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ABSTRACT

Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boun-

dary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on

Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rotu, divu = 0 holds

into Ω. The space Q(Ω) of harmonic fields is a subspace of the Banach algebra C (Ω)

of continuous quaternion fields with the point-wise multiplication qq ′ = {αα ′ − u ·
u ′, αu ′ + α ′u+ u∧ u ′}. We prove a Stone-Weierstrass type theorem: the subalgebra

∨Q(Ω) generated by harmonic fields is dense in C (Ω). Some results on 2-jets of

harmonic functions and the uniqueness sets of harmonic fields are provided.

Comprehensive study of harmonic fields is motivated by possible applications to inverse

problems of mathematical physics.

RESUMEN

SeaΩ una variedad Riemanniana 3-dimensional suave con borde, orientada y compacta.

Un campo cuaterniónico es un par q = {α, u} dado por una función α y un campo

de vectores u en Ω. Un campo q es armónico si α, u son continuos en Ω y ∇α =

rotu, divu = 0 vale en todoΩ. El espacio Q(Ω) de campos armónicos es un subespacio

del álgebra de Banach C (Ω) de campos cuaterniónicos continuos con la multiplicación

punto a punto qq ′ = {αα ′−u ·u ′, αu ′ +α ′u+u∧u ′}. Probamos un teorema de tipo

Stone-Weierstrass: la subálgebra ∨Q(Ω) generada por campos armónicos es densa en

C (Ω). Se entregan también algunos resultados acerca de 2-jets de funciones armónicas

y los conjuntos de unicidad campos armónicos.
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1 Introduction

Motivation

There is an approach to inverse problems of mathematical physics (the so-called Boundary Control

method), which was originally based on the relations between inverse problems and the boundary

control theory [4, 7, 9]. The BC-method recovers Riemannian manifolds via spectral and/or dy-

namical boundary data. Later on, its version that makes use of connections with Banach algebras,

was proposed in [2, 5, 6].

The problem of recovering the manifold via its DN-map (the so-called Impedance Tomography

Problem) in dimensions > 3 isn’t yet properly solved. However, beginning from the papers [3, 10]

it becomes clear that harmonic quaternion fields may play the key role in the 3d ITP. It is the

reason, which has stimulated the study of their properties [8, 11].

Here we consider certain of algebraic and uniqueness properties of the harmonic quaternion

fields with hope for their future application to ITP [8]. In the mean time, our results may be

of certain independent interest for functional analysis: namely, the real uniform Banach algebras

theory [1, 13, 15].

Main result

• Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary, TΩx

the tangent space at x ∈ Ω, u · v and u ∧ v the inner and vector products in TΩx. Elements of

the space Hx := R ⊕ TΩx (the pairs q = {α, u}) endowed with a multiplication qq ′ = {αα ′ − u ·
u ′, αu ′+α ′u+u∧u ′} are said to be the geometric quaternions. As an algebra, Hx is isometrically

isomorphic to the quaternion algebra H.

• A quaternion field is a pair q = {α, u} of a function α and vector field u on Ω; in other words,

q is an Hx-valued function on the manifold. The space C(Ω;H) of continuous quaternion fields

endowed with the point-wise linear operations and multiplication, and the relevant sup-norm, is a

real uniform Banach algebra [1, 13, 15].

A field q = {α, u} ∈ C(Ω;H) is harmonic if α, u are continuous in Ω and ∇α = rotu, divu = 0

holds into Ω. The space Q(Ω) of harmonic fields is a subspace of C(Ω,H) (but not a subalgebra!).

• Let A be an algebra. For a set A ⊂ A by ∨A we denote the minimal subalgebra that contains

A. The main result of the paper is a Stone-Weierstrass type Theorem 1 which claims that ∨Q(Ω)

is dense in C(Ω;H).
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More results and comments

• In the course of proving Theorem 1 we show that Q(Ω) (and, hence, ∨Q(Ω)) separates points

of Ω. It is quite evident for Ω ⊂ R
3 [11] but far from being evident for a 3d-manifold of arbitrary

topology. The separation property is derived from the so-called H-controllability of Ω from the

boundary, which is much stronger than separability. The H-controllability is proved by the use of

the results [18] on existence of the global Green function and the Landis type uniqueness theorems

for the second order elliptic equations [16]. The key step in proving Theorem 1 is to show that

∨Q(Ω) contains the algebra of scalar fields
{
{α, 0} | α ∈ CR(Ω)

}
. The latter resembles the trick

applied in [14].

• In sec 4 we prove that the 2-jets of harmonic functions are point-wise controllable from the

boundary. The proof also makes use of the elliptic uniqueness theorems. Then this result is

applied to show that harmonic functions determine the Riemannian structure of 3d manifold.

As we hope, it is a step towards the main prospective goal: application to the 3d impedance

tomography problem on Riemannian manifolds.

