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ABSTRACT

In this article, we consider a class of nonlinear parabolic equations. We use an integral
representation combined with a sort of fixed point theorem to prove the existence of
classical solutions for the initial value problem (1.1), (1.2). We also obtain a result on
continuous dependence on the initial data. We propose a new approach for investigation
for existence of classical solutions of some classes nonlinear parabolic equations.

RESUMEN

En este articulo, consideramos una clase de ecuaciones parabdlicas nolineales. Usamos
una representacion integral combinada con una especie de teorema de punto fijo para
probar la existencia de soluciones cldsicas para el problema de valor inicial (1.1), (1.2).
También obtenemos un resultado sobre la dependencia continua de la data inicial.
Proponemos una estrategia nueva para la investigaciéon de la existencia de soluciones
clasicas de algunas clases de ecuaciones parabdlicas nolineales.
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1 Introduction

Here, we consider the Cauchy problem

U — Uy = F(t, %, Uy uy) in (0,0) x R, (1.1)

u(0,x) = ¢p(x) in R, (1.2)
where ¢ € C2(R), f:[0,00) x Rx R xR — C is a given continuous function, 1 : [0,00) x R — C
is the main unknown.
Our main results are as follows.

Theorem 1.1. Let f € C([0,00) x R x R x R), ¢ € C*(R). Then there exists m € (0,1) such that
the problem (1.1), (1.2) has a solution u € C'([0, m],C?([0,1])).

Theorem 1.2. Let f € C([0,00) x R x R x R), ¢ € C*(R). Then there exists m € (0,1) such that
the problem (1.1), (1.2) has a solution u € C' ([0, m],C?(R)).

For 01,0, C R with C'(01,C?(02)) we denote the space of all continuous functions u on 07 x O,
such that uy, u, and uyy exist and are continuous on O x O;.

1
Example 1.3. Let p > 1 and a € C be chosen so that aP~' = o1 Consider the Cauchy

p_

problem

U —Uxx = UP  in (0,00) X R

u(0,x) =a n R.

Then u(t,x) = a(t+ 1)_1’171 is its solution. Actually,

ue(t,x) = 5 i ] (t+1)"v0,
and
Uxx(t,x) = 0,
and
(W, X)) = ——==(t+1) 7.
Therefore
e (t, %) — Uex (£, x) = (u(t,x))P  in (0,00) xR
and

ul0,x) =a in R.
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To prove our main result we propose new integral representation of the solutions of the initial value
problem (1.1), (1.2). Many works have been devoted to the investigation of initial value problems
for parabolic equations and systems (see, for example, [13]-[16] and the references therein). We
note that in the references the IVP (1.1), (1.2) is connected with the dimension n, Fujita exponent,
Sobolev critical exponents, bounded and unbounded domain. In this article we propose new idea
which tell us that the local existence of classical solutions of the IVP is connected with the integral
representation of the solutions, it is not connected with the dimension n and if the domain is
bounded or not.

As an application of our new integral representation we deduce some results connected with the
continuous dependence on the initial data and parameters of the problem (1.1), (1.2).

Theorem 1.4. Let f € C([0,00) xRxRxR), g—i, aanx exist and are continuous in [0, 00) x RxRxR,
¢ € C2(R). Let also, u(t,x,d) € C'([0,m],C%([c,d])) be a solution to the problem (1.1), (1.2) for
some m € (0,1) and for some [c,d] C R. Then u(t,x, ) is differentiable with respect to ¢ and

v(t,x) = g—(‘g(t, x, &) satisfies the following initial value problem

Vt —Vxx = aa_i(t) X)u(t) X)(b))ux(tyx)d)))v
(1.3)
+aanx(t) Xy u(t) Xy (b))ux(ta Xy ¢))vx in [O) m] x [Ca d]a
v(0,x) =1 in [c,d]. (1.4)

2 Auxiliary results

We will start with the following useful lemma.

Lemma 2.1. Let f € C([a,b]x[c, d]xRxR), g € C?([c,d]). Then the functionu € C'([a,bl,C?([c, d]))
is a solution to the problem

Up — Uy = F(E, %, U, Uy) in (a,b] x [c, d], (2.1)
u(a,x) = g(x) in [c, d], (2.2)

if and only if it is a solution to the integral equation

f: fg (u(t,z) — g(z)) dzdy — f:l (u(t,x) —u(t,c) — (x — c)uy(T,c)) dt
(2.3)
= IZ I3 217,z ult, 2), ux (1, 2)) dzdydr, x € [e,d], te€la,bl.

