On the level-convergence and fuzzy integration.*

H. Román y A. Flores

Abstract.

In this paper we define the level-convergence of measurable functions on a fuzzy measure space. We study some of the properties of this convergence and give conditions for the continuity of the fuzzy integral in relation to the levelconvergence.

1 Introduction

The theory of fuzzy integration with respect to a fuzzy measure was introduced by Sugeno in [8] as a model for the treatment of non- deterministic problems. In particular, the continuity of the fuzzy integral with respect to different kinds of convergence has been exhaustly studied in the last years. Ralescu and Adams [3] proved theorems of continuity of fuzzy integral with respect to measure convergence and pointwise convergence, for a continuous and subadditive fuzzy measure. Recently [5], we study different kinds of multivalued convergences for fuzzy sets on Rⁿ and its relationships.

The aims of this is to analize the continuity of fuzzy integral with respect to multivalued convergences, more precisely we introduce the concept of level-convergence (L-convergence) on a fuzzy measure space X, study some of its properties and give conditions for the continuity of the fuzzy integral in relation to the L-convergence.

^{*}This work is parcially supported by DIEXA- Universidad de Tarapacá through Proyect 4742-94

2 Preliminaries

Definition 2.1 Let X be a set and \sum be a σ - algebra of subsets of X. By fuzzy measure we mean a positive, extended real-valued set function $\mu: \sum \rightarrow [0,\infty]$ with properties:

(FM1) $\mu(\phi) = 0$

(FM2) $A, B \in \sum$ and $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$.

Furthermore, if

(FM3)
$$A_1 \subseteq A_2 \subseteq \cdots, A_n \in \sum \Rightarrow \mu(\bigcup_{u=1}^{\infty} A_u) = \lim_{n \to \infty} \mu(A_n)$$
, then μ is upper

continuous.

Analogously, we say that µ is lower continuous when

(FM4) If $A_1\supseteq A_2\supseteq \cdots, A_n\in \sum$ and there exits n_0 such that $\mu(A_{n_0})<\infty$,

then $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n\to\infty} \mu(A_n)$.

If μ satisfies (FM3) and (FM4) we say that μ is continuous.

Throughout this paper (X, \sum, μ) will be a fuzzy measure space and M(X) the family of all measurable functions $f: X \to [0, \infty]$.

If $f \in M(X)$, then the fuzzy integral of f is defined in [9] as:

$$\int_{A} f d\mu = \bigvee_{\alpha \ge 0} [\alpha \bigwedge \mu(A \cap \{f \ge \alpha\})], A \in \sum$$
 (1)

where \bigvee , \bigwedge denote the operations sup and inf in $[0, \infty]$.

The following properties of the fuzzy integral are well-known:

Theorem 2.2 [7,10]

- P1) $\int_{A} f d\mu = \int X_{A} f d\mu$ (X_{A} is the characteristic function of A).
- P2) $\int_{A} k d\mu = k \wedge \mu(A)$, k constant.
- P3) i) If $A \subseteq B$ then $\int_A f d\mu \leq \int_B f d\mu$.
 - ii) If $f \leq g$ in A then $\int_A f d\mu \leq \int_A g d\mu$.
- P4) i) If $\mu(A) = 0$ then $\int_A f d\mu = 0$
- ii) If ∫_A fdμ = 0 and μ is upper continuous then μ(A ∩ {f > 0}) = 0.
- P5) $\int_A (f+k)d\mu \leq \int_A f d\mu + \int_A k d\mu$, k constant.
- P6) If $|f-g| \le \epsilon$ in A, then $|\int_A f d\mu \int_A g d\mu| \le \epsilon$.

Remark 2.3

i) From definition (1) we conclude that $\int I_A d\mu = \mu(A)$ (I_A is the indicator

function of A, i.e. $I_A(x) = \infty$ if $x \in A$ and $I_A(x) = 0$ if $x \notin A$). ii) From P6) we conclude that the fuzzy integral in continuous respect to uniform convenience.

