F, @)
Py (YR oy g (U2 o
(Pa). : Hy T S

Since the coverings P have finite degree, the above homomorphisms are in fact
surjective. The kernel of (P:). corresponds to loops on ";E’n which lift to loops
. on Eﬁﬂ. In particular, (P1)s and (P;), have the same kernel. It follows that the
dimensions of Hy(E €) and H,(HY @) are the same. Now, the 3-manifold
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H!Wun-(ﬁ, for K a Schottky group of genus g, has fundamental group isomorphic to
K, that is, a free group of rank g. In particular, we have the equality

g =M.

We return to the two dimensional situation. We have a natural embedding of
each surface Q, /N, Q/T, /G, Q/H and /R as the natural boundary of the
hyperbolic orbifold (a manifold with the only exception of g’ﬁug) H UQ, %,
"’7.“", H’G‘m, respectively. We denote the above inclusions by ig, iy, i7, ic, ix
and ip, respectively. For the particular type of manifolds we are considering, these
inclusions define surjective homomorphisms at the level of homology (with complex

coefficients). The kernel of each of these homomorphisms is as follows.

(1) Ker(ia). = Lo = Hy (@, ©);
(2) Ker(in)e = Ly;

(3) Ker(ir), = Lt corresponds to the classes of loops on /T which lift to loops
on Qbyrot;

(4) Ker(ig)s = Lg corresponds to the classes of loops on © /G which lift to loops
on Q@ by pyoroet;

(5) Ker(ig). = Ly corresponds to the classes of loops on  /H which lift to loops
on by pporot;

(6) Ker(in), = Lp.

In particular, the induced I phisms (i5), : 22D _, p,(BuR @), are
isomorphisms for B € {N, T, G, H, R}.

Since the coverings px and the (branched) coverings gx have finite degree, for
k = 1,2, the induced surjective homomorphisms at homology (with complex coef-
ficients) satisfy the following:

(7) (1)s(L1) € Le;
(8) (P2)+(L1) C Ln;
9) (@)«(Lc) € Ln;

(10) (@2)«(L#) C Lr.

e e
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We have natural surjective homomorphisms (induced by the above ones)

 H(@/T,C) | H\(Q/C,C).
s L

. Hh@T.C) | H(Q/H,C)
e T

H(2/G,C) | Hy(2/R,C)

(@) s n
@) : Hy(Q/H,C) i Hy(Q/R, C).
Ly Lp
These phisms satisfy the following equalities.

1) (P1)s © (ir). = (ic)s o (P1)si
'(m (Po)s o (ir). = (in)s © (s
B (@1). o (ic). = (n). o (@)
;@-‘,4) (Q2)s 0 (iw)s = (in)s © (q2)s-
" In particular, the homomorphisms 51 and 5, have the same kernel.

low we proceed to construct dual spaces to LR IL_T'C h ﬂ%@, H—‘(‘L’—@ and

£ Rc , respectively.

The dual maps of

(p1)s « Hi(QYT, €) —» H\(2/G, ©),
(p2)s : Hy(R/T,€) = H\(Y/H, ),
(1) : Hi(9/G, €) — Hy(QY R, ©),

(g2)s = Hy(/H, C) — H\(/ R, T)

are giving by the pull-backs

()" : H(QY/G) = H(Q/T),
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()" : H(Y/H) — H(QT),
(q)* : H(Q/R) = H(Q/G),

(92)" + H(Q/R) — H(Q/H).

Since the homomorphisms at the level of homology are surjective, the above
dual maps (by pull-backs) are injective.

Let us consider the orthogonal spaces of Lp in H(Q/T), of L in H(R2/G), of
Ly in H(2/H) and of Ly in H(2/R). Let us denote them by Ly, Lg, Ly and Lp,
respectively. These spaces are dual to L"—U’br—L‘cl, ﬂr—};@, M‘Z"&Q and —’M‘ZH—M,
respectively.

Observe that the complex dimension of L¢ is g, the dimension of Ly is h, and
the dimension of Lp is at most .

The injective homomorphisms (pk)* and (g¢)* induce injective homomorphisms
(@) : Lc = Lr;
(@) : Ly — Lr;
(@) : Lp— La;

(®)":Ln— Lu.

We can see that the above homomorphisms are the dual maps of (5))s, (52).,
(q@1)s and ()., respectively.

The equality of the kernels of (1), and (7). implies the equality of the respec-
tive orthogonals spaces in L7, that is, the equality of the images of (;)* and (p,)*.
We can see the images of these maps as those 1-forms in £r which are invariant
under the action of G/T and H/T), respectively. In particular, every 1-form in L1
is invariant under G /T if and only if it is invariant under H/T. In particular, the
image of Lp under (py)* o (¢1)* is equal to the image of (p,)*. The injectivity of
these maps imply that the dimensions of Lg, Ly and L are the same, that is,
g =~ = h. It follows that G and H must have index one in R. In particular,

L]




14 CUBO 10

References
(1] Hidalgo R. Homology coverings of Riemann surfaces Téhoku Math. J. 45
499503 (1993).

t b

(2] Hidalgo R. Kleinian groups with group. Preprint.

[3] Hidalgo R. On noded Fuchsian groups. Preprint.

[4] Maskit B. The Homology Covering of a Riemann Surface Téhoku Math.
J. 38 561-562 (1986).

Direccién del autor:

Departamento de Matematicas
Universidad Técnica Federico Santa Maria
Casilla 110-V. Valparaiso