Proof. (1) Let u € C'([a,bl,C?%([c,d])) is a solution to the problem (2.1), (2.2).
We integrate the equation (2.1) with respect to x and we get

f: u(t,z)dz — IZ Uy (t,2)dz

= [T f(t,z,u(t,z), ux(t, z))dz, x € [c,d], t€ la,b],
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or
f: U (t,2)dz — uy (£, x) + uy(t, c)
= [T f(t,z,u(t, 2), ux(t, z))dz, x € [c,d], té&a,b].
Now we integrate the last equation with respect to x and we find
Jo [Pty 2)dzdy — [7 (ue(t, 2) —ux(t,c)) dz
= f: ﬁ’ f(t, z,u(t, z), ux (t, z))dzdy, x € [c,d], té€la,bl,
or
J2 I we(t 2)dzdy —wlt, )+ ulty o) + (x — cJux(t,c)
= f: ﬁ’ f(t, z,u(t, z), ux (t, z))dzdy, x € [c,d], te€la,bl
We integrate the last equality with respect to t and we obtain
f:l IZ fg ut (s, z)dzdyds — f:l (u(s,x) —u(s,c) — (x — c)ux(s,c)) ds
= fz f: ﬁ’ f(s,z,uls, z), ux (s, z))dzdyds, x € [c,d], t€[a,b],
or
t
o J2 (ult,2) — g(2)) dzdy — [ (u(s,x) —u(s,c) — (x — c)ux(s,¢)) ds
= fz N f}:’ f(s,z,u(s,z), ux (s, z))dzdyds, x € [c,d], t€[a,bl],
i.e., u satisfies the equation (2.3).
(2) Let u € C'([a,bl,C%([c,d])) be a solution to the integral equation (2.3).

We differentiate the equation (2.3) with respect to x and we get

¥ (ult,2) — g(2)) dz — [} (ux(s,%) — ux(s,c)) ds

:.fta f: f(S,Z,U(S,Z),UX(S,Z))dzds, X € [C, d], te [(l,b].
Again we differentiate with respect to x and we find

u(t,x) - Q(X) - J.Z uxx(s,x)ds

= fz (s, %, 1(s, %), Uy (s, %))ds, x € [e,d], tela,bl.
Now we put t = a in the last equation and we find

u(a,x) :g(X), X € [Ca d]a
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i.e., the function u satisfies (2.2).

Now we differentiate the equation (2.4) with respect to t and we find

U (tx) = wx (8, %) = £t %, u(t, x), ux (t,x)),  x €le,dlyt € [a,bl.

The proof of the existence results are based on the following theorem.

Theorem 2.2 ([14]). Let X be a nonempty closed convex subset of a Banach space Y. Suppose
that T and S map X into Y such that

(1) S is continuous and S(X) contained in a compact subset of Y.

(2) T:X+—Y is expansive and onto.

Then there exists a point x* € X such that
Sx* 4+ Tx* = x*.

Definition 2.3. Let (X,d) be a metric space and M be a subset of X. The mapping T: M — X
is said to be expansive if there exists a constant h > 1 such that

d(Tx, Ty) > hd(x,y)

for any x,y € M.

3 Proof of Theorem 1.1

Let B > || d|lc2(j0,17) be arbitrarily chosen. Since ¢ € C([0,1]), f € C([0, 1]x [0, 1] x [~B, B] x[-B, B])
we have that there exists a constant M7 > 0 such that

M’(XN < My in [O)”a

‘f(t)x)y)zﬂ < M]] in [O)” X [O) ]] X [_B)B] X [_B)B]
We take 1,m € (0,1) so that

1B +1(B+ M) +3Bm+1IM;;m < B

1(5]3 +2M7) < B.

Let Ey; =C'([0,m],C%([0,1])) be endowed with the norm

il = max{  max - fult,), max - fue(t ),
(t,x)€[0,m]x[0,1] (t,x)€e[0,m]x[0,1]
max Uy (t, X max Uyxx (T, X }
(t,x)e[o,me[o,u‘ x(t ), (t,X)e[o,me[O,H‘ (6 x|
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By K1 we denote the set of all equi-continuous families in Eqq, i.e., for every € > 0 there exists
5 = 8(€e) > 0 such that

x1) —
lu(tsyx1) —ultz, x2)l < e, we(tr, x1) —ue(ta, x2)| < €,

“LLX(JH,X]) _ux(tZ)XZN <€, |uxx(thxl) _uxx(tZ)XZ)| <e€

whenever [t — t2] < 6, [x1 —x2| < 6. Let also,

Ki; =K1, Kip={ueK];:|ul<B}
and
Lip ={ueKjy |l < (1+1UB).

