CUBO A Mathematical Journal
Vol.21, N202, (51-64). August 2019
http: //dz. doi. org/ 10. 4067/ S0719-06462019000200051

The perimeter of a flattened ellipse can be estimated
accurately even from Maclaurin’s series
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ABSTRACT

For the perimeter P(a,b) of an ellipse with the semi-axes a > b > 0 a sequence @, (a,b)
is constructed such that the relative error of the approximation P(a,b) ~ Qn(a,b)
satisfies the following inequalities
_ _ 2 \n+1
(o P@b)-Quab) _(1-¢)
- P(a,b) T (2n+4+1)2

1 2
— n+1
ST

true for n € Nand ¢ = £ € [0,1].

RESUMEN

Para el perimetro P(a,b) de una elipse con semiejes a > b > 0, se construye una sucesién
Qr(a,b) tal que el error relativo de la aproximacién P(a,b) = Q,(a,b) satisface las
siguientes desigualdades
_ _ 2\n+1
Lo P@b) - Quab) _ (-
- P(a,b) ~ (2n+1)

1 2
— n+1
ST

vélidas paran € Ny g = % €1[0,1].
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1 Introduction

Injective parametric equations of the border of an ellipse having semi-axes of lengths ¢ and b < a
are given as x = z(t) = acos(t), y = y(t) = bsin(t), where ¢t € [0,27). Its perimeter P(a,b) is
determined as

Pty = [ PO TR dt 1 / T e (1) + ot (1) i

0

:4@/2 V1—€2cos?(t) dt = 4a/ \/1— €e2sin?(1)(— dr).
0

t—7r/2—’r

Thus, the perimeter P(a,b) of an ellipse having semi-axes of lengths a and b < q, is given as

P(a,b) = 4a E(e), (1.1)

E(e) :/O%\/l—@sinQ(T)dT (1.2)

is complete elliptic integral of the second kind and

eim/1- (2)’ = /25E € o,1), (1.3)

is the eccentricity of an ellipse.

where

For b ~ 0 it is intuitively evident that P(a,b) > 2 X 2a = 4a. Moreover, since the functions
¢ = 1 — ¢?sin*(T) are decreasing on the interval [0,1] for any T € [0,7/2], the function E(e) is

decreasing too. Therefore, we have
E ™
1 :/ cos(t)dt = E(1) < E(e) < E(0) = oL
0

for 0 < e < 1. Consequently, due to (1.1),

= < = . .
OérgiaP(a b) = 4a < P(a,b) < P(a,a) = 2am (1.4)

The first exact formula for an ellipse perimeter was presented 277 years ago by Collin Maclaurin

[24], given as the sum of infinite series:

P(a,b) _2mi(%> 1 - 2k)e (1.5)
_2mi< ok 1)2 >2(2;6—2?

X T1 [2k\]7 ek
_2”“{1_§[47<k>} 2k—1}’

o~
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valid for 0 < € < 1, where ¢ = (1 — b2/a2) 1/2, called the eccentricity1 of an ellipse. This series
originates from the integral (1.2). Later, Ivory [13] discovered a faster converging series for the
integral (1.2), which was later significantly improved by Gauss and Kummer. Additionally, Gauss
developed very efficient, swiftly convergent method of arithmetic-geometric means for computation
of the integral (1.2), see [1]. Subsequently, a lot of approximations of the ellipse perimeter have
been found. For example, among them is very popular Ramanujan’s “extraordinarily unusual and
exotic” approximation [2]. Motivated by the Barnard-Pearce-Schovanec approximations [3] and
Villarino’s contribution on the accuracy of a Ramanujan’s approximation [29] and his paper [28],
we shall derive elementarily? an asymptotic estimate of the ellipse perimeter, based on the oldest

Maclaurin series expansion. The result obtained surpasses most of the previous approximations.

2 Background
2.1 The binomial approximation
Using Taylor’s formula (see for example [15, p. 111] with 2o =0, h =2 and p = n),

xn-{-l

n!

