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The perimeter of a flattened ellipse can be estimated
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ABSTRACT

For the perimeter P (a, b) of an ellipse with the semi-axes a ≥ b ≥ 0 a sequence Qn(a, b)

is constructed such that the relative error of the approximation P (a, b) ≈ Qn(a, b)

satisfies the following inequalities

0 ≤ −
P (a, b)−Qn(a, b)

P (a, b)
≤

(1 − q2)n+1

(2n+ 1)2

≤
1

(2n+ 1)2
e−q2(n+1),

true for n ∈ N and q = b
a ∈ [0, 1].

RESUMEN

Para el peŕımetro P (a, b) de una elipse con semiejes a ≥ b ≥ 0, se construye una sucesión

Qn(a, b) tal que el error relativo de la aproximación P (a, b) ≈ Qn(a, b) satisface las

siguientes desigualdades

0 ≤ −
P (a, b)−Qn(a, b)

P (a, b)
≤

(1 − q2)n+1

(2n+ 1)2

≤
1

(2n+ 1)2
e−q2(n+1),

válidas para n ∈ N y q = b
a ∈ [0, 1].
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1 Introduction

Injective parametric equations of the border of an ellipse having semi-axes of lengths a and b ≤ a

are given as x = x(t) = a cos(t), y = y(t) = b sin(t), where t ∈ [0, 2π). Its perimeter P (a, b) is

determined as

P (a, b) =

∫ 2π

0

√

ẋ2(t) + ẏ2(t) dt = 4

∫ π
2

0

√

a2 sin2(t) + b2 cos2(t) dt

= 4a

∫ π
2

0

√

1− ǫ2 cos2(t) dt =
︷ ︸︸ ︷

t = π/2− τ

4a

∫ 0

π
2

√

1− ǫ2 sin2(τ)(− dτ).

Thus, the perimeter P (a, b) of an ellipse having semi-axes of lengths a and b ≤ a, is given as

P (a, b) = 4aE(ǫ), (1.1)

where

E(ǫ) :=

∫ π
2

0

√

1− ǫ2 sin2(τ) dτ (1.2)

is complete elliptic integral of the second kind and

ǫ :=

√

1−
(
b
a

)2
=

√

a2−b2

a2 ∈ [0, 1), (1.3)

is the eccentricity of an ellipse.

For b ≈ 0 it is intuitively evident that P (a, b) > 2 × 2a = 4a. Moreover, since the functions

ǫ 7→ 1 − ǫ2 sin2(τ) are decreasing on the interval [0, 1] for any τ ∈ [0, π/2], the function E(ǫ) is

decreasing too. Therefore, we have

1 =

∫ π
2

0

cos(τ) dτ = E(1) ≤ E(ǫ) ≤ E(0) =
π

2
,

for 0 ≤ ǫ ≤ 1. Consequently, due to (1.1),

inf
0<b≤a

P (a, b) = 4a < P (a, b) ≤ P (a, a) = 2aπ. (1.4)

The first exact formula for an ellipse perimeter was presented 277 years ago by Collin Maclaurin

[24], given as the sum of infinite series:

P (a, b) = 2πa
∞∑

k=0

(1
2

k

)2

(1 − 2k) ǫ2k (1.5)

= 2πa

∞∑

k=0

(
(2k)!

(2k k!)2

)2 (− ǫ2k
)

2k − 1

= 2πa

{

1−

∞∑

k=0

[
1

4k

(
2k

k

)]2
ǫ2k

2k − 1

}

,
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valid for 0 ≤ ǫ ≤ 1, where ǫ =
(
1 − b2/a2

)1/2
, called the eccentricity1 of an ellipse. This series

originates from the integral (1.2). Later, Ivory [13] discovered a faster converging series for the

integral (1.2), which was later significantly improved by Gauss and Kummer. Additionally, Gauss

developed very efficient, swiftly convergent method of arithmetic-geometric means for computation

of the integral (1.2), see [1]. Subsequently, a lot of approximations of the ellipse perimeter have

been found. For example, among them is very popular Ramanujan’s “extraordinarily unusual and

exotic” approximation [2]. Motivated by the Barnard–Pearce–Schovanec approximations [3] and

Villarino’s contribution on the accuracy of a Ramanujan’s approximation [29] and his paper [28],

we shall derive elementarily2 an asymptotic estimate of the ellipse perimeter, based on the oldest

Maclaurin series expansion. The result obtained surpasses most of the previous approximations.

