CUBO 10, 23-30 (1994)
Octava Jornada de Matemtica de In Zona Sur.

*

On the level-convergence and fuzzy integration.

H. Romén y A. Flores

Abstract.

In this paper we define the level-convergence of measur-
able functions on a fuzzy measure space. We study some of
the properties of this convergence and give conditions for
the continuity of the fuzzy integral in relation to the level-
convergence,

1 Introduction

The theory of fuzzy integration with respect to a fuzzy measure was introduced
by Sugeno in [8) as a model for the treatment of non- deterministic problems. In
particular, the continuity of the fuzzy integral with respect to different kinds of
convergence has been exhaustly studied in the last years. Ralescu and Adams (3]
proved theorems of continuity of fuzzy integral with respect to measure conver-
gence and pointwise convergence, for a continuous and subadditive fuzzy measure.
Recently [5], we study different kinds of multivalued convergences for fuzzy sets on
IR" and its relationships.

The aims of this is to analize the continuity of fuzzy integral with respect to mul-
tivalued convergences, more precisely we introduce the concept of level-convergence
(L-convergence) on a fuzzy measure space X, study some of its properties and give
conditions for the continuity of the fuzzy integral in relation to the L-convergence.
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2 Preliminaries

Definition 2.1 Let X be a set and Y, be a a- algebra of subsets of X. By fuzzy
measure we mean a positive, extended real-valued set function p:y — [0, 00]
with properties:
(FM1) u(¢) =0
(FM2) A,B€ Y and AC B = u(A) < u(B).
Furthermore, if
o0
(FM3) A C A2 C -, Ay € T = p(|J An) = lim u(Ar), then u is upper
u=1

continuous.

Analogously, we say that j1 is lower continuous when

(FM4) If Ay D A; D - | A, € ) and there exits ng such that u(A,,) < oo,
S

then u(Q Ax) = lim u(Ay).
If p satisfies (FM3) and (FM4) we say that p is continuous.

Throughout this paper (X, ), p) will be a fuzzy measure space and M(X)
the family of all measurable functions f: X — [0,00].

If J € M(X), then the fuzzy integral of f is defined in [9] as:

[1an=ViaAuaniszaplae ¥ (1)

where \/, A denote the operations sup and inf in [0, ).
The following properties of the fuzzy integral are well-known:

Theorem 2.2 7,10
P1) [, fdp= [ Xafdp (&4 is the characteristic function of A).
P2) [, kdp =k Au(A), k constant.
P3)i) If AC B then [, fdu < [, fdp.
i) If f < g in A then [, fdu < [, gdp.
P4) i) If u(A) =0 then [, fdu=0
ii) If [, fdu =0 and p is upper continuous then p(An {f > 0}) = 0.
P5) [(f +k)dp < Sy Jdu+ [, kdp, k constant.
P6) If | f—g|< € in A, then | [, fdu— [, gdp |< e.

Remark 2.3
i) From definition (1) we conclude that [ Ixdp = p(A) (14 is the indicator
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Junction of A, i.e. Iy(x) =00 f x € A and Ix(z) =0 if = & A).
i) From P6) we conclude that the fuzzy integral in continuous respect lo

uniform convergence.

Theorem 2.4 (3] If f: X — [0,00] is a measurnble function, then

/\ s /nw“(f > a}da

where the integral in the right-side of the last equation is the fi

zzy integml
of Fla) = p({f = a}) with respect to the Lebesgue measure in [0, 00|,

Theorem 2.5 (3] Jf 1t e subadditive (i.e. u(AUB) < ju(A)+ 1(B)) and fo = f
in measure, then [ fudp — [ fdp.

Theorem 2.6 (3] If ju is subadditive , p(X) < o and [, — [ pointwise then
[ fudps = [ fdps.

Others interestings properties and applications of this integral were discussed
in (6],(7) and [8].

3 Level-convergence

Definition 3.1 We say that a sequence of sets (A,). A, € 5. converges to A €
3. denoted by A = lim A, (shortly: A, — A), if A = liminfA, = limsupd,

where

lim supA, = NjL, [U .Ah.] and liminfA, = U2 ‘{ﬂ /h]

L=n k=n

Remark 3.2 It is clear that lim supA, consists of all = which are in infinii

many of the A, and liminfA, consists of all x wich are in all but finitel;

many of the A,.

Remark 3.3 If (A,) is an increasing sequence in 3. then lim Ay exists and
it is equal to UA,.
Analogously, if (By) is a decreasing sequence in 3. then lim B, erists and

it is equal to NB,.
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Deflnition 3.4 Let f € M(X) and a € [0,00]. Then, the a-level of [ is defined
by
Lof = {z € X//(2) 2 a}
The support of [ is defined by:
supp(f) = Lof = {w € X/f(z) >0} = ] Laf
a>0

Definition 3.5 We say that a sequence of functions (fa), fo € M(X), L-
converges to f € M(X) (shortly: [, & ) if for every a 20, Lofn — Laof.

