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ABSTRACT

The existence of multiple positive periodic solutions of the system of difference equa-

tions with a parameter
x(n+1) =AM, x(n))x(n) +Af(n,xn),

is studied. In particular, we use the eigenvalue problems of completely continuous op-
erators to obtain our results. We apply our results to a well-known model in population

dynamics.
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RESUMEN

Estudiamos la existencia de soluciones periddicas miiltiples del siguiente sistema de

ecuaciones diferenciales con un parametro
x(n+1) =AM, x(n))x(n) +Af(n,x,).

En particular, usamos los problemas de valores propios de operadores completamente
continuos para obtener nuestros resultados. Aplicamos nuestros resultados a modelos

de dinamica poblacional bien conocidos.
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1 Introduction

Let R denote the real numbers, Z the integers, Z_ the negative integers, R¥ = {(x1,%2,...,xx)" €
R : % >0, j=12.,kf R" ={x € R: x > 0}, and Z" the nonnegative integers.
Also, let BC denote the normed vector space of bounded functions ¢ : Z — R¥, with the norm
bl = >y max, g g 15 ()], where & = (¢1, P2, pi)T and [0, — 1] = {0, 1, .., w — 1}
Particularly for each x = (x1,%2,...,xx)" € R¥, we define the norm |x|o = Z?:] Ixj]. Also, denote
by BCX ={¢ € BC: ¢(n) € RX forn € Z}.

In [12], Raffoul used a Krasnoselskii’s fixed point theorem in cones to prove the existence of positive

periodic solutions of the scaler difference equation with parameter
x(n+1) = a(n)x(n) + Ah(n)f(x(n — t(n))).

Also, in [10], Zhu and Li generalized the work in [12] by proving that the system of difference

equations with parameter
x(n+1) =AMm)x(n) + Ah(n)f(x(n —t(n)))

where A(n) = diagla; (n), az(n), ..., a;m(n)] and h(n) = diaglh; (n), h2(n), ..., him(n)] has positive
periodic solutions. Motivated by the above considerations we investigate the existence of multiple

positive periodic solutions of the nonautonomous system of difference equations
x(m+1) = An,x(n))x(n) + Af(n, xn), (1.1)

where, A > 0 is a parameter, A(n,x(n)) = diagla; (n, x(n)), ..., ax(n, x(n))], ¢j(n+w,.) = aj(n,.),
f(n,x) : Z x BC — R¥ is continuous in x and f(n,x) is w-periodic in n and x, whenever x is w-
periodic, w > 1is an integer. If x € BC, then x,, € BC for any n € Z is defined by x,,(6) = x(n+0)
for © € Z. Throughout this paper, we denote the product of y(n) from n = a to n = b by
sza y(n) with the understanding that Hg:ay(n) =1 for all a > b. Also, for two m x n matri-
ces A and B, A > B (A < B) means that the inequality is satisfied entrywisely. In particular, A is

said to be a nonnegative matrix if A > 0.

Definition 3.1. [4] Let X be a Banach space and P a closed, nonempty subset of X. P is a (convex)
cone if

(i) x,y € P and o, € Ry imply ax + By € P.

(ii) x € P and —x € P imply x = 0.

Definition 3.2. [4] Let X be a Banach space and D C X, 0 € D. The operator L : D — X is such
that LO = 0. x) # 0 is said to be an eigenvector of the eigenvalue A of L if Lx) = Ax;.
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Lemma 3.1. [4] Suppose D is an open subset of an infinite-dimensional real Banach space X,
0 € D, and P is a cone of X. If the operator I': PND — P is completely continuous with T0 = 0
and satisfies inf, cpap [IMX]] > 0, then ' has an eigenvector on P N 0D associated with a positive

eigenvalue. That is, there exist xo € PN 90D and po > 0 such that M’xp = toxo-

In this paper we make the following assumptions.

(H1) 0<aj(n) <1,j=1,2,.. % andn € [0, w—1.

(H2) There exist B(n) = diag[by(n),bz2(n),...,bx(n)] and C(n) = diaglcy(n),c2(n),...,cx(n)]
where bj, ¢cj : Z — R, are w-periodic with 0 < bj, c; < 1, such that

B(n) <A(n, ¢(n)) < C(n)
for all (n, @) € Z x BCK.
(H3) f(n,0) =0 for allm € Z.
(H4) f(n, @n) <0 for all (n, @) € Z x BCK.

(H5) For any L > 0 and € > 0, there exists & > 0 such that [p, € BCK, [l < L, [l <
L [[d =¥l <8 0<s < w]imply

f(s, ds) —f(s,¥s) < e.

To study system (1.1) we let X = {x: Z — R¥, x(n + w) = x(n)}, then it is clear that X C BC,

endowed with the norm ||x|| = Z};] Ixjlo, where [xjlo = max, cro 1] Ix;(m)].
)

For the next lemma we consider

X +1) = agj(n,x(n))x;(n) +fi(n,xn),j = 1,2, ..., k. (1.2)

The proof of the next lemma can be easily deduced from [12] and hence we omit it.