• One more result, which is of certain independent interest, is the following uniqueness property

of harmonic quaternion fields (sec 5). If q ∈ Q(Ω) vanishes on a piece of a smooth surface then it

vanishes in Ω identically.

• Everywhere in the paper we deal with real functions, fields, spaces, etc. Everywhere smooth

means C∞-smooth.

Acknowledgements
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2 Quaternion fields

Quaternions

• Let E be an oriented 3d euclidean space, u · v and u∧ v the scalar (inner) and vector products,

|u| =
√
u · u. Elements p = {α, u} of the space H := R⊕E endowed with the norm |p| =

√

α2 + |u|2

and a (noncommutative) multiplication

pp ′ := {αα ′ − u · u ′, αu ′ + α ′u+ u∧ u ′} , (2.1)

are said to be geometric quaternions.

The norm obeys |p2| = |p|2,
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• Let H be the algebra of (standard) quaternions. Recall that it is the real algebra generated by

1, i, j,k with the unit 1 and multiplication defined by the table

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j .

• For an orthogonal normalized basis ε = {e1, e2, e3} in E, the correspondence e1 7→ i, e2 7→
j, e3 7→ k determines an isometric isomorphism µε : H → H,

{α, ae1 + be2 + ce3}
µε7→ α1+ ai+ bj + ck , (2.2)

(we write H ∼= H). Any isometric isomorphism µ : H → H is of the form (2.2) by proper choice of

the basis ε.

Vector analysis

In the sequel, the following assumptions are accepted.

Convention 1. Ω is a smooth compact oriented Riemannian 3d-manifold with the smooth bound-

ary ∂Ω. It is endowed with the metric tensor g ∈ C2; dµ is the Riemannian volume 3-form; ⋆ is

the Hodge operator.

On such a manifold, the intrinsic operations of vector analysis are well defined on smooth

functions and vector fields (sections of the tangent bundle TΩ). Following [21], Chapter 10, we

recall their definitions.

• For a vector field u, one defines the conjugate 1-form u♭ by u♭(v) = g(u, v), ∀v. For a 1-form f,

the conjugate field f♭ is defined by g(f♭, u) = f(u), ∀u.

• A scalar product: {fields} × {fields}
·
→ {functions} is defined point-wise by u · v = g(u, v). A

vector product: {fields}× {fields}
∧
→ {fields} is defined point-wise by g(u∧ v,w) = dµ (u, v,w), ∀w.

• A gradient: {functions}
∇
→ {fields} and a divergence: {fields}

div
→ {functions} are defined by ∇α =

(dα)♭ and divu = ⋆d⋆ u♭ respectively, where d is the exterior derivative.

• A rotor: {fields}
rot
→ {fields} is defined by rotu = (⋆du♭)

♭. Recall the basic identities: div rot = 0

and rot∇ = 0. The equalities

∇α = rotu and dα = ⋆du♭

are equivalent.

• The Laplacian {functions}
∆
→ {functions} is ∆ = div∇. The vector Laplacian {fields}

~∆
→ {fields} is

~∆ = ∇ div − rot rot .
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Remark 1. Under the above accepted assumptions on the smoothness of Ω and g, the (harmonic)

functions and fields, which obey ∆α = 0 and ~∆u = 0 in the relevant weak sense, do belong to the

class C2
loc

: see, e.g, [12], Part II, Chapter 1.

Fields

Let Ω̇ := Ω\∂Ω be the set of the inner points, C(Ω) and ~C(Ω) the spaces of continuous functions

and vector fields. Let Hx := R⊕ TΩx, x ∈ Ω be the point-wise geometric quaternion algebras.

• A quaternion field is a pair p = {α, u} with the components α ∈ C(Ω) and u ∈ ~C(Ω), the values

p(x) = {α(x), u(x)} ∈ Hx being regarded as geometric quaternions.

By C(Ω;H) we denote the space of continuous quaternion fields. One can regard them as

sections of the bundle C(Ω;H) = ∪x∈ΩHx.

• Elements of the subspace

Q(Ω) :=
{
p ∈ C(Ω;H)

∣

∣ ∇α = rotu, divu = 0 in Ω̇
}

are called harmonic fields. To be rigorous, here the conditions on the components of p are under-

stood in the relevant sense of distributions but imply ∆α = 0 and ~∆u = 0, so that α and u are

automatically smooth enough by Remark 1.

3 Density theorem

Algebra C(Ω;H)

The space C(Ω;H) with the point-wise multiplication (2.1) and the norm

‖p‖ = sup
x∈Ω

|p(x)| = sup
x∈Ω

√

|α(x)|2 + |u(x)|2TΩx

satisfying ‖qp‖ 6 ‖q‖‖p‖, ‖p2‖ = ‖p‖2 is a real uniform noncommutative Banach algebra.