The next proposition show that L-convergence is stronger than pointwise conver-

gence.
Proposition 3.6 If f, = f, then f, — f pointwise.

Proof. Suppose that f, = f and let zo € X with f(x) = ao. Then

20 € Loy f = liminf Lo fu = | [ﬂ L,,_/k]

-
Y n=l been

Consequently, 3ny € N such that ag € (32, Laofi- That is, o € Logfn = {fn 2
~ag} ¥n > ng. Hence, fn(z0) > ag¥n > np. Thus, liminf f,(z0) > ag

Now suppose that 3 = lim supf,(zo) > @ and let ¢ > 0 such that G, — ¢ > aq.

Then, f.(x0) > 5 — ¢ for infinite values of n. Hence, xy € Ly, fn for infinite

values of n.

Consequently,

® o
z€ () [U L,,,,,/,.]g limsup Ly fo = Ly of
n=1 Lk
Thus f(xg) > 3 — ¢ > ap. But this is impossible since f(x;) = ag. This implies
that a; < liminf fu(zg) < lim supfy (7o) £ ag.

Consequently, .."f',l Jfa(zo) = [(=p), i.e. fu — [ pointwise. [ ]

Corollary 8.7 With the same conditions of Proposition 3.6, then: f, % f
and p finite implies f, = f.
L}

In the next example we show that pointwise convergence does not imply L-convergence.
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Example 3.8 Let X = R, ), = 0 - algebra of Lebesgue measurable sets on
X. Define f,, [ by:
1, f0<z<1
VE= {0 ilsewhcm and fu(z) ={
Clearly f, — [ uniformly, but L, [ = (0,1] whereas L, f, = {1},Yn.

Thus, liminfLyfon =limsupLy fu = {1} # [0,1] = L,/
Consequently, (fa) does not converges levelwise to f.

£+1-1 fo<=z<1
0 elsewhere

4 L-convergence and fuzzy integral
Here we investigate the continuity of fuzzy integral with respect to L-convergence.
Lemma 4.1 If A, — A, j continuous, and there exrists ng such that

;.[u:;,,,,AA. < oo, then p(An) — pu(A)

5
Proof. A = lim A, implies A = liminfA, =, {n.‘ n Ak

Since (ﬂ;’;n .-h.) is a increasing sequence then
neN

ne=1 bemn

ﬁ A/ U [ﬁ A,]= A=liminfA,
k=n

Now, looking to the fact that ()" Ax € A, and the continuity of /« on monotone
sequences, we obtain

p(A) = liminf(A,) = lim ,A[ﬂ ,h] = timinfp | () Ac| < hmingu(Ay)
k=n bme 4
Thus, we obtain p(A) < liminfu(A,)

Analogously, since U /h) is a decreasing sequence, then
Tah neN

0 A \ h O .-\.]: A = lim supA,

ken n=1 Leen

[ e \
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So, since | J A D A, then, by (FM4) we obtain:

k=n
© s
#(A) = p(lim supA,) = lim p {ﬂ Ak} = lim supp || Ak] > lim supp(A,)
k=n k=n
Consequently, p(A) > lim supp(A,).
Thus, 0 < p(A) < liminfu(Ay) < lim supu(A,) < p(A), ie. p(An) — p(A). =

Theorem 4.2 Let f,, f € M(X) with L, f, s-measurables,

o
" U supp(/,.)] <00 and j continuous

Then: f, % f = T fadp — [ fdps.

Proof. If f, L f then, by definition of L-convergence, it follow that
Lafn = Laf\Na 20

Hence, by Lemma 5.1, 1s(La fn) = (Lo f), Yo 2 0.
So, making use of Theorem 2.6 we obtain that [ u(Lafn) da — [ (L, f)da.
Thus, by Theorem 2.4, we conclude that [ fudy — [ fdp. ™
The hypothesis u[U2, supp(fa)] < oo in Theorem 4.2, cannot avoid as show
the following example:

Example 4.3 Let (X, Y, 1) be as in ezample 3.8, ji the usual Lebesgue mea-
sure on X. Define f,, [ by

mf{? Jonsash o and f(x) =0z

elsewhere

Then supp(fa) = R — {0},Vn, So, ;.[ B aumz(fn)}= oc. On the other hand,

fo & f and [ fudp=1 Vn, whereas [ fdp=0. L

Lemma 4.4 Let Ay, A€ Y, then A, — A if and only if Iy, =

Proof. Direct consequence of fact that La/a, = An, Y0

e
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Theorem 4.5 Let (X, Y, )  finite fuzzy measure space. Then the following
properties are equivalent:
i) pis continous

i1) fo S f = [ fadu— [ fdps.

Proof.

i) = ii) Direct consequence of Theorem 4.2.

ii) = i) Let (A4,) a monotone sequence in } and A = lim A,. Then, by Lemma
4.4, A, — A implies I, L I4. Thus, by hypothesis, [ /4 du — [Iadu. That is
1(An) — u(A) (see Remark 2.3.) Therefore, 4 is continuous. [ ]
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