2 Background

2.1 The binomial approximation

Using Taylor’s formula
(
see for example [15, p. 111] with x0 = 0, h = x and p = n

)
,

f(x) = f(0) +
n∑

i=1

f (i)(0)

i!
xi +

xn+1

n!

∫ 1

0

(1− t)n f (n+1)(t x) dt ,

(
true for a, b ∈ R, a < b, n ∈ N, x ∈ [a, b] and f ∈ Cn+1[a, b]

)
for the function f(x) ≡ (1 + x)

1
2 , we

obtain3

(1 + x)
1
2 =1 +

n∑

i=1

(1
2

i

)

xi

+ xn+1

∫ 1

0

(1− t)n
( 1

2

n+ 1

)

(n+ 1)(1 + tx)
1
2
−n−1 dt , (2.1)

valid for x ∈ (−1, 1] and n ∈ N.

Introducing wi, called the i-th Wallis ratio, for4 i ≥ 0,

wi :=

i∏

j=1

2j − 1

2j
=

(2i)!

4i(i!)2
=

1

4i

(
2i

i

)

, (2.2)

1We have ǫ =
√

1− q2, where q := b/a is called the aspect ratio of an ellipse.
2not using complex analysis and absolute and uniform convergence of a series, as was used, for example, in [18]
3considering the identity f(i)(x) ≡

( 1
2
i

)

(i!)(1 + x)
1
2
−i

4
∏n

j=m xj := 1, for m > n; consequently w0 = 1
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we obtain

(1
2

i

)

=

∏i−1
j=0(

1
2 − j)

i!
= (−1)i−1 1

2i
·

∏i−1
j=1(2j − 1)
∏i

j=1 j

= (−1)i−1 1

2i− 1

i∏

j=1

2j − 1

2j
= (−1)i−1 wi

2i− 1
. (2.3)

Thus, thanks to (2.1), replacing x by −x, we get

(1− x)
1
2 = 1−

n∑

i=1

wi

2i− 1
xi + rn(x), (2.4)

with the remainder

rn(x) = −xn+1 wn+1

2n+ 1
(n+ 1)

∫ 1

0

(
1− t

1− tx

)n
dt

(1− tx)
1
2

,

estimated, for x ∈ (0, 1), as

0 < −rn(x) =
xn+1

(1 − x)
1
2

·
wn+1

2n+ 1
(n+ 1)

∫ 1

0

(
1− t

1− tx

)n

dt

<
wn+1

(1 − x)
3
2 (2n+ 1)

xn+1 . (2.5)

Indeed, using the substitution τ = 1−t
1−tx , i.e. t =

1−τ

1−τx we have (considering x ∈ (0, 1))

∫ 1

0

(
1− t

1− tx

)n

dt =

∫ 0

1

τ
n

(

−
1− x

(1− τx)2

)

dτ =

∫ 1

0

τ
n ·

1− x

(1− τx)2
dτ

<

∫ 1

0

τ
n ·

1− x

(1− x)2
dτ =

1

(1− x)(n+ 1)
.

2.2 Wallis ratios estimates

The integrals

In :=

∫ π
2

0

sinn(x) dx (n ≥ 0), (2.6)

satisfy the recurrence relation

In =
n− 1

n
In−2, for n ≥ 2,

where, obviously, we have I0 = π
2 and I1 = 1. Consequently, by induction we find

I2i =

i∏

j=1

2j − 1

2j
·
π

2
= wi ·

π

2
(2.7)
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and

I2i+1 =
i∏

j=1

2j

2j + 1
=

1

(2i+ 1)wi
. (2.8)

Obviously, we estimate

0 < sin2i+2(x) < sin2i+1(x) < sin2i(x) < 1,

for x ∈
(
0, π

2

)
and i ∈ N. Integrating, we obtain

0 < I2i+2 < I2i+1 < I2i < 1,

for all i ∈ N. Hence, thanks to (2.7)–(2.8), we get

2i+ 1

2i+ 2
wi ·

π

2
= wi+1 ·

π

2
<

1

(2i+ 1)wi
< wi ·

π

2
.