• The fields {α, 0} constitute a subalgebra C(Ω;R) of C(Ω;H), which is isometrically isomorphic

to the real continuous function algebra on Ω:

C(Ω;R) ∼= CR(Ω) . (3.1)

We say {α, 0} to be the scalar fields and often identify them with functions α via the map α 7→ {α, 0},

which embeds CR(Ω) in C(Ω;H).

• The harmonic subspace Q(Ω) ⊂ C(Ω;H) is not an algebra since, in general, p, q ∈ Q(Ω) does

not imply pq ∈ Q(Ω). It is easy to see that

Q(Ω) ∩ C(Ω;R) = {{c, 0} | c is a constant function} ,
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whereas {1, 0} is the unit of C(Ω;H).

Main result

For an algebra A and a set S ⊂ A by ∨S we denote a minimal (sub)algebra in A , which contains

S. Our main results is the following.

Theorem 1. The algebra ∨Q(Ω) is dense in C(Ω;H).

The proof occupies the rest of sec 3.

Green function

• A well-known in geometry fact is that the assumptions of Convention 1, in particular, provide

the existence of a compact 3-dimensional C∞- manifold Ω ′ ⋑ Ω endowed with the tensor g ′ ∈
C2 such that g ′|Ω = g. This enables one to apply the results by M.Mitrea and M.Taylor [18]

(existence of the fundamental solution, Green function, Poisson formula, etc) which are valid

for much weaker smoothness restrictions on g and ∂Ω. Also, one can apply the results on the

uniqueness of continuation of solutions to the elliptic PDE [12, 16].

• The following results are mostly taken from [18]. Also we use some well-known facts of the elliptic

2-nd order equations theory [17, 12, 16]. By Wl
p(Ω) we denote the Sobolev space of functions which

possess the (generalized) derivatives of the order l = 1, 2, . . . belonging to Lp(Ω) (p > 1). Recall

that Ω̇ = Ω \ ∂Ω. Also we put D := {(x, y) ∈ Ω×Ω | x = y}. The distance in Ω is denoted by

rxy. Let D(Ω̇) be a space of the smooth compactly supported into Ω functions (test functions)

endowed with the standard topology, D ′(Ω̇) the corresponding distributions.

For an h ∈ L2(Ω), the Dirichlet problem

∆v = h in Ω̇

v = 0 on ∂Ω

has a unique solution vh ∈ W2
2(Ω) vanishing at the boundary. The solution is represented in the

form

vh(x) =

∫

Ω

G(x, y)h(y)dµ(y), x ∈ Ω (3.2)

via the Green function G, which possesses the following properties.

1. G ∈ C2
loc

([Ω×Ω] \D); G(x, y) = G(y, x), (x, y) 6∈ D;

G(x, ·)|∂Ω = 0, x ∈ Ω̇ . (3.3)
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For the closed sets K,K ′ ⊂ Ω provided K ∩ K ′ = ∅ the map y 7→ G(·, y) is continuous from K to

C2(K ′).

2. The estimates

G(x, y) 6
c

rxy
, |∇yG(x, y)| 6

c

r2xy

hold and imply G(x, ·) ∈ W1
p(Ω) for x ∈ Ω, 1 6 p < 3

2
.

3. As a distribution of the class D ′(Ω̇) on the test functions (of the variable y) of the class D(Ω̇),

the Green function satisfies

∆yG(x, ·) = δx, (3.4)

where δx is the Dirac measure supported at x. Note that in (3.4), and below in (3.8), (3.9), the

variable x ∈ Ω̇ plays the role of parameter.

4. For f ∈ C∞(∂Ω), the inhomogeneous boundary value problem

∆w = 0 in Ω̇ (3.5)

w = f on ∂Ω (3.6)

has a unique classical solution w = wf(x), which is represented in the form

wf(x) =

∫

∂Ω

∂νy
G(x, y) f(y)dσ(y), x ∈ Ω̇ , (3.7)

where νy is the outward unit normal at the boundary, dσ is the boundary surface element. This

is a Poisson formula derived from (3.2) by integration by parts. Function f in (3.6) is said to be a

boundary control.

• Fix a point x ∈ Ω̇ and a vector e ∈ TΩx, |e| = 1. Let γe be the geodesic that emanates from x

in direction e. Define a functional ∂x
eδx ∈ D ′(Ω̇) by

〈∂x
eδx, ϕ〉 := lim

γe∋ x ′
→x

ϕ(x ′) −ϕ(x)

rxx ′

=

〈

lim
γe∋ x ′

→x

δx ′ − δx

rxx ′

, ϕ

〉

= e · ∇ϕ(x) .