Lemma 3.2. Suppose that (H1) hold. If x(n) € X then xj(n) is a solution of equation (1.2) if
and only if

n+T—1

xm = Y  Gmwfinxa), j=12 ..,k (1.3)

where T
G (n,u) = HSTJT’_?J'(S’X(S)) CuemnaT—1,i=1,2 ..k (1.4)
1 - Hs:n aj(s)x(s))
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Let

(T2 05(9) [1 =TT es(9)]

0= min1§j§k w1 w1 (15)
(120" o5(9)) [1 =TT b5(9)]
It can easily be obtained from (H2) that o < 1. We next define two cones in X as follows:
P = {y S X:yj(n) > O“y]'|0,1’1. €Z andj= ],...,k},
and
P,={yeXx:yn) >0, neZ}.
Define an operator Ton X by T: X — X by
(Tx) = (Tix, TaX, ooy Tex) T (1.6)

where
n+w—1

MM = Y Gnuwfx), j =1,k

It is not very difficult to see that G;‘(n—i— w,u+w) = G;‘(n, u). Also, it can easily be verified that
x*(n) = (x3(n),...,xE(n)) > 0 is a positive w-periodic solution of system (1.1) associated with A*
if and only if x* € P, is an eigenvector of the operator T associated with the eigenvalue )\i > 0,

that is Tx* = %x*.

Lemma 3.2. Suppose that (H1) and (H2) hold. Then the mapping T maps P; into Py, i.e.,
TPy C Pq.

Proof. In view of (H1) and (H2), we have that, for j =1,2,...,k,and 0 <u < w —1,

w—1 w—1
HS:O bj S) < G’-‘(n,u) < Hs:o C]‘(S)

1.7
1= TI byls) — T TES o) o
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n+w—1 w—1
mom) <y —ls=e 8l jeq

5 1-T19% o(s)

1 1
H;U:o c;(s) K

IN

< === 5 (u, x|
1— Hs):ol ¢j(s) =0 T
It follows that
M ols) v
T u
I( JX)‘O < I —HZU:_O] CJ(S) = |f1(uvx )l
or
w—1 1 wa()] C](S)
u = - T
= |f] (u)X )| 1_‘[;”7701 C](S) ‘( ]X)‘O
Therefore,
Hw:701 bj(S) w—1
(X)) > e I (1, xu )l
. 1-T12 by(s) = o
(125" b5(9)) [1 =TT &5(9)]
- = Tl
(15 () [1 =TT By (9)]
> 0l(T5x)]o,

which means that Tx € P;. This completes the proof.
Lemma 3.3. Suppose (H5) hold. Then the operator T : P, — X is completely continuous.

Proof. In view of (H5) and the assumption that f(n,x) is continuous in x, we have that the
operator T is continuous. We will show that T is compact.
Let U C P, be any bounded set. Then, by the (H5), there exists a constant M > 0 such that

Ifj(n,xn)| <M, for (n,x) € [0,w =1 x U, j=1,2,.. k.

Thus we have,

197 ¢5(s)

T 66

It follows that,
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k
Imll = Z Tixlo

< MwZ e CJ
]_Hs 0 Cj(s)
< Mkwv,
where
1 cJ(sJ

Y = Inax1§j<k

_H OCJ

Next, we show that T maps bounded subsets into compact sets. Let ] > 0 be given, and define
p={pePr: @|[<Jand Q = {(Te)(n) : @ € p}, then p is a subset of RY* which is closed and
bounded thus compact. As T is continuous in ¢ it maps compact sets into compact sets. Therefore
Q =T(p) is compact.

This completes the proof of lemma 3.3.

2 Main Results

In this section we state and prove our main results. For our main results we let

w—1 w—1

flu,x fw x

fo= lim M, and foo = lim M
bePr, [|P||—0 Il deP1, [Pl —00 |

Also, define, for r a positive number, Q,, by

Q. ={xeXx : |Xl<r}

Theorem 4.1 Suppose that (H1)-(H5) hold and 0 < fo, < co. Then there exist positive constants
Ro, A1, and A, with Ay < Az such that, for any r > Ry, system (1.1) has a positive w-periodic

solution x"(n) associated with some A, € [A1,A2] and |[x"|| = .

Proof. Since 0 < f, < 400, there exist €, > €7 > 0 and Ry > 0 such that

w—1

eillpll < Y If(w, du)l < ealldll for [lpll > Ro, & € Py

u=0
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Suppose 1 > Rp, then Q. is a bounded open subset of X and 0 € Q.. For x € P; N 0Q,, we have

k
el = 3 max |(Tx)n)

%
™
=
KaJ
B

vV
M=
-
Te
21
o
“
€
i

w—1
. —o bjl(s
>  min Hs_f,,f( ) DIy x)|
19isk 1 — [T bils) =055
w—1
b.
> Hs:£71](s) er>0
1<5<k 1 HS:O ](S)

It follows that

w—1
b; (s
inf  ||Tx|| > min {M}eﬂ“ > 0.
xEP1MIQ, 15k U1 TT9 by (s)

Since, T is completely continuous with T(0) = 0, it follows from Lemma 3.1 that the operator T
has an eigenvector x" € P; associated with the eigenvalue p, > 0 such that |[x"|| = r. Set A, = i

Then x" is a positive w-periodic solution of system (1.1).