Theorem 2.4 [3] If $f: X \to [0, \infty]$ is a measurable function, then

$$\int_{V} f d\mu = \int_{0}^{\infty} \mu \{ f \ge \alpha \} d\alpha$$

where the integral in the right-side of the last equation is the fuzzy integral of $F(\alpha) = \mu(\{f \ge \alpha\})$ with respect to the Lebesgue measure in $[0, \infty]$.

Theorem 2.5 [3] If μ is subadditive (i.e. $\mu(AUB) \leq \mu(A) + \mu(B)$) and $f_n \to f$ in measure, then $\int f_n d\mu \to \int f d\mu$.

Theorem 2.6 [3] If μ is subadditive, $\mu(X) < \infty$ and $f_n \to f$ pointwise then $\int f_n d\mu \to \int f d\mu$.

Others interestings properties and applications of this integral were discussed in [6],[7] and [8].

3 Level-convergence

Definition 3.1 We say that a sequence of sets (A_n) , $A_n \in \sum$, converges to $A \in \sum$, denoted by $A = \lim A_n$ (shortly: $A_n \to A$), if $A = \lim \inf A_n = \lim \sup A_n$ where

$$\limsup A_n = \bigcap_{n=1}^{\infty} \left[\bigcup_{k=n}^{\infty} A_k \right]$$
 and $\liminf A_n = \bigcup_{n=1}^{\infty} \left[\bigcap_{k=n}^{\infty} A_k \right]$

Remark 3.2 It is clear that $\limsup A_n$ consists of all x which are in infinitely many of the A_n and $\liminf A_n$ consists of all x wich are in all but finitely many of the A_n .

Remark 3.3 If (A_n) is an increasing sequence in \sum , then $\lim A_n$ exists and it is equal to $\cup A_n$.

Analogously, if (B_n) is a decreasing sequence in \sum , then $\lim B_n$ exists and it is equal to $\cap B_n$.

Definition 3.4 Let $f \in M(X)$ and $\alpha \in [0, \infty]$. Then, the α -level of f is defined by

$$L_{\alpha}f = \{x \in X/f(x) \ge \alpha\}$$

The support of f is defined by:

$$supp(f) = L_0 f = \{x \in X/f(x) > 0\} = \bigcup_{\alpha > 0} L_{\alpha} f$$

Definition 3.5 We say that a sequence of functions $(f_n), f_n \in M(X)$, L-converges to $f \in M(X)$ (shortly: $f_n \stackrel{L}{\longrightarrow} f$) if for every $\alpha \geq 0$, $L_\alpha f_n \rightarrow L_\alpha f$.

The next proposition show that L-convergence is stronger than pointwise convergence.

Proposition 3.6 If $f_n \stackrel{L}{\to} f$, then $f_n \to f$ pointwise.

Proof. Suppose that $f_n \stackrel{L}{\to} f$ and let $x_0 \in X$ with $f(x_0) = \alpha_0$. Then

$$x_0\in L_{\alpha_0}f=\lim\inf L_{\alpha_0}f_n=\bigcup_{n=1}^{\infty}\left[\bigcap_{k=n}^{\infty}L_{\alpha_0}f_k\right]$$

Consequently, $\exists n_0 \in N$ such that $x_0 \in \bigcap_{k=n_0}^{\infty} L_{n_0} L_{n_0} f_k$. That is, $x_0 \in L_{n_0} f_n = \{f_n \geq \alpha_0\} \ \forall n \geq n_0$. Hence, $f_n(x_0) \geq \alpha_0 \forall n \geq n_0$. Thus, $\liminf f_n(x_0) \geq \alpha_0$

Now suppose that $\beta_0 = \lim\sup f_n(x_0) > \alpha_0$ and let $\epsilon > 0$ such that $\beta_0 - \epsilon > \alpha_0$. Then, $f_n(x_0) \geq \beta_0 - \epsilon$ for infinite values of n. Hence, $x_0 \in L_{\beta_0 - \epsilon} f_n$ for infinite values of n.

Consequently,

$$x_0 \in \bigcap_{n=1}^{\infty} \left[\bigcup_{k=n}^{\infty} L_{\beta_0 - \epsilon} f_n\right] \subseteq \limsup \, L_{\beta_0 - \epsilon} f_n = L_{\beta_0 - \epsilon} f$$

Thus $f(x_0) \ge \beta_0 - \epsilon > \alpha_0$. But this is impossible since $f(x_0) = \alpha_0$. This implies that $\alpha_0 \le \lim\inf f_n(x_0) \le \lim\sup f_n(x_0) \le \alpha_0$.