The relevant limit passage in (3.4) determines a derivative ∂x
eG(x, ·) ∈ D ′(Ω̇) which satisfies

∆y[∂
x
eG(x, ·)] = ∂x

eδx . (3.8)

In the mean time, by the properties 1 and 2, ∂x
eG(·, y) is a (classical) function belonging to Lp(Ω)

for 1 6 p < 3
2
. Moreover it is harmonic (and hence C2-smooth) in Ω \ {x} and satisfies

∂x
eG(x, ·)|∂Ω = 0 , x ∈ Ω̇. (3.9)

• The relevant limit passage in the Poisson formula (3.7) implies

e · ∇wf(x) =

∫

∂Ω

∂νy
[∂x

eG(x, y)] f(y)dσ(y), x ∈ Ω̇ . (3.10)
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H-controllability

• The following result plays the key role in the proof of Theorem 1. Recall that Hx = R⊕TΩx
∼= H,

and Ω obeys Convention 1.

For a set of points A = {a1, . . . , aN} ⊂ Ω define a 4N-dimensional space HA := ⊕∑N
i=1 Hai

and a map MA : C∞(∂Ω) → HA:

f 7→ ⊕
N∑

i=1

{wf(ai),∇wf(ai)}

(each summand {wf(ai),∇wf(ai)} belongs to the corresponding Hai
). We say Ω to be H-

controllable from boundary if this map is surjective for any finite set A.

Lemma 1. The manifold Ω is H-controllable from boundary.

Proof. The opposite means thatHA⊖RanMA 6= {0}, i.e. there is a nonzero element⊕∑N
i=1{αi, βiei} ∈

HA (αi, βi ∈ R, |ei| = 1) such that

N∑

i=1

αiw
f(ai) + βi ei · ∇wf(ai) = 0 (3.11)

holds for all f ∈ C∞(∂Ω). Show that such an assumption leads to contradiction.

1. Let A ⊂ Ω̇, i.e., all ai are the interior points. A function

Φ(y) :=

N∑

i=1

αiG(ai, y) + βi∂
x
ei
G(ai, y) (3.12)

satisfies

∆Φ = 0 in Ω \A (3.13)

Φ|∂Ω = 0 (3.14)

by (3.3), (3.4), (3.8), and (3.9).

The relations (3.7), (3.10) and (3.11) easily follow to

∫

∂Ω

∂νΦ(y) f(y)dσ(y) = 0

that implies

∂νΦ|∂Ω = 0 (3.15)

by arbitrariness of f.
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2. So, Φ is harmonic in Ω \ A and has the zero Cauchy data at the boundary: see (3.14) and

(3.15). By the well-known uniqueness property of solutions to elliptic PDE (see, e.g., [16], sec. 4.3,

Remark 4.17), we get Φ = 0 in Ω \ A, i.e., almost everywhere in Ω.

Since G(ai, ·) ∈ W1
p(Ω) and ∂ei

G(ai, ·) ∈ Lp(Ω), we have Φ ∈ Lp(Ω) for some p > 1.

Therefore, Φ is a summable function equal zero a.e. in Ω. Thus, Φ = 0 as a distribution of the

class D ′(Ω̇).

In the mean time, by (3.4) and (3.8) one has

∆Φ =

N∑

i=1

αiδai
+ βi∂

x
ei
δai

6= 0 ,

i.e., Φ is a nonzero element of D ′(Ω̇). We arrive at the contradiction that proves the Lemma for

A ∈ Ω̇.

3. Let A contain the points of ∂Ω. The smoothness assumptions on Ω enable one to provide

Ω ′, g ′ obeying Convention 1 and such that Ω ⋐ Ω ′ and g ′|Ω = g holds. Then one has A ⊂ Ω̇ ′

that reduces this case to the previous one.

Note that relations between controllability and uniqueness theorems (like the one used in the

proof) are widely exploited in control theory for PDE (see, e.g., [9]).

• Recall that wf is a harmonic function that solves (3.5), (3.6). As immediate consequence of

Lemma 1 we have

Corollary 1. The algebra ∨
{
|∇wf|2 | f ∈ C∞(Ω)

}
is dense in CR(Ω).

Indeed, by Lemma 1, for any a, b ∈ Ω there is a smooth f such that |∇wf(a)|2 6= |∇wf(b)|2,

i.e., the functions |∇wf(·)|2 separate points of Ω. In the mean time, by the same Lemma, there

is no x0 ∈ Ω, at which all these functions vanish simultaneously. Hence, by the classical Stone-

Weierstrass Theorem (see, e.g., [19]), the above mentioned density does hold.

Note that {0,∇wf} ∈ Q(Ω) and {0,∇wf}2 = −{|∇wf(·)|2, 0} ∈ ∨Q(Ω). Hence, the algebra

∨
{
{|∇wf|2, 0} | f ∈ C∞(Ω)

}
is a subalgebra in ∨Q(Ω). By (3.1), Corollary 1 implies that this

algebra is dense in C(Ω;R). As a result, denoting

C := ∨Q(Ω)

we arrive at the important relation

C ⊃ C(Ω;R) . (3.16)
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Strong separation

We say that a family F ⊂ C(Ω;H) strongly separates points (of Ω) if for any a, b ∈ Ω and

ha ∈ Ha, hb ∈ Hb there is a p ∈ F such that p(a) = ha and p(b) = hb holds [13].