@ , 1
f(z) = f(0)+ Z f Z_|(0) '+ /O (1 —t)" f D¢z dt
i=1 ’

1
(true for a,b € R, a < b, n €N, z € [a,b] and f € C"[a, b]) for the function f(z) = (1+ )2, we
obtain3

Nl
N[

(1+xz)

~

:Hé(')xi

+ "t /01(1 —t)" <n

valid for z € (—1,1] and n € N.

_|- N[—=

1) (n+1)(1+tx)2 "1 dt, (2.1)

Introducing w;, called the i-th Wallis ratio, for? i > 0,

1We have € = /1 — g2, where q := b/a is called the aspect ratio of an ellipse.

2not using complex analysis and absolute and uniform convergence of a series, as was used, for example, in [18]
) 1 1,

3considering the identity f((z) = (f)(z')(l +z)27"

4H§L:7n x; := 1, for m > n; consequently wo =1
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we obtain

(%) (G ) NS B e (CT )
i 2 e

1 2j — 1 L w
— (—1)* 1 = (=1)* 1 K .
(=1) 21’—1H 27 (-1) 29 —1

Jj=1

Thus, thanks to (2.1), replacing = by —z, we get

with the remainder

1 n
n 1—t¢ dt
ra() = —a"t L (1) / -,
2n+1 o \1—tz (1—tx)2

estimated, for = € (0, 1), as

Tl Wnt1 Lrot1—¢\"
0< —rp(z) = . 1 dt
< (@) (1_13)% 2n+1(n+ )/0 (1—tx)

< Wn+1 xn+1
(1—2)2(2n+1)

1—t
1—tx?

Lr1—¢\" 0 1— ! 1—
[ () = [ (-t o= [0 e

S e 1
</0 A T Ao

1—t
l1—tx

Indeed, using the substitution T = ie t=

2.2 Wallis ratios estimates

The integrals
3
I, = / sin” (z) dz (n>0),
0
satisfy the recurrence relation

1
L="""1,,  forn>2,
n

where, obviously, we have Iy = § and I; = 1. Consequently, by induction we find

i

27—1 « s
I = D=y =
2= 1 2; 2~ "'y

j=1

we have (considering z € (0,1))

(2.3)

(2.6)
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and
i

2j 1
2t Jl;[l 2%j+1  (2i+ Du; (28)

Obviously, we estimate
0 < sin®*2(z) < sin® ™! (x) < sin®(z) < 1,

for z € (O, %) and ¢ € N. Integrating, we obtain
0 < 12i+2 < 12i+1 < Iy < 1,

for all ¢ € N. Hence, thanks to (2.7)—(2.8), we get

2141 T s < 1 < s
Wi = Wi 5 < e < Wit
2i+2 ' 2 9T @i+ Dy 2
Consequently,
2 1 , 2 1
Z. 2 o 2 i € N). 2.9
F o Wi r o UEN) (29)

We remark that there exists a huge literature on useful, more accurate estimates for w,, e.g.
[4, 5, 6,7, 8,9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 31]. However, for our needs,
there suffice rather rough estimates (2.9).

2.3 Some logarithmic formula expansion

For p>1and —1 <t <1 we have

p=1 201 2(p—1) 2(p—1)
R W R S ]
Jj=0 k=0 k=0
11—t 1 (—t)21’ !
1t 1+t
Consequently, integrating from 0 to x € (—1,1), the first and the last part of these equalities, we
obtain
p—1l 9511 z @ 42p—1 z z 42p—1
2y = :/ dt—/ dt+/ —dt+/ dt
3202‘7+1 0 1-—t¢ 0 1-—t 0 1+t 0 1+t
:—ln(l—:v)—l—ln(l—i—x)—/z ! L t2r—1q¢.
o \1—t 1+¢
=R;(z)
Thus,

142 P 2i-1 §
ln<1_x> _22 S+ @), (2.10)
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with the remainder Ry (z),

Toot2p v
Ri(x) = / o dt > / 2. (0<a<1),
0 0

estimated as

22p+1 22p+1

R e N, 0 1 2.11
2p—|—1< p(x)<(1—:1:2)(2p+1) (peN, 0<a<l) ( )
From (2.10)—(2.11) we end up with the expansion
142 > 2i-1
1 =2 —_— 2.12
n(l—x) 25T (2.12)

i=1
true for z € (0,1) and, consequently, also for z € (—1,0].

