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ABSTRACT

A very general positive sublinear Shilkret integral type operator is given through a
convolution-like iteration of another general positive sublinear operator with a scaling
type function. For it sufficient conditions are given for shift invariance, preservation of
global smoothness, convergence to the unit with rates. Additionally, two examples of
very general specialized operators are presented fulfilling all the above properties, the
higher order of approximation of these operators is also considered.

RESUMEN

Un operador muy general positivo sublineal de tipo integral de Shilkret es dado a
través de un iteracién de tipo convolucién de otro operador general positivo sublineal
con una funcién de tipo escalamiento. Para estos operadores, se entregan condiciones
suficientes para invariancia por shifts, conservacién de la suavidad global y convergen-
cia a la unidad con tasas. Adicionalmente, se presentan dos ejemplos de operadores
muy generales especializados que satisfacen todas las propiedades anteriores, también
considerando el alto orden de aproximacién de estos operadores.
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1 Introduction

Let X,Y be function spaces of functions from R into R;. Let Ly : X = Y, N € N, be a sequence
of operators with the following properties:

(i) (positive homogeneous)

In (af) =oln (f), V>0,V feX

(ii) (Monotonicity) if f, g € X satisfy f < g, then Ly (f) < Ln(g), VN € N,
and

(iil) (Subadditivity)
In(f+g) <In(f)+In(g), VFfigeX

We call Ly positive sublinear operators.

In this article we deal with sequences of Shilkret positive sublinear operators that are con-
structed, with the help of Shilkret integral ([5]). Our functions spaces are continuous functions
from R into R;. The sequence of operators is generated by a basic operator via dilated trans-
lations of convolution type using the Shilkret integral. We prove that our operators possess the
following properties: of shift invariance of global smoothness preservation, of convergence to the
unit operator with rates. Then we apply our results to two specific families of such Shilkret type
operators.

We continue with the higher order of approximation study of these specific operators, and all

results are quantitative.

Earlier similar studies have been done by the author, see [3], Chapters 10-17, and [2], Chapters
16, 17. These serve as motivation and inspiration to this work.

2 Background

Here we follow [5].

Let F be a o-field of subsets of an arbitrary set Q. An extended non-negative real valued
function w on F is called maxitive if u (@) =0 and

 (UierBe) = supi (Eo), (1)
e

where the set I is of cardinality at most countable, where {E; }i¢1 is a disjoint collection of sets from
F. We notice that p is monotone and (1) is true even {Ei}ic1 are not disjoint. For more properties
of u see [B]. We also call p a maxitive measure. Here f stands for a non-negative measurable
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function on Q. In [5], Niel Shilkret developed his non-additive integral defined as follows:

(N*)JD fdw=supy - (D72 ), @)

where Y = [0, m] or Y = [0, m) with 0 < m < o0, and D € F. Here we take Y = [0, 00).

It is easily proved that

(N*)J fdu = supfy - n (D N{F > y). 3)
D y>0

The Shilkret integral takes values in [0, o).

The Shilkret integral ([5]) has the following properties:

(N*)LXEdu:u(E), (4)

where X is the indicator function on E € F,

(N*)J cfduZC(N*)J fdu, ¢>0, (5)

D D

(N*) J supfrdp = sup (N*) J fndy, (6)
D neN neN D

where f,,, 1 € N is an increasing sequence of elementary (countably valued) functions converging

uniformly to f. Furthermore we have

(N") JD fdu >0, (7)

f > g implies (N*)J

fdu > (N*)J gdys, (8)
D D

where f,g: Q — [0, 00] are measurable.

Let a < f(w) < b for almost every w € E, then

ap(E) < (N*)L fdy < by (E); (9)

(N*)sz () (10)

f > 0 almost everywhere and (N*) [, fdu = 0 imply p (E) =0;
(N*) [ fdu =0 if and only f = 0 almost everywhere;
(N*) [ fdu < oo implies that

N (f) := {w € Q|f (w) # 0} has o-finite measure;
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(N*)JD (f+g)du < (N*)J

fdp + (N*)J gdy; (11)
D D

and
‘(N*)J fdu—(N*)J gdu‘S(N*)J It — gldp. (12)
D D D

From now on in this article we assume that p: F — [0, +00).