Lemma 2. The space Q(Ω) strongly separates points.

Proof. • Let ~L2(Ω) be the space of square-integrable vector fields and H := {v ∈ ~L2(Ω) | div v =

0, rot v = 0} its harmonic subspace. The well-known Hodge-Morrey-Friedrichs decomposition

claims that

H = G ⊕ N = R ⊕ D , (3.17)

where

G := {v ∈ H | v = ∇α}, N := {v ∈ H | v · ν = 0} ,

R := {v ∈ H | v = rotu}, D := {v ∈ H | v∧ ν = 0} .

(see, e.g., [21], Corollary 3.5.2). The subspaces N and D determined by the boundary conditions

are called the Neumann and Dirichlet spaces respectively. Their finite dimensions are equal to the

Betti numbers: dimN = β1, dimD = β2 [21]. Note that N ∩ D = {0} [3, 21]. Also note that

dimG = dimR = ∞.

• As a consequence of (3.17), a field v ∈ H is represented in the form v = ∇α = rotu if and only

if v ∈ G ∩ R or, equivalently, v⊥[N +̇D ].

If w = wf(x) solves (3.5), (3.6) then for any d ∈ D one has

(∇wf, d) =

∫

Ω

∇wf · d dµ =

∫

∂Ω

f d·νdσ .

In the mean time, since ∇wf ∈ G , the representation ∇wf = rotu holds if and only if ∇wf⊥D ,

which is equivalent to ∫

∂Ω

f d·νdσ = 0 , d ∈ D . (3.18)

In particular, taking f = 1 one has wf = 1 in Ω and gets

∫

∂Ω

d·νdσ = 0 , d ∈ D . (3.19)

• Now, fix two distinct points a, b ∈ Ω and elements ha = {ca, ka} ∈ Ha, hb = {cb, kb} ∈ Hb. To

prove the Lemma we need to show that there is a smooth f, which provides

wf(a) = ca, w
f(b) = cb; ∇wf = rotu; u(a) = ha, u(b) = hb . (3.20)
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Step 1. At first assume a, b ∈ Ω̇. Let Px(y) := ∂νy
G(x, y) be the Poisson kernel. By (3.7) for

f = 1 we have ∫

∂Ω

Px(y)dσ(y) = 1 , x ∈ Ω. (3.21)

In accordance with (3.7) and (3.18), to satisfy the relations wf(a) = ca, w
f(b) = cb; ∇wf = rotu

in (3.20) we need to find f provided

∫

∂Ω

Pa(y) f(y)dσ(y) = ca ,

∫

∂Ω

Pb(y) f(y)dσ(y) = cb ;

∫

∂Ω

f(y)d(y)·νdσ(y) = 0 , d ∈ D ,

or, equivalently,

(Pa, f) = ca, (Pb, f) = cb , f⊥ν·D (3.22)

(the inner products in L2(∂Ω)), where ν · D := {ν · d | d ∈ D}.

Comparing (3.19) with (3.21), we conclude that neither Pa nor Pb belong to ν · D . In the

mean time, Pa 6= Pb as elements of L2(∂Ω). Indeed, otherwise we’d have wf(a) = wf(b) for any

f that is impossible by Lemma 2. Hence, span{Pa, Pb} ∩ ν · D may consist of {c(Pa − Pb) | c ∈ R}

only. As a result, to proof the solvability of the linear system (3.22) (with respect to f) in the case

of ca 6= cb we must show that Pa − Pb 6∈ ν · D .

Step 2. Assume the opposite: there is a d ∈ D such that Pa − Pb = d · ν, and show that this

assumption leads to a contradiction.

Compare the fields ∇[G(a, ·)−G(b, ·)] and d. Since G(a, ·) = G(b, ·) = 0 on ∂Ω both of them

are normal on the boundary. Hence, by the assumption, they are equal on ∂Ω. In the mean time,

the field ∇[G(a, ·) − G(b, ·)] is harmonic in Ω̇ \ [{a} ∪ {b}], whereas d is harmonic in the whole Ω̇.

The coincidence at the boundary implies the coincidence in the domain of harmonicity. Hence,

∇[G(a, ·) − G(b, ·)] can be extended by continuity to the whole Ω and ∇[G(a, ·) − G(b, ·)] = d

everywhere. However, the latter is impossible since

div∇[G(a, ·) −G(b, ·)] = ∆[G(a, ·) − G(b, ·)] = δa − δb ,

whereas div d = 0 everywhere in Ω̇. This contradiction shows that Pa − Pb 6∈ ν · D .