3 The Maclaurin series

3.1 Derivation

Referring to (2.4)—(2.5) and (2.6)—(2.7), we have, for any n € N,

/ 1-Esin?(n)dr=~ -y =€ sin2 (1) dt + 77 (¢)
0 N—_—— 2 i—1 2:—1 0

Hence

/gm 2gin?(t)dt = — [ 1 zn: W) 5 (e) (3.1)
— €2 81N = — — € T, (€ .
. ° 2 < 20— 1 n\€)

where w; is the i-th Wallis’ ratio and the error term 77 () := |

o7 rn (€2 sin? (1)) d is estimated,
due to (2.5) and considering (2.6)—(2.7), as

2n+2 5
€ w .
0< —ri(e) < s sin?" 2 (1) dt
- 2n+1),
62n-ﬁ-2 W1 T

Ta-_—ent1) Uty
Thus, according to (2.9),

2 2n+2
T 1 w 1 €
0< —rp(e) < o= Indl 2nd2 o

2 1—-€ 2n+1 S1- (@n+1)2°

(3.2)

This estimate is not usable for € &~ 1, i.e. for b = 0 (for a very flattened ellipse).
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As w? <1, we have nhﬂngo rn(€) = 0 for any € < 1, which is always true for ordinary ellipse, due

to the equivalence € = 1 < b = 0. Hence, there holds the so-called Maclaurin series expansion®

s oo 2 )
/02 V1= esin(x)de = <1 - e%) , (3.3)

valid for 0 < € < 1. In addition, the series on the right is convergent also for e = 1 due to (2.9).

2
1 . . . . [e%) w;
< 7, which implies the convergence of the series .~ 57 .

w}
2i—1

Indeed, we have

Remark 3.1. About fifty years after Maclaurin’s book [24], including the series (3.3), Ivory pub-
lished article [18], where he presented the expansion

3 b) w? - a—b
1— 2 w2 dt = 7T(CL+ 1 [ 21 —
/0 1/ e2sin“(T)dT BVTE +;7(2i— E A A )

where the series on the right converges slightly faster than the series in (3.3).

Applying (2.9) for the partial sums

" ow? .
pn(€) = ST e (neNU{oo}), (3.4)
i=1

we shall estimate the series po(€) figuring in (3.3).

3.2 Approximating /i (€)

Using (2.9) we estimate,

2 w? 2

3

T2 DEiT1]) 21 w212

(i eN). (3.5)

Therefore .
2621

uw(e>%;7‘f’(2i—l)(2i—|—1) (0§6<1).

oo
This idea produces the next theorem.

Theorem 3.2. We have
fioo(€) = M (€) + dn(e), (3.6)

where

M, (e) = A(e) + By (e), (3.7)

Ae) = % Ke— %) mGJ_rz) +2] € (0,1), (3.8)

5The coefficients of the original Maclaurin series [24] have a visually more complicated form.
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Bn&)FZEj(“f“ﬁ@;+1))2:f1’ (3.9

i=1

and 0 2n+2

0<dp(e) <0y (e) = AT

(3.10)

valid for any integer n > 1 and every 0 < e < 1.

The basic function A(e) is strictly increasing having the range (0,1), where léiﬁ)lA(e) =0
and lelTHllA(e) = L. Both sequences, n — By(€) and n — 6,(€), are strictly increasing, for every
e€ (0,1).

The sequence n — M, (€) converges strictly increasingly to poo(€), for any e € (0,1). Addi-

tionally, for every n € N, the functions e — M, (e) and € — 0,(€) are strictly increasing on the

interval (0,1).