Consequently,
2

π
·

1

2i+ 1
< w2

i <
2

π
·

1

2i− 1
(i ∈ N). (2.9)

We remark that there exists a huge literature on useful, more accurate estimates for wn, e.g.

[4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 31]. However, for our needs,

there suffice rather rough estimates (2.9).

2.3 Some logarithmic formula expansion

For p ≥ 1 and −1 < t < 1 we have

2

p−1
∑

j=0

t2j =

2(p−1)
∑

k=0

(
tk + (−t)k

)
=

2(p−1)
∑

k=0

tk +

2(p−1)
∑

k=0

(−t)k

=
1− t2p−1

1− t
+

1− (−t)2p−1

1 + t
.

Consequently, integrating from 0 to x ∈ (−1, 1), the first and the last part of these equalities, we

obtain

2

p−1
∑

j=0

x2j+1

2j + 1
=

∫ x

0

1

1− t
dt−

∫ x

0

t2p−1

1− t
dt+

∫ x

0

1

1 + t
dt+

∫ x

0

t2p−1

1 + t
dt

= − ln(1 − x) + ln(1 + x) −

∫ x

0

(
1

1− t
−

1

1 + t

)

t2p−1 dt

︸ ︷︷ ︸

=R∗

p(x)

.

Thus,

ln

(
1 + x

1− x

)

= 2

p
∑

i=1

x2i−1

2i− 1
+R∗

p(x), (2.10)
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with the remainder R∗
p(x),

R∗
p(x) :=

∫ x

0

2t2p

1− t2
dt ≥

∫ x

0

2t2p dt. (0 < x < 1),

estimated as
2x2p+1

2p+ 1
< R∗

p(x) <
2x2p+1

(1 − x2)(2p+ 1)
(p ∈ N, 0 < x < 1) (2.11)

From (2.10)–(2.11) we end up with the expansion

ln

(
1 + x

1− x

)

= 2

∞∑

i=1

x2i−1

2i− 1
, (2.12)

true for x ∈ (0, 1) and, consequently, also for x ∈ (−1, 0].

3 The Maclaurin series

3.1 Derivation

Referring to (2.4)–(2.5) and (2.6)–(2.7), we have, for any n ∈ N,

∫ π
2

0

√

1− ǫ2 sin2(τ)
︸ ︷︷ ︸

dτ =
π

2
−

n∑

i=1

wi ǫ
2i

2i− 1

∫ π
2

0

sin2i(τ) dτ+ r∗n(ǫ)

=
π

2
−

n∑

i=1

wi ǫ
2i

2i− 1

(

wi
π

2

)

+ r∗n(ǫ).

Hence
∫ π

2

0

√

1− ǫ2 sin2(τ) dτ =
π

2

(

1−

n∑

i=1

w2
i

2i− 1
ǫ2i

)

+ r∗n(ǫ), (3.1)

where wi is the i-th Wallis’ ratio and the error term r∗n(ǫ) :=
∫ π/2

0
rn
(
ǫ2 sin2(τ)

)
dτ is estimated,

due to (2.5) and considering (2.6)–(2.7), as

0 ≤ −r∗n(ǫ) ≤
ǫ2n+2

1− ǫ2
·
wn+1

2n+ 1

∫ π
2

0

sin2n+2(τ) dτ

=
ǫ2n+2 wn+1

(1 − ǫ2)(2n+ 1)
· wn+1

π

2
.

Thus, according to (2.9),

0 ≤ −rn(ǫ) ≤
π

2
·

1

1− ǫ2
·
w2

n+1

2n+ 1
ǫ2n+2 ≤

1

1− ǫ2
·

ǫ2n+2

(2n+ 1)2
. (3.2)

This estimate is not usable for ǫ ≈ 1, i.e. for b ≈ 0 (for a very flattened ellipse).
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As w2
n ≤ 1, we have lim

n→∞
rn(ǫ) = 0 for any ǫ < 1, which is always true for ordinary ellipse, due

to the equivalence ǫ = 1 ⇔ b = 0. Hence, there holds the so-called Maclaurin series expansion5

∫ π
2

0

√

1− ǫ2 sin2(τ) dτ =
π

2

(

1−

∞∑

i=1

w2
i

2i− 1
ǫ2i

)

, (3.3)

valid for 0 ≤ ǫ < 1. In addition, the series on the right is convergent also for ǫ = 1 due to (2.9).

