CUBO A Mathematical Journal
Vol.21, N202, (41-49). August 2019
http: //dz. doi. org/ 10. 4067/ 50719-06462019000200041

Totally umbilical proper slant submanifolds of
para-Kenmotsu manifold

M.S. SIDDESHA', C.S. BAGEWADI?> AND D. NIRMALA3

! Department of mathematics,
New Horizon College of Engineering,
Bangalore, India
23 Department of Mathematics,
Kuvempu University,
Shankaraghatta, Shimoga, Karnataka, India

msstiddesha@gmatl.com, prof_bagewadi@yahoo.co.in, nirmaladrajl4@gmail.com

ABSTRACT

In this paper, we study slant submanifolds of a para-Kenmotsu manifold. We prove
that totally umbilical slant submanifold of a para-Kenmotsu manifold is either invariant
or anti-invariant or dimension of submanifold is 1 or the mean curvature vector H of

the submanifold lies in the invariant normal subbundle.

RESUMEN

En este paper estudiamos subvariedades inclinadas en variedades para-Kenmotsu. De-
mostramos que una subvariedad inclinada en una variedad para-Kenmotsu totalmente
umbilical es invariante, o anti-invariante, o una subvariedad de dimensién 1, o el vector

de curvatura media H de la subvariedad vive en el fibrado normal invariante.
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1 Introduction

The study of submanifolds of an almost contact manifold is one of the utmost interesting topics
in differential geometry. According to the behaviour of the tangent bundle of a submanifold
with respect to action of the almost contact structure ¢ of the ambient manifold, there are two
well known classes of submanifolds, namely, invariant and anti-invariant submanifolds. Chen [4],
introduced the notion of slant submanifolds of the almost Hermitian manifolds. The contact
version of slant submanifolds were given by Lotta [12]. Since then many research articles have

been appeared on the existence of different contact and lorentzian manifolds (See. [1, 3, 7, 14, 15]).

Motivated by the above studies, in the present paper we study slant submanifolds of almost
para-Kenmotsu manifold and give a classification of results. Also we prove that totally umbilical
slant submanifolds of para-Kenmotsu manifolds are totally geodesic.

The paper is organized as follows: In section 2, we review some basic concepts of para-Kenmotsu
manifold and submanifold theory. Section 3 is the main section of this paper. In this section we
give the classification result of totally umbilical slant submanifolds of para-Kenmotsu manifold.
Further, we prove that totally umbilical slant submanifolds of a para-Kenmotsu manifold are totally

geodesic.

2 Preliminaries

Let M be a (2m + 1)-dimensional smooth manifold, ¢ a tensor field of type (1,1), & a vector field
and 1 a 1-form. We say that (&, &,m) is an almost para contact structure on M if [18]

o6& = 0, n-d =0, Tank(d)):zma (2'1)
P = I-meE nE) =1 (2.2)

If an almost paracontact manifold admits a pseudo Riemannian metric g of signature (m + 1, m)
satisfying
9(¢ b)) =—g+n®@n (2.3)
called almost para contact metric manifold. Examples of almost para contact metric structure are
given in [6] and [9].
Analogous to the definition of Kenmotsu manifold [10], Welyczko [17] introduced para-Kenmotsu
structure for three dimensional normal almost para contact metric structures. The similar notion

called p-Kenmotsu structure appears in the Sinha and Sai Prasad [16].

Definition 2.1. An almost para contact metric manifold M (o, &;n, g) is para-Kenmotsu manifold

if the Levi-Civita connection N of g satisfies

(Vxd)Y = g(dX, Y)E —n(Y)dX, (2.4)
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for any X, Y € x(M), (where x(M) is the set of all differential vector fields on M.).

From (2.4), we have
Vxé =X —n(X)E. (2.5)
Assume M is a submanifold of a para-Kenmotsu manifold M. Let g and V be the induced
Riemannian metric and connections of M, respectively. Then the Gauss and Weingarten formulae

are given respectively, by
VxY = VxY+o(X,Y), (2.6)
VxN = —AnX+VgN, (2.7)
for all X, Y on TM and N € T+M, where V+ is the normal connection and A is the shape operator

of M with respect to the unit normal vector N. The second fundamental form ¢ and the shape

operator A are related by:

Now for any X € T(TM) and V € T(T+M), we write
dX = PX+FX, (2.9)
OV = pV+1V. (2.10)

For X,Y € T'(TM), it is easy to observe from (2.1) and (2.9) that
g(PX,Y) = —g(X, PY). (2.11)

The covariant derivatives of the endomorphisms ¢, P and F are defined respectively as