Consequently, $\lim_{n\to\infty} f_n(x_0) = f(x_0)$, i.e. $f_n \to f$ pointwise.

Corollary 3.7 With the same conditions of Proposition 3.6, then: $f_n \stackrel{L}{\hookrightarrow} f$ and μ finite implies $f_n \stackrel{\mu}{\hookrightarrow} f$.

In the next example we show that pointwise convergence does not imply L-convergence.

Example 3.8 Let $X = \mathbb{R}$, $\sum = \sigma$ - algebra of Lebesgue measurable sets on X. Define f_n , f by:

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases} \quad \text{and} \quad f_n(x) = \begin{cases} \frac{x}{n} + 1 - \frac{1}{n} & \text{if } 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

Clearly $f_n \to f$ uniformly, but $L_1 f = [0, 1]$ whereas $L_1 f_n = \{1\}, \forall n$. Thus, $\liminf L_1 f_n = \limsup L_1 f_n = \{1\} \neq [0, 1] = L_1 f$ Consequently, (f_n) does not converges levelwise to f.

4 L-convergence and fuzzy integral

Here we investigate the continuity of fuzzy integral with respect to L-convergence.

Lemma 4.1 If $A_n \to A$, μ continuous, and there exists n_0 such that

$$\mu\left[\bigcup_{k=n_0}^{\infty} A_k\right] < \infty$$
, then $\mu(A_n) \to \mu(A)$

Proof. $A = \lim A_n$ implies $A = \lim \inf A_n = \bigcup_{n=1}^{\infty} \left[\bigcap_{k=n}^{\infty} A_k \right]$ Since $\left(\bigcap_{k=n}^{\infty} A_k \right)$ is a increasing sequence then

$$\bigcap_{k=n}^{\infty} A_k \nearrow \bigcup_{n=1}^{\infty} \left[\bigcap_{k=n}^{\infty} A_k\right] = A = \lim \inf A_n$$

Now, looking to the fact that $\bigcap_{k=n}^{\infty} A_k \subseteq A_n$ and the continuity of μ on monotone sequences, we obtain

$$\mu(A) = \lim\inf(A_n) = \lim_{n \to \infty} \mu\left[\bigcap_{k=n}^{\infty} A_k\right] = \lim\inf\mu\left[\bigcap_{k=n}^{\infty} A_k\right] \leq \lim\inf\mu(A_n)$$

Thus, we obtain $\mu(A) \leq \lim \inf \mu(A_n)$

Analogously, since $\left(\bigcup_{k=n}^{\infty} A_k\right)_{n\in\mathbb{N}}$ is a decreasing sequence, then

$$\bigcup_{k=n}^{\infty} A_k \setminus \bigcap_{n=1}^{\infty} \left[\bigcup_{k=n}^{\infty} A_k \right] = A = \lim \sup A_n$$

So, since $\bigcup_{k=n}^{\infty} A_k \supseteq A_n$ then, by (FM4) we obtain:

$$\mu(A) = \mu(\limsup A_n) = \lim_{n \to \infty} \mu\left[\bigcap_{k=n}^{\infty} A_k\right] = \lim \sup \mu\left[\bigcup_{k=n}^{\infty} A_k\right] \geq \lim \sup \mu(A_n)$$

Consequently, $\mu(A) \ge \lim \sup \mu(A_n)$.

Thus, $0 \le \mu(A) \le \lim \inf \mu(A_n) \le \lim \sup \mu(A_n) \le \mu(A)$, i.e. $\mu(A_n) \to \mu(A)$.

Theorem 4.2 Let f_n , $f \in M(X)$ with L_α f_n s-measurables,

$$\mu\left[\bigcup_{n=1}^{\infty} supp(f_n)\right] < \infty \text{ and } \mu \text{ continuous}$$

Then: $f_n \stackrel{L}{\rightarrow} f \Longrightarrow \int f_n d\mu \rightarrow \int f d\mu$.