We note that Ki7 is a closed convex subset of Li7.

For u € L1 we define the operators

Tin (u)(tax) = (] + l)u(tax))

SHw(tx) — —tu(t,x)+1J:E(u(t,z)—¢(zndzdy

—1 Jt(u('t, x) —u(T,0) — xuy(t,0))dT
0

t ex ry
—lJ J J f(t,z,u(T, z), ux (T, 2))dzdydr.
0Jo Jo

We will prove that the problem

Up — Uxx = T, X, 1) in [0, m] x [0, 1], (3.2)

u(0,x) = d(x) in [0,1], (3.3)

has a solution u € C' ([0, m],C2([0,1])).

a)S]] :Ky1 — Ky7. Let u € Ky7. Then Sq1(u) € C]([O,m],CZ([O,H)) and for (t,x) € [0,m] x
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[0, 1], using the first inequality of (3.1), we get

177 (W) (t, x|

IN

IN

Note that

IN

‘—lu(t, x) + IJ': J: (u(t,z) — ¢(z))dzdy

-1 Jt(u(’r, x) —u(t,0) — xuy(t,0))dt
0

t rx pry
—IJ' J J f(T, z,u(T, z), ux (1, 2))dzdydr
oJoJo

x (Y
Uu(t, x)] + 1]0 Jo (hu(t, 2)] + b (2)]) dzdy

+1J (I, %)) + [u(t, 0)] + xhux (7, 0)]) dr
0

t px ry
+LJ j j (7, 2, (T, 2), ux (1, 2))|dzdydr
0Jo JO

B+ 1B+ Mj1)+3Bm+1M;im

St (we(ty x)

x ry
= —lut(t,xH-lJ' J u(t,z)dzdy

0Jo

—L(u(t,x) —u(t, 0) — xux(t,0))

x (Y
_IJ J f(t, z, u(t, z), ux(t, z))dzdy,
0Jo

(t,x) € [0,m] x [0, 1].
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Then, using the second inequality of (3.1), we obtain

X ry
Sl = [t +1] | ey

—L(u(t,x) —u(t,0) — xux(t,0))

x ry
—lJ J f(t, z,u(t, z), ux (t, z))dzdy
0 Jo

IN

X ry
L (t, x)] +1J' J lu (t, z)|dzdy
0 Jo

F1 (lu(t, x)1 4 [u(t, 0)] + x[ux(t, 0)[)

X ry
+tj J I£(t, 2, u(t, 2), wx(t, 2))|dzdy
0Jo

IN

LB + 1B + 31B + IM 1

= 1(5B +My1)

IN

B, (t,x)e[0,m]x[0,1].

Also,

X

—lu, (t,x) + IJO (u(t,z) — d(z))dz

SH (u)x(ta X)

—tjt(ux(r,x) (1, 0))dr
0

t px
—lJ J (T, z, u(T, z), ux (T, 2))dzdT,
0Jo

(tyx) € [0,m] x [0, 1].
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Hence, using the first inequality of (3.1),

|SH (u)x(ta X)‘

For (t,x) € [0, m] x [0, 1] we have

IN

IN

IN

SH (u)xx (t) X)

X

‘—lux(t,x) + lL (u(t,z) — d(z))dz

—tjt(ux(m) (1, 0))dr
0

t px
—IJ' J f(T,z,u(T,2), ux(T,2))dzdt
0Jo

U (b %) + tjo (fult, 2)| + 1b(2)]) dz

+1JO (e (7, )] + [ (5, 0)]) e

t px
—HJ J If(t, z,u(T,2), ux(T,2))|dzdT
0Jo

1B+ 1(B +Mjq) + 2IBm + IM71m

B, (t,x) € [0, m] x [0,1].

= T (t,x) + Lu(t,x) — d(x))

t
—lJ Uxx (T, x)dT
0

t
_lJ f(T,X,LL(T,X),LLX(T,X))dT,
0
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from where, using the first inequality of (3.1),

St Wt = [l (%) + Lt x) = (1))

t
—IJ Uyx (T, x)dT
0

-1 Jt (T, x, (T, x), ux(t,x))dt
0

< Uuee(ty X)) + L(Iult, ) + 6 ()
t
+1J [uxx (T, x)|dT
0
t
+LJ £, % (T, %), 1 (T, %) ldT
0
< B+1UB+Mip;)+1Bm+1Mim
< B.