(Vxd)Y = VxdY—oVxY, VX, Y e I(TM), (2.12)
(VxP)Y = VxPY—PVxY, VXY e (TM), (2.13)
(VxF)Y = VxFY—FVxY, VX,Y € I(TM). (2.14)

The structure vector field & has been considered to be tangential to M throughout this paper, else
M is simply anti-invariant [12]. Since & € TM, for any X € I'(TM) by virtue of (2.5) and (2.6), we

have

Vx&=X—-n(X)& and o(X,&) =0. (2.15)

Making use of (2.4), (2.6), (2.7), (2.9), (2.10) and (2.12)-(2.14), we obtain
(VxP)Y = po(X,Y) +AryX + g(PX, Y)E —n(Y)PX, (2.16)
(VxF)Y = fo(X,Y)—o(X,PY) —1(Y)FX. (2.17)

A submanifold M of an almost para contact metric manifold M is said to be totally umbilical if

where H is the mean curvature vector of M. Further M is totally geodesic if o(X,Y) = 0 and

minimal if H=0.
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3 Slant submanifolds of an almost contact metric manifold

For any x € M and X € T,M such that X, are linearly independent, the angle 0(x) € [0, T]
between ¢X and TyM is a constant 0, that is 8 does not depend on the choice of X and x € M. 0 is
called the slant angle of M in M. Invariant and anti-invariant submanifolds are slant submanifolds
with slant angle 0 equal to 0 and 7, respectively [5]. A slant submanifold which is neither invariant
nor anti-invariant is called a proper slant submanifold.

We mention the following results for later use.

Theorem 3.1. [1] Let M be a submanifold of an almost contact metric manifold M such that
& e TM. Then, M is slant if and only if there exists a constant A € [0,1] such that

PZ=-ANI—-1®E). (3.1)
Further more, if 8 is the slant angle of M, then A = cos?0.

Corolary 1. [1] Let M be a slant submanifold of an almost contact metric manifold M with slant
angle 8. Then, for any X;Y € TM, we have
g(PX, PY) = —cos?0(g(X, Y) —n(X)n(Y)), (3.2)
g(FX, FY) = —sin?0(g(X, Y) —n(X)n(Y)). (3.3)
Theorem 3.2. Let M be a totally umbilical slant submanifold of a para-Kenmotsu manifold M.
Then either one of the following statements is true:
(i) M is invariant;
(i) M is anti-invariant;
(iii) M s totally geodesic;
(iv) dimM= 1;
(v) If M is proper slant, then H € T'(n);

where H is the mean curvature vector of M.
Proof. Suppose M is totally umbilical slant submanifold, then we have
o(PX, PX) = g(PX, PX)H = cos?0{—||X|* + n?(X)}H.
By virtue of (2.6), one can get
cos?0{—||X||* + n%(X)}H = VpxPX — VpxPX.
From (2.9), we have

cosZ0{—||X||* + n*(X)IH = VpxdX — VpxFX — VpxPX.
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Applying (2.7) and (2.12), we get

cos20{—||X[|2 + n2(X)H = (Vpx D)X + dVpx X + ApxPX — Vi FX — Vpx PX.
Using (2.4) and (2.6), we obtain

cos”B{—|IX[I> +n*(X)H = g(dPX,X)& —n(X)PPX + (VpxX + o(X, PX))
+AExPX — Vi FX — Vpx PX.

From (2.9), (2.11), (2.18) and the fact that X and PX are orthogonal vector fields on M, we arrive

at

cos?O{—|X||Z +n2(X)H = —g(PX,PX)& —n(X)P2X —n(X)FPX + PVpxX + FVpx X
+ArxPX — Vi FX — Vpx PX.

Then applying (3.1) and (3.2), we obtain

cos?O{—|IX[|? +n*(X)IH = cos6{||X||* —n*(X)}& + cos*On(X)}{X —n(X)}E —n(X)FPX
+PVpxX + FVpxX + ApxPX — Vix FX — Vpx PX. (3.4)

Taking inner product with PX in (3.4), we get
0 = g(PVpxX, PX) + g(ArxPX, PX) — g(VpxPX, PX). (3.5)
By virtue of (3.2), the first term of (3.5) can be written as
9(PVexX, PX) = —cos?0{g(VpxX, X) —n(X)g(VpxX, &)} (3.6)

We simplify the third term of (3.5) as follows
- 1
g(VexPX,PX) = ¢g(VpxPX,PX) = zPXg(PX, PX).
1
= 5PX[=cos?0{(g(X,X) —n*(X))}

- —1cosze[PXg(x,X)—P(X)(g(X, &)g(X, &)l

2
= —%cosze[PXg(X,X) —n(X)P(X)g(X, &)]
= _%COSZG[ZQ(@PXX» X) = 2n(X)}{g(VexX, &) + g(X, Vex &),

Using (2.5), (2.6), (3.6) and the fact that X and PX are orthogonal vector fields on M, we derive

g(VexPX,PX) = —c0s?8[g(VexX,X) —n(X)g(VexX, &)
—n(X)g(X, PX —n(PX)¢&)]
= —cos?8[g(VpxX, X) —1(X)g(VpxX, &)]
— g(VpxPX,PX) = g(PVpxX,PX).