Indeed, we have
w2

i

2i−1 < 1
i2 , which implies the convergence of the series

∑∞

i=1
w2

i

2i−1 .

Remark 3.1. About fifty years after Maclaurin’s book [24], including the series (3.3), Ivory pub-

lished article [13], where he presented the expansion

∫ π
2

0

√

1− ǫ2 sin2(τ) dτ =
π(a+ b)

4a

(

1 +
∞∑

i=1

w2
i

(2i− 1)2
λ2i

) (

λ =
a− b

a+ b

)

,

where the series on the right converges slightly faster than the series in (3.3).

Applying (2.9) for the partial sums

µn(ǫ) :=

n∑

i=1

w2
i

2i− 1
ǫ2i (n ∈ N ∪ {∞}), (3.4)

we shall estimate the series µ∞(ǫ) figuring in (3.3).

3.2 Approximating µ∞(ǫ)

Using (2.9) we estimate,

2

π(2i− 1)(2i+ 1)
<

w2
i

2i− 1
<

2

π(2i− 1)2
(i ∈ N) . (3.5)

Therefore

µ∞(ǫ) ≈

∞∑

i=1

2ǫ2i

π(2i − 1)(2i+ 1)
(0 ≤ ǫ < 1).

This idea produces the next theorem.

Theorem 3.2. We have

µ∞(ǫ) = Mn(ǫ) + δn(ǫ), (3.6)

where

Mn(ǫ) = A(ǫ) +Bn(ǫ), (3.7)

A(ǫ) :=
1

2π

[(

ǫ−
1

ǫ

)

ln
(1 + ǫ

1− ǫ

)

+ 2

]

∈
(
0, 1

π

)
, (3.8)

5The coefficients of the original Maclaurin series [24] have a visually more complicated form.
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Bn(ǫ) :=

n∑

i=1

(

w2
i −

2

π(2i+ 1)

)
ǫ2i

2i− 1
, (3.9)

and

0 < δn(ǫ) < δ∗n(ǫ) :=
2ǫ2n+2

π(2n+ 1)2
, (3.10)

valid for any integer n ≥ 1 and every 0 < ǫ < 1.

The basic function A(ǫ) is strictly increasing having the range
(
0, 1

π

)
, where lim

ǫ↓0
A(ǫ) = 0

and lim
ǫ↑1

A(ǫ) = 1
π . Both sequences, n 7→ Bn(ǫ) and n 7→ δn(ǫ), are strictly increasing, for every

ǫ ∈ (0, 1).

The sequence n 7→ Mn(ǫ) converges strictly increasingly to µ∞(ǫ), for any ǫ ∈ (0, 1). Addi-

tionally, for every n ∈ N, the functions ǫ 7→ Mn(ǫ) and ǫ 7→ δn(ǫ) are strictly increasing on the

interval (0, 1).

Figure 1 shows, on the left, the graph6 of the basic function A(ǫ), and, on the right, the graphs

of the functions M∗
1 (ǫ) and µ∞(ǫ). As an example, we present B∗

4(ǫ) and δ∗4(ǫ) as follows:

B∗
4(ǫ) =

(
1
4 − 2

3π

)
ǫ2 +

1

3

(
9
64 − 2

5π

)
ǫ4 +

1

5

(
25
256 − 2

7π

)
ǫ6 +

1

7

(
1225
16384 − 2

9π

)
ǫ8

≈ 0.037 793 409 ǫ2+ 0.004 433 682 ǫ4+ 0.001 342 114 ǫ6+ 0.000 576 077 ǫ8,

δ∗4(ǫ) ≤
2ǫ10

81π
≤ 0.00786 ǫ10

(

ǫ =

√

1−
(
b
a

)2
)

.
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Figure 1: The graph of the basic function A(ǫ) (left) and the graphs of the functions M1(ǫ), µ∞(ǫ)
and A(ǫ) (right).