Step 3. The case of a and/or b belonging to the boundary is reduced to the previous one by the

collar theorem arguments, which were applied at the end of the proof of Lemma 1.

Corollary 2. The algebra ∨Q(Ω) ⊂ C(Ω;H) strongly separates points of Ω.

This property plays important role in proving density theorems [13].
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Completing the proof of Theorem 1

Recall that C = ∨Q(Ω) and prove that C = C(Ω;H). The fact, which will play the key role, is

the embedding C ⊃ C(Ω;R) ∼= CR(Ω): see (3.16).

• Fix an x ∈ Ω and choose the smooth boundary controls fx1, f
x
2, f

x
3 such that∇wfx1 (x),∇wfx2 (x),∇wfx3 (x)

constitute a basis of TΩx. It is possible owing to Lemma 1. By continuity, there is a ball

Br(x)[x] ⊂ Ω centered at x, of (small enough) radius r(x), such that ∇wfx1 (y),∇wfx2 (y),∇wfx3 (y)

is a basis of TΩy for each y ∈ Br(x)[x].

Let such a choice be done for each x ∈ Ω.

• The balls provide an open cover Ω = ∪x∈ΩBr(x)[x]. By compactness there is a finite subcover

Ω = ∪N
n=1Brn [xn], where rn := r(xn). Let η1, . . . , ηN be a partition of unit subordinated to the

subcover, so that

η1, . . . , ηN ∈ C∞(Ω), suppηn ⊂ Brn [xn],

N∑

n=1

ηn ≡ 1 in Ω

holds.

• Take p = {α, u} ∈ C(Ω;H) and represent

p =

N∑

n=1

ηnp = {

N∑

n=1

ηnα,

N∑

n=1

ηnu} =

N∑

n=1

{ηnα, 0}+

N∑

n=1

{0, ηnu}

with {ηnα, 0} ∈ C(Ω;R) ⊂ C . In the mean time, one has

ηnu =

3∑

k=1

κ
n
k ∇wf

xn
k

with the certain κ
n
k ∈ CR(Ω) supported in Brn [xn]. Note that {κn

k , 0} ∈ C(Ω;R) ⊂ C .

Summarizing, we arrive at the representation

p =

N∑

n=1

{ηnα, 0}+

N∑

n=1

3∑

k=1

{κn
k , 0}{0,∇wf

xn
k } ,

where all cofactors and summands do belong to C . Thus p ∈ C and, hence, C(Ω;H) = C .

Theorem 1 is proved.

Remark 2. Analyzing the proof, it is easy to recognize that the family W :=
{
{0,∇wf} | f is smooth

}
,

which is smaller than Q(Ω), also generates the whole of the continuous field algebra: ∨W =

C(Ω;H).
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4 Controllability of 2-jets

Fix an a ∈ Ω̇; let x1, x2, x3 be the local coordinates in a neighborhood ω ∋ a. With a smooth

function φ one associates the row of its 0,1,2-order derivatives

ja[φ] := {φ(a); φx1(a), φx2(a), φx3(a);

φx1x1(a), φx1x2(a), φx1x3(a), φx2x2(a), φx2x3(a), φx3x3(a)} ∈ R
10,

which provides a coordinate representation of its second jet at the point a [20]. For short, we say

ja[φ] to be a 2-jet of φ at a and consider R10 with the (standard) inner product 〈j, j ′〉 as a space

of 2-jets.

Recall that in coordinates the Laplacian acts by

∆φ = g− 1
2 [g

1
2gikφxk ]xi ,

where {gik} is the inverse to the metric tensor matrix {gik} and g = det{gik} (summation over

repeating indexes is in the use). We say the row

λa :=

= {0;g− 1
2 [g

1
2gi1]xi , g− 1

2 [g
1
2gi2]xi , g− 1

2 [g
1
2gi3]xi ;g11, 2g12, 2g13, g22, 2g23, g33}

∣

∣

x=a

to be the Laplace jet and represent (∆φ)(a) = 〈λa, ja[φ]〉.

The harmonicity ∆w = 0 is equivalent to the orthogonality 〈ja[w], λa〉 = 0, a ∈ ω. Therefore

one has ja[w] ∈ R
10 ⊖ spanλa. Let us show that the 2-jets of harmonic functions exhaust the

subspace R
10 ⊖ span λa. This result may be interpreted as a point-wise boundary controllability

of 2-jets by harmonic functions. Recall that wf is a solution to (3.5), (3.6).

Lemma 3. For any a ∈ Ω and s ∈ R
10 ⊖ spanλa there is a smooth f such that ja[w

f] = s.

Proof. Taking into account the structure of the Laplace jet, we may deal with s = {0; s1, s2, s3; s11, . . . , s33},

and let it be such that 0 6= s ∈ R
10 ⊖ spanλa but 〈s, ja[wf]〉 = 0 for any smooth f. Show that

such an assumption leads to contradiction.