We next determine A; and A, as follows. From

n+w-—1
x")m) = A Z G} (nyw)fj(u,xy,)
u=n
<oy el gy
> T T == 5
u=0 _H;U:c)] cj(s) o
w—1 w—1
_ 4 Ci(s)
< Al d 5,0
T— Hs:o CJ(S) u=0
w—1
4 Ci(s)
< T Hs*(i,]J €21y ) = ])2) )k)
] - Hs:O C]’(S)
and [[x"|| = r we can get
1
Ar = A1
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On the other hand,

w—1
(x")j(n) > )\M

( w—1 .
T = If5(u,xy )y i =1,k
] _ H;U_Q] bJ(S) 1;) Yy u b ) )

It follows from

w—1 w—1
b
K=t > A min {—Lls=0 Bi) (1, L)
1<k M1 —TTe5, bis)? =
—1
. H:):o b;(s) err
T sk LT85 bs(s)

that

1 w—1 b
Ar < Ay max {M} = Ao
S5 U T by (s)

Therefore, Ay € [A1,Az2] and this completes the proof.

Theorem 4.2. Suppose that (H1)-(H5) hold and 0 < fp < co. Then there exist positive constants
To > 0, A7 and A, with A7 < Az such that, for any 0 < T < 10, system (1.1) has a positive

w-periodic solution x™(n) associated with some Ar € A , A2l and |[XT|| = T.

Proof. Since 0 < fp < oo, there exist 0 < 11 < 1, and 19 > 0 such that

w—1

Lol < > If(w, du)l < Lalidll for 0 < [lb]l < o, & € Pr.

u=0

For v € (0,70), Q; is a bounded subset of X and 0 € Q,. Moreover, for x € P; N 0Q,

k
> IMx) ()
j=1

k n+w
j=1

[Tl

v

-1
G;‘(Tl, u)f] (IL, Xu)
[T b (s)

in ¢ ——==2 22— ;1> 0.
1%1£k{1 _ H:U:—O‘ bj(S)} !

This implies that inf, cp 5, [[TX]| > 0. The remaining part of the proof is similar to that of The-

orem 4.1 and so we omit it. This completes the proof.
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Using arguments similar to that of Theorem 4.1 and Theorem 4.2, the following results can be

established respectively.

Theorem 4.3. Suppose that (H1)-(H5) hold and fo, = co. Then there exist positive constants Ro
and A such that, for any r > Ry, system (1.1) has a positive w-periodic solution x"(n) associated

with some A, < A and [[X"[| = 7.

Theorem 4.4. Suppose that (H1)-(H5) hold and fo = oo. Then there exist positive constants
¥o and A such that, for any 0 < T < 7o, system (1.1) has a positive w-periodic solution x"(n)

associated with some A, < A and ||X"|| = 1.

3 An application

In this section, we apply our results from the previous section to the Volterra discrete system

k

1) = xm[am =AY (bmxm) + Y Cilns)gilils))],

i=1 S=—00

i=1,2,....k,
(3.1)

where x;j(n) is the population of the jth species, aj, bj; : Z — R, are w-periodic and Cji(n,s) > 0
and Cji(n+ w,s + w) = Cji(n,s) for all (n,s) € Z2; g;i : Ry = Ry, 4,j =1,..., k.

Theorem 5.1. Suppose that max, ., > * [Cji(n,s)| < +oo. Then there exist positive con-
stants Ro and Ao such that, for any r > Ry, system (3.1) has a positive w-periodic solution x"(n)

associated with A, < Ao and [|x"]| = 1.

Proof. Note that A(n,x(n)) = diagla;(n), az(n), ..., ax(n)] and f = (f1,f2, ..., fx) where

fnxn) = x5 Y (bl + Y Criln,s)gsilxi(s))

i=1 S=—00

for j =1,2,...,k and (H1)-(H5) are satisfied.
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For x € Py and j = 1,...,k we have

—1

(S

I\/IE

j(uyx)l =

xj(u) (xiwlbsi(w) + Y Cjilu s)gyi(xi(s)) )

§=—00

M-

u=0

ﬁ
I
4
c
I
- O

S
|

x; (Wxi (w)bji (u)

vV
M-

u

Il
o

—1

€

Y

ij (u)bj5(u)

=
I

o

w—1
o?Ixil5 > by (u)
u=o

Y

Thus,

€
L
~
€
T

[fw,xu)l = ZZ 5 (1, %)

c
Il
o

|V

T I\/| ~
3
BT
™
o

Vv
g
22
=

2
b; E P
1<5<k i ( Pils
u=

o? —

—|x]|* min E b;i(u

K H H 1<5<k ]]( )
u=o

Y

It follows that

> O (x|
EX

The conclusion follows directly from Theorem 4.3 and this completes the proof.

— as [|x|| — oo.
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