46 M.S. Siddesha, C.S. Bagewadi and D. Nirmala CUBO

21, 2 (2019)

Using this fact in (3.5), we obtain
0 = g(ArxPX, PX) = g(o(PX, PX), FX).
As M is totally umbilical slant, then from (2.18) and (3.2), we obtain
0 = —cos6{||X||* —n*(X)}g(H, FX). (3.7)

Thus from (3.7), we conclude that either 0 = Z that is M is anti-invariant which part (ii) or the
vector field X is parallel to the structure vector field &, i.e., M is 1-dimensional submanifold which
is fourth part of the theorem or H L FX, for all X € I'(TM), i.e., H € I'(n) which is the last part of
the theorem or H =0, i.e., M is totally geodesic which is (iii) or FX =0, i.e., M is invariant which

is part (i). This completes the proof of the theorem. O

Theorem 3.3. Fvery totally umbilical proper slant submanifold of a para-Kenmotsu manifold is

totally geodesic.

Proof. Let M be a totally umbilical proper slant submanifold of a para-Kenmotsu manifold M,
then for any X, Y € I'(TM), we have

Vx Y — VXY = g(dX, Y)E —n(Y)X.
Using equations (2.6) and (2.9), we get
VxPY + VxFY — ¢(VxY 4+ (X, Y)) = g(PX, Y)& —n(Y)PX —n(Y)FX.
Again from (2.6), (2.7) and (2.9), we obtain

g(PX,Y)E —n(Y)PX —n(Y)FX = VxPY +o(X,PY) — AryX
+VxFY — PVxY — FVxY — da(X, Y).

As M is totally umbilical, then

g(PX,Y)E —n(Y)PX —n(Y)FX = VxPY + g(X,PY)H — ApyX + VLFY
—PVxY — FVxY — g(X, Y)$H. (3.8)

Taking the inner product with ¢H in (3.8) and from the fact that H € T'(i), we obtain
g(VxFY, oH) = —g(X, Y)[[H]%.
Applying (2.7) and the property of Riemannian connection the above equation takes the form

g(FY, Vx dH) = g(X, Y)|[H||%. (3.9)
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Vx¢dH = (Vx$)H + ¢VxH.
Using the fact H € T'(n) and by virtue of (2.4), (2.7) and (2.9), we obtain
— ApnuX + VxdH = —PALX — FARX + ¢V H. (3.10)

Also for any X € T'(TM), we have

g(VxH, FX) = g(VxH, FX) = —g(H, VxFX).
Using (2.9), we obtain

g(VEH, FX) = —g(H, VxdX) + g(H, VxPX).

Further from (2.6) and (2.12), we derive

g(VxH, FX) = —g(H, (Vx$)X) — g(H, dVxX) + g(H, o(X, PX)).

Using (2.4) and (2.18), the first and last term of right hand side of the above equation are identically

zero and hence by (2.3), the second term gives
9(ViH, FX) = g(oH, VxX).
Again by using (2.6) and (2.18), we obtain
9(VxH, FX) = g(bH, H)[|X[|* =o0.

This means that
VxH € T(w).

Now, taking the inner product in (3.10) with FY for any Y € T'(TM), we get
g(Vx dH, FY) = —g(FARX, FY) + g($ Vi H, FY).
Using (3.11) and from (3.3) and (3.9), we obtain
9(X, V)[H||* = sin?6{g(AnX, Y) = n(V)g(AnX, £)}.
Hence by (2.8) and (2.18), the above equation reduces to

g(X, Y)[[H||* = sin?6{g(X, Y)|[H||* —n(Y)g(a(X, Y), H)}

(3.11)

(3.12)

(3.13)

Since for a para-Kenmotsu manifold M, o(X, &) = 0 for any X tangent to M, thus we obtain

9(X, Y[[H? = sin®6{g(X, Y)[H]1*.
Therefore, the above equation can be written as

cos0g(X, Y)|[H||* = 0.

(3.14)

Since M is proper slant submanifold, thus from (3.14) we conclude that H = 0, i.e., M is totally

geodesic in M. This completes the proof.

O
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