Proof of Theorem 3.2. We have, for 0 < ǫ < 1,

∞∑

i=1

w2
i

ǫ2i

2i− 1
=

∞∑

i=1

2 ǫ2i

π(2i− 1)(2i+ 1)
(3.11)

+
n∑

i=1

(
w2

i

2i− 1
−

2

π(2i− 1)(2i+ 1)

)

ǫ2i + δn(ǫ),

6All the graphics and calculations in this paper are made using the Mathematica [30] computer system.
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where

δn(ǫ) =

∞∑

i=n+1

(

w2
i −

2

π(2i+ 1)

)
ǫ2i

2i− 1
. (3.12)

Moreover, using (2.12), we have

∞∑

i=1

2

π(2i− 1)(2i+ 1)
ǫ2i

=
1

π

∞∑

i=1

(
1

2i− 1
−

1

2i+ 1

)

ǫ2i

=
1

π

(

ǫ

2
· 2

∞∑

i=1

ǫ2i−1

2i− 1
−

1

2ǫ
· 2

∞∑

i=1

ǫ2i+1

2i+ 1

)

=
1

π

[
ǫ

2
ln
(1 + ǫ

1− ǫ

)

−
1

2ǫ

(

ln
(1 + ǫ

1− ǫ

)

− 2ǫ

)]

=
1

2π

[(

ǫ−
1

ǫ

)

ln
(1 + ǫ

1− ǫ

)

+ 2

]

= A(ǫ).

Concerning A(ǫ) = 1
2π

(
f(ǫ) + 2

)
, the function f(ǫ) :=

(
ǫ− 1

ǫ

)
ln
(

1+ǫ
1−ǫ

)

(0 < ǫ < 1) has the

derivative f ′(ǫ) = g(ǫ)/ǫ2, where g(ǫ) = (1 + ǫ2) ln
(

1+ǫ
1−ǫ

)

− 2ǫ, having the derivative

g′(ǫ) =
2ǫ

1− ǫ2

(

2ǫ+ (1 − ǫ2) ln

(
1 + ǫ

1− ǫ

))

> 0 (0 < ǫ < 1).

Thus, g is strictly increasing on [0, 1). Consequently, g(ǫ) > g(0) = 0, i.e. f ′(ǫ) > 0, for 0 < ǫ < 1.

Therefore, f is strictly increasing on (0, 1) too. Moreover, using (2.10)–(2.11) with p = 1, we have

f(ǫ) = ǫ2−1
ǫ · 2

(

ǫ+ ϑ · 2ǫ3

3(1−ǫ2)

)

= 2(ǫ2 − 1)
(

1 + ϑ · 2
1−ǫ2 · ǫ2

3

)

,

for some ϑ = ϑ(ǫ) ∈ (0, 1). Hence, lim
ǫ↓0

f(ǫ) = −2, i.e. lim
ǫ↓0

A(ǫ) = lim
ǫ↑1

1
2π

(
f(ǫ) + 2

)
= 0. In

addition, lim
ǫ↑1

f(ǫ) = lim
ǫ↑1

[
ǫ2−1

ǫ · 2 ln(1 + ǫ)
]

− 1
1 · lim

h↓0

(

− h ln(h)
)

= 0, where h = 1 − ǫ2. Thus,

lim
ǫ↑1

A(ǫ) = lim
ǫ↑1

1
2π

(
f(ǫ) + 2

)
= 1

π .

According to (3.5), all summands in Bn(ǫ) and δn(ǫ) (see (3.12)) are positive, i.e. the sequences

n 7→ Bn(ǫ) and n 7→ δn(ǫ) are strictly increasing; consequently the sequence n 7→ Mn(ǫ) is also

strictly increasing, for every ǫ ∈ (0, 1).

Since all coefficients of the power series Bn(ǫ) and δn(ǫ) (see (3.9) and (3.12)) are positive,

due to (3.5), the functions ǫ 7→ Mn(ǫ) and ǫ 7→ δn(ǫ) are strictly increasing on the interval (0, 1),

for any n ∈ N.

According to (3.12) and (3.5), we estimate, for ǫ ∈ (0, 1],

0 < δn(ǫ) <

∞∑

i=n+1

(
2

π(2i− 1)
−

2

π(2i+ 1)

)
ǫ2n+2

2n+ 1
=

2ǫ2n+2

π(2n+ 1)2
,
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using the telescoping method of summation.