• For a differential operator L with smooth coefficients in Ω, by L∗ we denote its adjoint by

Lagrange that is defined by

(Lη, ζ)L2(Ω) = (η, L∗ζ)L2(Ω), η, ζ ∈ D(Ω̇) .

For a distribution h ∈ D ′(Ω̇) one defines Lh by (Lh, η) := (h, L∗η)L2(Ω), η ∈ D(Ω̇).
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Let S be a differential operator, which acts by

(Sv)(x) =

= [s1vx1 + s2vx2 + s3vx3 + s11vx1x1 + s12vx1x2 + · · ·+ s33vx3x3 ] (x) =

= 〈s, jx[v]〉, x ∈ ω

in a coordinate neighborhood ω of a ∈ Ω̇, where the (constant) coefficients are the components of

the above chosen jet s.

• Let δa ∈ D ′(Ω̇) be the Dirac measure supported at the point a ∈ Ω̇. Consider the problem

∆H = S∗δa (4.1)

H
∣

∣

∂Ω
= 0 . (4.2)

The equation is understood as a relation in D ′(Ω̇); its r.h.s. is a distribution acting by (S∗δa, η)L2(Ω) =

(Sη)(a). The boundary condition does make sense since H is harmonic outside supp S∗δa = {a}.

Also, the normal derivative ∂νH is a smooth function on ∂Ω.

Formally by Green, for a function v ∈ C2(Ω) one has

〈s, ja[v]〉 = (Sv)(a) =

∫

Ω

δa Svdµ =

∫

Ω

S∗δa v dµ
(4.1)
=

∫

Ω

∆Hvdµ =

(4.2)
=

∫

Ω

H∆vdµ+

∫

∂Ω

∂νHvdσ .

To justify the final equality

〈s, ja[v]〉 =

∫

Ω

H∆vdµ+

∫

∂Ω

∂νHvdσ (4.3)

one can use the standard regularization technique, approximating δa by δεa ∈ D(Ω̇) supported

near a.

• By the choice of s, for v = wf the equality (4.3) provides

∫

∂Ω

∂νHwf dσ =

∫

∂Ω

∂νHfdσ = 0 .

By arbitrariness of f we get ∂νH = 0 on ∂Ω. So, H is harmonic in Ω\ {a} and has the zero Cauchy

data on the boundary. By the uniqueness theorem, H vanishes everywhere outside a. Hence, the

distribution H is supported at a. The well-known fact of the distribution theory is that such an

H is a linear combination of δa and its derivatives. In the mean time, comparing the orders of

singularities in the left and right hand sides of (4.1), one easily concludes that

H = cδa



16 M.I.Belishev and A.F.Vakulenko CUBO
21, 1 (2019)

with c = const 6= 0. Indeed, otherwise ∆H contains the derivatives of δa of the order > 3 that

makes the equality (4.1) impossible.

For an η ∈ D(Ω̇) one has

〈s, ja[η]〉 = (δa, Sη) = (S∗δa, η)
(4.1)
= (∆cδa, η) = (cδa, ∆η) = 〈cλa, ja[η]〉 .

Comparing the beginning with the end and referring to the evident {ja[η] | η ∈ D(Ω̇)} = R
10, we

arrive at s = cλa that contradicts to the starting assumption s⊥λa.

• The case a ∈ ∂Ω is reduced to the previous one by means of the trick already used at the end

of the proof of Lemma 1: embedding Ω ⋐ Ω′.

As is easy to recognize, Lemma 3 implies the assertion of Lemma 1 for the case of the single

point a. However, Lemma 3 may be generalized on the finite set a1, . . . , aN so that the relevant

boundary controllability of 2-jets of harmonic functions holds up to the natural defect in ⊕∑
i R

10
ai
.

Determination of metric from harmonic functions

The metric on Ω determines the family of harmonic functions. The converse is also true in the

following sense.

• Let c > 0 be a smooth function on Ω and cg a conformal deformation of the metric g. By ∆cg

and ∆g we denote the corresponding Laplacians. A simple calculation leads to the relation

∆cgy = c−1∆gy− 2−1 ∇c−1 · ∇y , (4.4)

which is specific for the 3d case. Taking y = wf, we see that the metrics cg and g have the same

reserve of harmonic functions wf if and only if ∇c−1 · ∇wf = 0 holds for any smooth f. In the

mean time, by Lemma 1 the gradients ∇wf = 0 constitute the local bases in Ω. Hence, the latter

equality implies ∇c−1 = 0, i.e., c = const.