Figure 1 shows, on the left, the graph® of the basic function A(e), and, on the right, the graphs

of the functions M7 (€) and ps(€). As an example, we present Bj(e) and §}(e) as follows:

« 1 1 1
&@F4%—%ﬁ“ghi—%V”56%—%ﬁ“yX%@ 55)€"

~ 0.037 793 409 €* + 0.004 433 682 ¢* + 0.001 342 114 €° + 0.000 576 077 €®,

51(6) < 250 < 0.00786 €19 e=1/1-(2)°
=81 N @ '
030} 035
025} ggg’ '/

7 25 M1 ~ tel®) /)
2 1 ;
020 020} /
015| .
010} 010
005| 005}

02 04 06 08 10 02 04 06 08 10

Figure 1: The graph of the basic function A(e) (left) and the graphs of the functions Mi(€), too(€)
and A(e) (right).

Proof of Theorem 3.2. We have, for 0 < e < 1,

o'}
2

D wig

i=1

i 2%

E: (20— 1)( 2z+1) (8:11)

z:12(21—1 (2z’—12)(2¢+1))62i+5n(6),

6All the graphics and calculations in this paper are made using the Mathematica [30] computer system.
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where
2

nle)= 2 (w? B 7r(2i2+ 1)) T (3.12)

Moreover, using (2.12), we have

- 2 2%
Z; T2i-1)(2i+1)°

o0

1 1 ;
_EZ<2Z—1 z’+1>62
0 62i— 1 0 62i+1
< '2;21'—1_%'2;2@41)
€ 1+e€ 1 1+e¢
{5111(1—6)_%(111(1—6)_26)}
K i)ln(ii)m]:A(e).

Concerning A(e) = 5=(f(e) + 2), the function f(e) := (e — 1) In (ifi) (0 < € < 1) has the
derivative f'(€) = g(€)/€?, where g(e) = (1 + €2 (1+6) — 2¢, having the derivative

9'(6)—i(26+(1—62)1n(1+6)> >0 (0<e<).

1—e2 1—¢

[N e)

o™
I
|

Wl A= A=

Thus, g is strictly increasing on [0,1). Consequently, g(¢) > ¢g(0) =0, i.e. f'(¢) >0, for 0 < e < 1.

(
Therefore, f is strictly increasing on (0,1) too. Moreover, using (2.10)—(2.11) with p = 1, we have

fle) = 52;1 (6-1-19 1—52)) 2(e* — 1) ( : 1352 : %) 5

for some ¥ = ¥(e) € (0,1). Hence, 1imf(e) = -2, ie. ling(e) = 11%111%(]‘(6) +2) =0. In

addition, 161%r11f(6) = 11?1{
. i 1 _ 1
limA(e) = lims- (f(e) +2) =

According to (3.5), all summands in By, (¢) and d,,(€) (see (3.12)) are positive, i.e. the sequences

_ 1 5 _ — — 1 — 2
2111(1—1-6)} L %%( hln(h)) 0, where h = 1 — 2. Thus,

n — By(e) and n — d,(€) are strictly increasing; consequently the sequence n +— M, (€) is also
strictly increasing, for every € € (0, 1).

Since all coefficients of the power series By (e) and d,(¢) (see (3.9) and (3.12)) are positive,
due to (3.5), the functions € — M, (¢) and € — §,(€) are strictly increasing on the interval (0, 1),
for any n € N.

According to (3.12) and (3.5), we estimate, for € € (0, 1],

0o
€2n+2 2€2n+2

2 2

1=n+1
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using the telescoping method of summation. O

Example 3.3. Theorem 3.2 is quite useful for an estimate of poo(€), consequently for an esti-
mate of the perimeter of an ellipse. For example, for a very flattened ellipse with ¢ = 0.01 we
have 0.99994 < e(q) < 0.99995 where 0.36315 < M((0.99995) < 0.36316 ... and 65,(0.99995) <
0.00038. Therefore, 0.36315 < 100 (0.99995) < 0.36316+0.00038 = 0.36354. Thus, to three decimal
places, we have 115,(0.99995) = 0.363. ... Consequently, the perimeter P(a,b) of the corresponding
ellipse is given as P(a,b) = 4a- 5 (1 — 156(0.99995)) ~ 4a - 5 (1 — 0.363) ~ 4.002a (compare with
relations (1.4)).