Proof. If $f_n \stackrel{L}{\rightarrow} f$ then, by definition of L-convergence, it follow that

$$L_{\alpha}f_{n} \to L_{\alpha}f, \forall \alpha \geq 0$$

Hence, by Lemma 5.1, $\mu(L_{\alpha}f_n) \to \mu(L_{\alpha}f), \forall \alpha \geq 0$.

So, making use of Theorem 2.6 we obtain that $\int \mu(L_{\alpha}f_n) d\alpha \to \int \mu(L_{\alpha}f)d\alpha$. Thus, by Theorem 2.4, we conclude that $\int f_n d\mu \to \int f d\mu$.

The hypothesis $\mu[\bigcup_{n=1}^{\infty} supp(f_n)] < \infty$ in Theorem 4.2, cannot avoid as show the following example:

Example 4.3 Let (X, \sum, μ) be as in example 3.8, μ the usual Lebesgue measure on X. Define f_n , f by

$$f_n(x) = \begin{cases} \frac{|x|}{n} & \text{if } -n \leq x \leq n \\ 1 & \text{elsewhere} \end{cases}$$
 and $f(x) = 0, \forall x$

Then $supp(f_n) = \mathbb{R} - \{0\}, \forall n. So, \mu\left[\bigcup_{n=1}^{\infty} supp(f_n)\right] = \infty$. On the other hand, $f_n \stackrel{L}{\longrightarrow} f$ and $\int f_n d\mu = 1 \quad \forall n$, whereas $\int f d\mu = 0$.

Lemma 4.4 Let $A_n, A \in \Sigma$, then $A_n \to A$ if and only if $I_{A_n} \stackrel{L}{\longrightarrow} I_A$.

Proof. Direct consequence of fact that $L_{\alpha}I_{A_n} = A_n, \forall \alpha$

Theorem 4.5 Let (X, \sum, μ) a finite fuzzy measure space. Then the following properties are equivalent:

i) u is continous

ii)
$$f_n \stackrel{L}{\rightarrow} f \Longrightarrow \int f_n d\mu \rightarrow \int f d\mu$$
.

Proof.

- i) => ii) Direct consequence of Theorem 4.2.
- ii) \Longrightarrow i) Let (A_n) a monotone sequence in \sum and $A = \lim A_n$. Then, by Lemma 4.4, $A_n \to A$ implies $I_{A_n} \stackrel{L}{\leftarrow} I_{A}$. Thus, by hypothesis, $\int I_{A_n} d\mu \to \int I_A d\mu$. That is $\mu(A_n) \to \mu(A)$ (see Remark 2.3.) Therefore, μ is continuous.

References

- [1] Birkhoff G. Lattice theory, A.M.S., Providence, (1966).
- [2] Greco G., Bassanezi R.C. On the continuity of fuzzy integrals, Fuzzy Sets and Systems, 53 № 1 87-91 (1993).
- [3] Ralescu D., Adams G. The fuzzy integral, J. Anal.Math.Appl., 75 562-570 (1980).
- [4] Román H., Flores A., Bassanezi R.C. On the continuity of fuzzy integral in relation with measure convergence, Proyecciones, 12 № 2 137-147 (1993).
- [5] Román H., Rojas M. On the equivalence of convergences of fuzzy sets Submitted.
- [6] Román H. On fuzzy entropies Ph.D. Dissertation, IMECC-UNICAMP, Campinas, Brazil 1989.
- [7] Román II., Bassanezi R.C. On the continuity of fuzzy entropies, Kybernetes, to appear.
- [8] Sugeno M. Fuzzy measures and fuzzy integrals: A survey, in M. Gupta et al., Eds., Fuzzy Automata and Decision Processes, North-Holland, Amsterdan, 89-102 (1977).
- [9] Sugeno M. Theory of fuzzy integrals and its applications, Ph.D. Dissertation, Tokyo Institute of Technology, (1974).

CUBO 10

30

[10] Wang Z. The autocontinuity of set function and the fuzzy integral. J.Math.Anal.Appl., 99 195-218 (1984).

Dirección de los autores:

Departamento de Matemática Facultad de Ciencias-Universidad de Tarapacá Casilla 7-D, Arica.