3 Univariate Theory

This section is motivated and inspired by [3] and [4].

Let £ be the Lebesgue o— algebra on R, and the set function u : £ — [0, +o0c], which is
assumed to be maxitive. Let Cy (R,R;) be the space of uniformly continuous functions from R
into R, and C (R, R, ) the space of continuous functions from R into R, . For any f € Cy (R,R )
we have w1 (,08) < +o00, & > 0, where

wy (f,8):== sup [f(x)—f(y)l, >0,
x,y€ER:
Ix—yl<s
is the first modulus of continuity.

Let {tx}, 5 be a sequence of positive sublinear operators that map Cy (R, R, ) into C (R, R )
with the property

(t () (x) =1 (f(27%)) (x), VxR,V fe Cu(R,Ry). (13)

For a fixed a > 0 we assume that

ma—+n
sup |t0 (f)u)—f(U”Swl (f) v ) ) vVfe CU (R)R+)) (14)
u,y€eR:
lu—yl<a

where me N neZ,, reZ.

Let ¥ : R — R, which is Lebesgue measurable, such that
a
N[ ) dp ) = 1. (15)
—a
We define the positive sublinear-Shilkret operators

(To () (x) := (N*)J_ (tof) (x —w) W (u) dp (u), (16)

and
(T () (x) == (To (f(27%))) (2*), YVkeZ,VxeR. (17)
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Therefore it holds

(T (000 = N [ (o (F(27))) (25— w)  (w) dn () = (18)

VxeR,VkeZ.

Indeed here we have

[I=]

()
<

(T () () (N*)Ja [t (6) (25% =)l ooy ¥ (1) i (10)

[t () (2% = )| 0. e ((N*JJ_ P (1) du(u)> = (19)

[t (F) (25 =)
Hence (Tk (f)) (x) € Ry is well-defined.

]<+oo.

oco,[—a,a

Let f,g € M (R,R;) (Lebesgue measurable functions) where X € A; A C R is a Lebesgue
measurable set.

We derive that

‘(N*) JA £(x) s (x) — N* JA g (x) du (x)

2
< (N*)JA £ (x) — g ()] dys (). (20)

We need

Definition 3.1. Let fy (1) :=f(- + «), x € R, and ® be an operator. If ® (fy) = (OFf),, then ®
is called a shift invariant operator.

We give

Theorem 3.2. Assume that
(to (f (275 +a))) (2%u) = (to (F(27%))) (2% (u+ ), (21)

forallk € Z, x € R fized, allu € R and any f € Cy (R,Ry). Then Ty is a shift invariant operator
for allk € Z.

Proof. We have that

(T (F (- + a)) (%) = (T (Fa)) (x) E

a

N[ (o (fa (27)) (25 =) (w) () =

—a

N[ (o (1@ +09)) (25— ) () i () =
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N[ Gt (r 2 ) (@8 (=2 M) ) ) P 2

N[t (F2759)) @¥ (0= 2 M 0) () fu) =

N [t (£(27)) (20 =) (w) () 2 (T () 0+ o0

that is
T (fo) = (Tic () o (23)

proving the claim. O

It follows the global smoothness of the operators Ty.
Theorem 3.3. For any f € Cy (R,R) assume that, for all u € R,
(o () (x —u) — (to () (y —w)| < wi (fyIx—yl), (24)

for any x,y € R. Then
wi (Tif,8) < wq (f,0), Vd>0. (25)

Proof. We observe that
I(To (£)) (x) — (To () (y)| =

a a (m)
‘(N*)J_ (tof) (x — ) () du(u)—(N*)J_ (tof) (y—wo (Wdpw| = (26)
a (by @@, @)
(N*)J_ (tof) (x — ) — (tof) (y —w)| P (W dp(w) <
w1 (f,lx—y)) ((N*)r b (W du(u)> D 6, (6, lx —yl).
So that
(To (£)) () — (To (7)) (W)l < @1 (F,lx —yl). (27)