Remark 3.4. Referring to Abel’s theorem on the boundary behavior of a power series, if we
continuously extend the domain of the function A(e) to the closed interval [0,1] by using limits,
A(0) := 0 and A(1) := L, then (3.6), (3.7), (3.9) and (3.10) are all valid also for e =0 and e = 1.

Remark 3.5. Alternatively, we can estimate the remainder r’*(€) := pioo(€) — My, (€) as follows:
2 2

0o

wy; € E
sk < i 'n,+1 27
n (6)_i:n+l 22_1 — 27’L+1 Z

w,21+162"+2 1 2¢2nt2

- (2n+1)(1 —€2) = 1—e2’ m(2n 4+ 1)2

This simple method works quite well for e, which “differs enough from 17, but it is useless for €,

which is close to 1.

4 The main result

Theorem 4.1. For every n € N, the perimeter P(a,b) of an ellipse having semi-major and semi-
minor azes, a and b, the aspect ratio ¢ = q(a,b) := b/a, and the eccentricity ¢ = €(a,b) := \/1 — ¢2,
the n-th approzimation Qy(a,b) ~ P(a,b),

Qn(a,b) := 27m(1 - Mn(e)) = 27m(1 — A(e) — B, (e)), (4.1)
has the relative error,

Pl @l (1=aen = (3)7).

estimated as

n+1
1 e—q2(n+1) < _ (1 B q2)

C(2n+1)2 S Ghrr @ =m0

Here, A(€) and By, (€) are defined in Theorem 3.2 and we have Byi1(€) = By (€)+ (w?wrl - m) S

formeNand 0 <e < 1.

2n+2
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Proof. Thanks to (1.1), (1.2), (1.4) and (3.3), we estimate

P(a,b) — Qn(a,b) 2M(1 = Mn(e) — Me)) - 2#@(1 - Mn(e))

P(a,b) P(a,b)
(1.4) 27a8,(e) _ monle) m  2e27+2 eint2
< < < - = ,
da 2 2 w(2n+1)2 (2n+1)?

where, considering the convexity of the exponential function or, referring to [16, (6a)] with e = ¢

and h = —¢? , we have
22 — (1 _ q2)n+1 < e_q2(n+1) (0 <g< 1)_ 0

Figures 2-3 show, for several values of n, the graphs of actual relative errors —p,(q) =
[1oo (e(q)) — M (e(q))]/[1 — 1oo (€(q))] (left) together with their upper bounds —p(q) (right).

0010 | 0.10¢
0.008 [ 0.08 |
0.006 | 0.06 .
-p1(Q)
0.004 0.04f
0.002 0.02f
02 04 06 08 10 02 04 06 08 10

Figure 2: The graphs of the functions ¢ — —p1(¢) and ¢ — —pi(q).

0.00030 | 0.0025 ¢
0.00025 ¢ 0.0020 [
0.00020 | 0.0015 |
0.00015 ¢

0.0010 ¢
0.0005 f

0.00010 -
0.00005 -

02 04 06 08 10 02 04 06 08 10
Figure 3: The graphs of the functions ¢ — —p9(q) and ¢ — —p§(q).

Table 1 additionally confirms the usefulness of the derived formula.
Conclusion. The article demonstrates that with the help of 277 years old Maclaurin series the
perimeter of an ellipse can be accurately estimated, even if an ellipse flattens into a line segment.
This is done only by elementary means, not using complex analysis or elliptical integral theory,

neither arithmetic-geometric means nor hypergeometric functions.



62

Vito Lampret gg@BoQ)

q 0.00001 0.1 0.2 0.3 0,4 0,5
—p20(q) || < 81077 | < 61075 | <2107° | < 51070 | < 61077 | < 41078
—pho(q) || <61074 | < 51074 | < 31074 | < 9107% | <2107% | < 21076

Table 1: The actual error pao(g) and the a priori estimated error p5,(q).
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