• Fix a point a in a coordinate neighborhood ω ∋ a. By λ
g
a we denote the Laplace jet of the given

metric g. By Lemma 3, the space of jets is

R
10
a = {ja[φ] | φ is smooth} = {ja[w

f] | f is smooth}⊕ spanλga . (4.5)

Therefore, writing (∆wf)(a) = 0 in the form

〈λga, ja[wf]〉 = 0, f is smooth

and varying f = f1, f2, . . . , we get a linear homogeneous algebraic system with respect to the

components of the jet λga, which determines them up to a factor, which may depend on a. Along



CUBO
21, 1 (2019)

On algebraic and uniqueness properties of harmonic . . . 17

with the components, we determine the tensor g up to a factor, possibly depending on a. However,

by the above mentioned geometric reasons, this factor is a constant.

Thus, the family {wf | f is smooth} determines the metric g up to a constant positive factor.

If g is known at least at a single point x0 ∈ Ω, then it is uniquely determined everywhere.

Notice in addition that in two-dimensional case relation (4.4) is of the form ∆cgy = c−1∆gy,

so that the metrics cg and g determine the same reserve of harmonic functions. It is the reason,

because of which in 2d impedance tomography problem the metric is recovered up to conformal

equivalence [2].

• Here we describe a trick, which is used in dynamical/spectral inverse problems and 2d impedance

tomography problem, for recovering the metric via boundary data[9]. The hope is that it may be

useful in future investigation of 3d ITP.

Assume that a topological space Ω̃ is homeomorphic to Ω via a homeomorphism β : Ω → Ω̃.

Also assume that the family of functions

{w̃f = wf ◦ β−1 | f is smooth}

is given. The following procedure enables one to determine the metric g̃ = β∗g in Ω̃.

1. Fix a point a ∈ Ω̃ and choose its neighborhood ω̃ with the coordinates x1, x2, x3. By the way,

Lemma 1 enables one to use the images w̃f as local coordinates.

2. Find span λg̃a by (4.5) (replacing functions wf on ω with w̃f on ω̃). As was shown above, the

family of these subspaces given for a ∈ ω̃ determines the metric up to a constant factor. So, cg̃ is

recovered. Assuming g̃ to be known at least at a single point a0 ∈ ω̃, one recovers g̃ uniquely.

3. Covering Ω̃ by the coordinate neighborhoods and repeating the previous steps, we determine

g̃ in Ω̃.

5 Uniqueness properties of harmonic fields

Roughly speaking, the following result means that the set of zeros of a harmonic quaternion field

may be at most of dimension 1.

Lemma 4. Let Σ ∈ Ω be a C2-smooth surface (2-dim submanifold). If p ∈ Q(Ω) obeys p|Σ = 0

then p = 0 in the whole Ω.

Proof. Since the claimed result is of local character, we assume Σ to be a both-side surface endowed

with a smooth field of the unit normals ν. Also, Σ possesses the (induced) Riemannian metric and
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is provided with the corresponding operations on vector fields. In particular, a divergence, which

is denoted by divΣ, is well defined.

• For a point x ∈ Σ and vector v ∈ TΩx we represent

v = vθ + vν : vν = v · νν, vθ = v− vν

and, by default, identify vθ with the proper vector of TΣx. By the latter, for a smooth vector

field v given in a neighborhood of Σ, the value [divΣ vθ](x) is of clear meaning. Also, recall the

well-known vectot analysis relation

ν · rot v = divΣ ν∧ vθ on Σ (5.1)

(see, e.g. [21]).

• Begin with the case Σ ⊂ Ω̇. Let p = {α, u} ∈ Q(Ω), so that

∇α = rotu, divu = 0 in Ω̇ (5.2)

holds. Let p|Σ = 0. Since α|Σ = 0, we have (∇α)θ|Σ = 0 that implies (rotu)θ
∣

∣

Σ
= 0 by (5.2). In

the mean time, u|Σ = 0 is equivalent to uθ = uν = 0 on Σ; hence (rotu)ν|Σ = divΣ ν∧ uθ = 0 by

virtue of (5.1). Thus we get (rotu)θ|Σ = (rotu)ν|Σ = 0, i.e. rotu|Σ = 0.

The latter equality and (5.2) lead to (∇α)|Σ = 0 (along with α|Σ = 0). So, α is a harmonic

function with the zero Cauchy data on Σ. Therefore α = 0 in Ω by the elliptic uniqueness theorems

[16].

As a result, rotu = ∇α = 0 everywhere in Ω. Since divu = 0, the vector field u is harmonic

in Ω and vanishes on Σ. Therefore, locally near the points x ∈ Σ one represents u = ∇ϕ with a

harmonic function ϕ provided ∇ϕ|Σ = 0. Such a function is a constant; hence u = 0 near Σ. By

its harmonicity, u vanishes globally in Ω.

So, we have p = 0 in Ω.

• The case Σ ⊂ ∂Ω is reduced to the previous one by means of the trick already used at the end

of the proof of Lemma 1: embedding Ω ⋐ Ω′.
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