From ([IT), 27) we get

(i (£)) (x) = (Tic () ()| &

[(To (F(27))) (2%%) = (To (f (27%))) (2*y)| < (28)
wi (f(27%),2%x —yl) = w1 (fIx—yl),

i.e. global smoothness for Ty has been proved. O

The convergence of Ty to the unit operator, as k — +o00, k with rates follows:
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Theorem 3.4. For f € Cy (R,Ry), under the assumption ({14), we have

(T () (x) = £ ()] < (f, mzﬁi—f“) , (29)
where me N, neZ,, k,r € Z.
Proof. We notice that
(T (£ 00 — 70l B [(To (£ (27%))) @5%) — 00| B
’(N*) J_ (to (f(27))) 2" —u) ¥ (u) dp (u) — f (x) @
a a (m
N[ o (r275) @x Wt = (N [ 1) dutw)| S
(N [ oo (7 2759)) (2% =) = £ (0] () i ) = (30)
(N*) J_ [(to (F(27%))) (2% — ) — £ (27%) (2%)| ¥ (w) dp (w) <
(here |(2%x —u) — 28| = ju| < a)
wn (1@ ) 250 ()] v ) B
ws <f (27, m“;“) 1=, <f, m;i“) : (31)
proving the claim. O
We give some applications.
For each k € Z, we define
(i) .
(Bif) (x)i= (N) |7 (= 30) () du ), (32)

i.e., here
(te (1) (W) =f (%),
and (33)

(to () (u) = f(u),
are continuous in u € R.
Also for k € Z, we define
(i) )
(N () (x) == (N¥) Jl Vi (2% —u) P (u) dp (w), (34)
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where N _
(i () (w) = ¥L (W) = ) wif (2% + zi—n) (35)
j=0
neN,w; >0, 'ioWj:L
=
is continuous in u € R.
Notice here that N _
(o (M) () =78 1) = 3 wf (uw+) (36)
is also continuous in u € R.
Indeed we have
a | n .
M=) [ L_Zowjf <(x— 2y 2]1—11)] ¥ (W du (). (37)

Clealry here we have

VkeZ,VxeR.

We give
Proposition 3.5. By, Ty are shift invariant operators.
Proof. (i) For By operators: Here tof = f. Hence

(to (f(27% +a))) (2*u) =f (2 2*u+ o) = f(u+ a) = (39)
(to (f(27%))) (2" (u+ ).
(i) For Ty operators:
(to (F) (W) = 3wyt <u+ %) .
j=0

Hence

(to (F(275 - +))) (2) = %Wif (ﬂ (2k“+ 3_1) + cx) _

n

iwjf (Z‘k (2“ (u+ a) + l)) = (to (f(27))) (2" (u+ ), (40)

proving the claim. O
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Next we show that the operators By, I'c possess the property of global smoothness preservation.

Theorem 3.6. For all f € Cy (R,Ry) and all 6 > 0 we have

w1 (Bkf,8) < wq (f,0),
and (41)
w1 (rkfaé) < wq (f,(S) .

Proof. (i) For By operators: Here tof = f, therefore
|(to () (x —u) = (to () (y —w = [f (x —u) = f [y —u)[ < w1 (f,[x —yl). (42)
(ii) For Tk operators: We observe that

[(to (F)) (x = w) = (to () (y —w)l = [vd (x —w) = v (y —w)| =

ij (f (x—u+)—) —f(y—u+l)) <
. n n

j=0

ij f(x—u+)—) —f<y—u+l>‘ <
= n n

wi (fx—y) | X_wy | =wr (flx—yl), (43)
j=0

proving the claim. O

The operators By, I'c, k € Z, converge to the unit operator with rates presented next.