We note that {S77(u) : u € Ky7} is an equi-continuous family in E;;. Consequently Sq7 :
K11 — Ky1. Also, S11(Kq7) € Ki7 C Lyq, ie., S11(Kq1) resides in a compact subset of Lq7.

b) S11:Kqy1 — Ky7 is a continuous operator. We note that if {un}2°_; be a sequence of ele-
ments of Ky7 such that up — u in Ky7 as n — oo, then S17(un) — Sq7(u) in Kqq as
n — oo. Therefore St : K17 — Kj1 is a continuous operator.

¢) Ti1:Ky1 — Lyy is an expansive operator and onto. For u,v € Ky; we have that
1T (w) =T (W = (T + Ve — il

i.e., T11: Ky7 — Lq7 is an expansive operator with constant 1+ L.

Let v e Ly;. Then ILH € Ky7 and

i.e., T11 : Ky7 — Ly is onto.

From a), b), ¢) and from Theorem 2.2, it follows that there is u;; € Ky7 such that

Tiiwgr + Stiwgr =u
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or
x ry
(1+l)u11(t,x)—lun(t,x)+1J J (w1 (t,2) — d(z))dzdy
0 Jo
_lJ' (w11 (7 x) — w11 (7, 0) — xug1x(7,0))d7T
0
t px py
_lJ'o L L f(T,z,u11 (T, 2), w11 (T, 2))dzdydT
= uy(t,x),
or

t

x ry
J J (un(t,z)—mzndzdy—J (Wi (1, x) — w11 (7, 0) — xu11x (1, 0)) d
0

t px pry
—J J J f(t,z,wy1 (7, 2), w11 (T, 2))dzdydr
0Jo Jo

= 0, (t,x)el0,m]x]I0,1],

whereupon, using Lemma 2.1, we conclude that w;; € C'([0,1],C?([0,1])) is a solution to the
problem (3.2), (3.3).

4 Proof of Theorem 1.2

Now we consider the problem
Uy — U = (4%, u(t, x), 1, (t, %)) in (0, m] x [1,2], (4.1)

u(0,x) = ¢p(x) in 1,2]. (4.2)
Let E12 =C'([0,m],C*([1,2])) be endowed with the norm

hal = max{ max - fult ), max - fue(t ),
(t,x)€l0,m]x[1,2] (t,x)€l0,m]x[1,2]

max - fu(t,x)) max fued(t, X))
(t,x)€l0,m]x[1,2] (t,x)€l0,m]x[1,2]

By I~(12 we denote the set of all equi-continuous families in Eq;.

Let K/, = K12,
Kiz ={u e Kj, [l < B}
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Since ¢ € C([1,2]), f € C([0,m] x [1,2] x [-B, B] x [-B,B]) we have that there exists a constant
My, > 0 such that

b(x)] < My in (1, 2],

|f(t) X»U»Z)\ < M]Z in [O) m] X [])2] X [_B)B] X [_B)B]
Let 17 > 0 be chosen so that

(5B +2M7,) < B

LUB+1L(B+Mi2)+3L1Bm+1iMom < B

Let also,
Liz ={ue Kyl < (14 14)B)

We note that Ki2 is a closed convex subset of Ly;.

For u € L2 we define the operators

T]Z(u)(tvx) = (1-}-11)11(’[,76),

X [y
SW)(tx) = 4mwm+uLwam—mmmw

—l] J (u(T,X) —U.n(T,]) — (X— ])u]]X(T,]))dT
0

t px ry
—hJ' J J f(T, z,u(T, z), ux (1, 2z))dzdydr.
0J1 1

As in the previous section one can prove that there is w2 € C'([0, 1],C2([1,2])) which is a solution
to the problem (4.1), (4.2). This solution w;, satisfies the integral equation

rfmuwm—mmmw

1J1

_IS(U'IZ(TaX) —wi(t, 1) — (x—Dujix(T,1))dT
_f; ﬁ fliJ (T, z, w12(7, 2), W12 (T, 2))dzdydT

= 0, (t,x)elo,m]xI[1,2].

Now we put x =1 in (4.3) and we find

ngﬂnn—mmnan:m
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which we differentiate with respect to t and we get
ui2(t, 1) =ugq(t, 1) in [0, m]. (4.4)
Now we differentiate (4.3) with respect to x and we find
X t
|| wraft 2) = 62z — | (uraalex) = wrralm D)ae
1 0
t px
||zt z)dzdr =0, (1,3 € 10,m) x 0,2
01
In the last equation we put x =1 and we become
t
|| (a0~ wrn(m ar =0, (1) € 10,m) x 1,2,
0
which we differentiate with respect to t and we find
urx(t, 1) =uix(t, 1) in [0, m]. (4.5)