Theorem 3.7. Fork € Z,

|(Bi () (x) — f (x)] < wy (f,5%),
and (44)

|(rk (f)) (X) - f(X)| < wq (fa azt]) .

Proof. (i) For By operators: Here (to (f)) (1) = f (u) and

sup |(to (f)) (W) —f(y)l= sup [f(uw)—F(y)l=wi(f,a), (45)
u,yeR u,yeR
u—y|<a u—yl<a

and we use Theorem [3.4
(ii) For T operators: Here we see that
- j
sup It (1) (w) = 11y)l = swp |3 st (wr L) 1y <

u,yeR u,yeR
[u—yl<a ut—y|<a
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j
su W; = —f < su ww1( u+ = — DS 46
yIG)]R ; ! ( ) y ‘ ng g ! n Y (46)
u— y|<a [u— yl<a

. n

sup ZWJ(m (f,:—l—&-u—yl) < ij w1 (fT+a)=wq (fa+1).
u,y€eRr j=0 i

u—yl<a’ =0

By (23)) we are done. O

4 Higher order of Approximation

Here all are as in Section 3. See also earlier our work [I], and [2], Chapter 16.
We give

Theorem 4.1. Let f € CN (R,R, ), N > 1. Consider the Shilkret-sublinear operators

B0) 00 = () |1 (x= 30) ) ),

VkeZ,VxeR. Then

N () at aN Ny @
|(Bif) (x Z + s (FY 52 ) - (47)

If tMN) is uniformly continuous or bounded and continuous, then as k — 4oo we obtain that
(Bkf) (x) — f(x) pointwise with rates.

Proof. Since f € CN (R,R), N > 1, by Taylor’s formula we have

N )
u V) (x) uyt
Fx-g0) - P (~3¢) + (48)
u N—-1
o X— o —t
J' (f(N) (t) — £N) (x)) ( (]ij — 1))' dt.
Call N
X3k X t)
M (x) == J (fN (t) — (N (x)) ( (ﬁf_ ”)' dt|. (49)
Next we estimate T, (x), where u € [—a, a].
i) Case of —a <u <0, then x <x — 5%. Then
" N—1
X_T lk _.t
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That is, when —a < u <0, then
(N) @ a
M (x) < an (FY, ) S

ii) Case of 0 <u < @, then x > x — 5. Then

t—x+ %)N

—1

JX (f(N)(”_f(N)(X))( (N=1)!

w
X—3%

(bW (X) =

We proved that
a ) aN

VkeZ VxeR, u <a.
By ({@8) we get that (jul < a)

We observe that

(51)

(52)
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(57)

proving the claim. O

Corollary 4.2. Let f € C' (R,R,). Then
a
(Bih) (%) = ()] < 5 (I W)+ ar (F,57) ), (59)
VkeZ,VxeR.

Proof. By {@D) for N =1. O

We also present

Theorem 4.3. Let f € CN (R,R,), N > 1. Consider the Shilkret-sublinear operators

(R0 00 = (v | ij (= 55) + ) | 0 0w, (60)
VkeZ,VxeR. Then
N i N
T M - ] G PR C)

If tMN) is uniformly continuous or bounded and continuous, then as k — 4oo we obtain that
(Tf) (x) — f(x), pointwise with rates.

Corollary 4.4. Let f € C' (R,R,). Then

() (o) — £ ()] < (&) {|f’(x)|+ (f’ ““)], (62)

2k 2k
VkeZ,VxeR.