Now we differentiate (4.4) with respect to t and we get
wize(t, 1) = ugpe(ty 1) in [0, m].
Hence, (4.4), (4.5) and
£t Twn (4 1), unx(t, 1)) = £t 1, wia(t, 1), wiax (8, 1)),
we find

u]Zxx(t)U = u]Zt(t)U_f(t)])u12(t)]))u12x(t)]))
= u]]t(t)])_f(t)])uﬂ(t)]))uﬂx(t)]))

= u]]xx(t) 1) in [0) mj.
Consequently the function

Ui (t,X) in [Oa m] X [Oa 1]
u(t,x) =

u12(t,x) in [0, m] x [1,2],

is a C' ([0, m],C? ([0, 2]))-solution to the problem

U —Uxx =t x,u(t, x), ux(t, x)) in (0, m] x [0, 2],

u(0,x) = ¢(x) in [0, 2].
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Then we consider the problem

Up — Unx = Tt %, u(t,x), ux(t, x)) in (0, m] x [2,3]
(4.6)
IL(O, X) = (b(X) in [2) 3.

As in above there is uq3 € C' ([0, m],C?([2, 3])) which is a solution to the problem (4.6) and satisfies
the integral equation

X [y
j j (wr3(t,2) — d(2))dzdy

—J (w13 (1, %) — w12(1,2) — (x — 2)u12x (1, 2))d
0

t rx ry
—J J J £, 2,113 (1, 2)y w3 (7, 2)) dzdy dr
0J2 J2

= 0, telo,m], xel23].

The function

uq (t, X) n [0, m] x [O, 1]

u(t,x) =< upa(t,x) in [0, m] x [1,2]

w3 (t, x) in [0, m] x [2,3]
is a C' ([0, m],C?([0, 3]))-solution to the problem

U — Uy = Tt %, u(t, x), ux(t, x)) in [0, m] x [0, 3],

'LL(O, X) = d)(X) in [O) 3.
An so on. We construct a solution w; € C' ([0, m],C?(R)) which is a solution to the problem

Up — Uy = (1, %, u(t, x), ux (t, x)) in (0, m] x R,

u(0,x) = d(x) in R.



CU(BO) New approach to prove the existence of classical solutions ...
20, 2 (2018

5 Proof of Theorem 1.4

We have that the solution u(t, x, ¢) satisfies the following integral equation

Then

Jo 00

X Yoof
OJ J a—uX(T)Z)u(TaZad)(z))aux(T)Z)d)(Z))) (_

x ry
Qp) = J (ult, 2, (2)) — d(2))dzdy

J T, % (X)) — (T, & b(c)) — (x — (T, &, b(c)))d

O

E J J (1,2,u(1, 2, §(2), ux(T, 2, b(2))) dz

= 0, telo,m], xE¢€lcdl.

X [y
Qd)— Q1) = J J (ult, 2, b(2) — ult,z, d1 (2)) — (bl2) — b1 (2)))dzdy

rt

- O(u(T) Xy (b(X)) - u(Ta Xy d)l (X)))dT

t

+ O(u(T) Cy (b(C)) —'LL(T, Cy d)1 (C)))dT
rt

+ (X_C)(UX(T)Ca(b(C))_ux(T)Ca(b](C)))dT
JO

t px y
— oJ J (f(T,Z,'LL(T,Z,(b(Z)))ux(T)Z)(b(Z)))

c Jc

(7, 2,u(1,2, 1(2)), U (1,2, 1 (2)) ) dzdydr

_ JXJ <§$(t z,¢(z))—1) dzdy

t

motars [ Semeotenart [ e (1) meolear

tou

T Jy 2,4l 2, B(2)), w2, 6(2))) 5 (1,2, 0(2) dzdya
0

Cc Cau %

ou
a¢)x (, 2, b(z))dzdydr

c Jc

‘Hs{d))d)]})
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where &{¢, b1} — 0 as d(x) — b1 (x) for every x € [c,d]. Hence, when ¢(x) — b1 (x) for every
x € [c, d], we get

= [X[Yv(t,z) — Ndzdy — [ v(T,x)dT
+ [ovlT,e)dT + [5xvy(T,c)dT
—[o 2 2 2 (m, 2, ulT, 2, 0(2)), un (T, 2, b (2)) Iv(T, 2) dzdy dT

_J‘QJ. yor T)Z) (T,Z,CD(Z)),UX(T,Z,CD(Z)))VX(T,Z)dZdydT,

c du,

which we differentiate twice in x and once in t and we get that v satisfies (1.3). Now we put t =0
n (5.1) and then we differentiate twice in x, and we find that v satisfies (1.4).
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