Proof. By (6I) for N =1. O
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Proof. of Theorem [4.3]
Since f € CN (R), N > 1, by Taylor’s formula we get
ijf ((x— Z_k) + ﬂ) —f(x) =
§=0
N n
(B (x) u i "
S (g ) ¢ (63
i= j=
N-—1
n e (=3 + 7 )
. " f(N) _ £(N) n
j_ZOwJ J (™ (0 =™ (x) " at
Call
(gt )t (- #) s —t)
. Xk )t (X_z_k Zen )
€ (x,u,j) ::J (f(N) (t) — N (x)) N ]1)1' dt. (64)
We estimate ¢ (x,1,j). Here u| < a.
i) case of u < %,iffzikg T;Lanfxgx—zlk—i-T;Ln_
Hence
N—1
(e st)eaks (6= 3) + o —t)
e (o)l < | FN (1) — £ () N < (69)
N—1
(x—3 )+ ((x=3) + 55 - 1)
n (N) o n
L w1 (f St x\) N1 dt <
N—1
N u (=% )+ o ((X_zlk)+ﬁ_t)
“"( {ﬂ_z_kb . N—1! =
)"
_u N
(N) (1+] (an 2k) (N) (1+] (a+1)
w <f TR ) NI <wy (T 5% SN (66)
For u < %7 we hve proved that
1 nHN
el < e (109, 250) S50 (67)

2k 2KNN!

ii) caseofuz% iﬁziijkLnaiﬁ

x
Y

3

)

We observe that

|£ (X,U.,].)‘ =
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J':xl)Jr (M=) N=1)! dt| < (68)
. N—1
J:x w g ’f(N) (- (X)’ (t_ {(X_(I\T_)T)'ZQHD dt <
. —1
[ mleamgEle ™
. —1
x — — = _1%
w; (f(N)); 22—71”(“%)“;“ (e[ “\21_);'2 ) dt <
a+l (2%_227)1\1 a+1\ (a+ D
w1 (f(N)) - ) i < wy (f(N)) 5 > S (69)

So when u > L, we proved that

. a+1\ (a+ D"
le (%, 1,7)] < wy (f(N)a 7K > JkNN!I (70)
Therefore it always holds
. a+1 (a+1)N
|£(X,1L,))‘§(U] (f(N)) 2k ) 2kNNI ° (71)
Consequently we derive
u . a+1 (a+1)N —
%les(x,u,mgw] (f(N)) 2k ) KNI =1 (72)
J:
By (@3) we find
5wt (- 2) g ) 1w oy MOl 5 (73)
]:OW’ YT k) T ok s AT 2K
Therefore we get
(T (£)) (x) = f (x)] =
N uy L j o[ @
N it ((x=50) F 5= ) [ W anw = (N) | FRw (wdn(w)| < (74)
—a |j=o0 —a
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N
(%) (a4 1) “ [
[Z e L | v ®
i=1 ’ —a
= O (@) <
[21 il S
=) (a+ D (a+ DN a+1
(N)
; 2w e (f )oK ) (75)
proving the claim. O
We finish with
Corollary 4.5. Let f € CN(R,Ry), N> 1, fU (x)=0,i=1,..,N. Then
i)
aN N) @
(B () 00 =01 < ez (F™ 3¢ )+ (76)
and
ii)
a+ 1N a+1
) 061 = £ < Seaon (109,252, (77)
VkeZ,VxeR.
Proof. By [@T)) and (GI). O
Corollary 4.6. Let f € C' (R,R,), f'(x) =0. Then
i)
a a
(B () (x) = F (x)| < an (£, 57 ) (78)
and
ii)
a+1 a+1
() b = 1001 = (25 ) an (7,557, (19)
VkeZ,VxeR.
Proof. By (59)) and (G2)). O

In inequalities ((7Q)-(T9) observe the high speed of convergence and approximation.
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5 Appendix
Let f € Cy (R,R. ), and the positive sublinear Shilkret operator
(M (f)) (x) == (N*)J fix+w(u)du(u), VxeR.

We observe the following (for any x,y € R):

(M) () — (M (7)) ()] =
a a (m)
‘(N*JJ_ f(x+u)¢(u)du(u)—(N*JJ fly+w (w) du(u)| <

—a

(N*JJ I (e 1) — £ (y + )l () die () <

w1 (= y) <(N*)J b (W) du(u)) D oy (F, x—yl) - 1= ws (6 bk —yl).

Therefore it holds the global smoothness preservation property:

w1 (M (), 8) < w1 (f,8), V5 >0.
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