Example 3.3. Theorem 3.2 is quite useful for an estimate of µ∞(ǫ), consequently for an esti-

mate of the perimeter of an ellipse. For example, for a very flattened ellipse with q = 0.01 we

have 0.99994 < ǫ(q) < 0.99995 where 0.36315 < M20(0.99995) < 0.36316 . . . and δ∗20(0.99995) <

0.00038. Therefore, 0.36315 < µ∞(0.99995) < 0.36316+0.00038 = 0.36354. Thus, to three decimal

places, we have µ∞(0.99995) = 0.363 . . . . Consequently, the perimeter P (a, b) of the corresponding

ellipse is given as P (a, b) = 4a · π
2

(
1 − µ∞(0.99995)

)
≈ 4a · π

2

(
1− 0.363

)
≈ 4.002 a (compare with

relations (1.4)).

Remark 3.4. Referring to Abel’s theorem on the boundary behavior of a power series, if we

continuously extend the domain of the function A(ǫ) to the closed interval [0, 1] by using limits,

A(0) := 0 and A(1) := 1
π , then (3.6), (3.7), (3.9) and (3.10) are all valid also for ǫ = 0 and ǫ = 1.

Remark 3.5. Alternatively, we can estimate the remainder r∗∗n (ǫ) := µ∞(ǫ)−Mn(ǫ) as follows:

r∗∗n (ǫ) ≤

∞∑

i=n+1

w2
i ǫ

2i

2i− 1
≤

w2
n+1ǫ

2n+2

2n+ 1

∞∑

j=0

ǫ2j

=
w2

n+1ǫ
2n+2

(2n+ 1)(1 − ǫ2)
≤

1

1− ǫ2
·

2ǫ2n+2

π(2n+ 1)2
.

This simple method works quite well for ǫ, which “differs enough from 1”, but it is useless for ǫ,

which is close to 1.

4 The main result

Theorem 4.1. For every n ∈ N, the perimeter P (a, b) of an ellipse having semi-major and semi-

minor axes, a and b, the aspect ratio q = q(a, b) := b/a, and the eccentricity ǫ = ǫ(a, b) :=
√

1− q2,

the n-th approximation Qn(a, b) ≈ P (a, b),

Qn(a, b) := 2πa
(

1−Mn

(
ǫ
))

= 2πa
(

1−A(ǫ)−Bn

(
ǫ
))

, (4.1)

has the relative error,

P (a, b)−Qn(a, b)

P (a, b)
=: ρn(q)

(

q = q(a, b) =
(
b
a

)2
)

,

estimated as

−
1

(2n+ 1)2
e−q2(n+1) ≤ −

(
1− q2

)n+1

(2n+ 1)2
=: ρ∗n(q) ≤ ρn(q) ≤ 0 .

Here, A(ǫ) and Bn

(
ǫ
)
are defined in Theorem 3.2 and we have Bn+1

(
ǫ
)
= Bn

(
ǫ
)
+
(

w2
n+1 −

2
π(2n+3)

)
ǫ2n+2

2n+1 ,

for n ∈ N and 0 ≤ ǫ ≤ 1.
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Proof. Thanks to (1.1), (1.2), (1.4) and (3.3), we estimate

−
P (a, b)−Qn(a, b)

P (a, b)
= −

2πa
(

1−Mn(ǫ)− δn(ǫ)
)

− 2πa
(

1−Mn(ǫ)
)

P (a, b)

(1.4)
<

2πa δn(ǫ)

4a
≤

π δn(ǫ)

2
<

π

2
·

2ǫ2n+2

π(2n+ 1)2
=

ǫ2n+2

(2n+ 1)2
,

where, considering the convexity of the exponential function or, referring to [16, (6a)] with ε = q2

and h = −q2 , we have

ǫ2n+2 = (1− q2)n+1 ≤ e−q2(n+1) (0 ≤ q < 1).

Figures 2–3 show, for several values of n, the graphs of actual relative errors −ρn(q) =
[
µ∞

(
ǫ(q)

)
−Mn

(
ǫ(q)

)]
/
[
1− µ∞

(
ǫ(q)

)]
(left) together with their upper bounds −ρ∗n(q) (right).
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Figure 2: The graphs of the functions q 7→ −ρ1(q) and q 7→ −ρ∗1(q).

0.2 0.4 0.6 0.8 1.0

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

-Ρ9HqL

0.2 0.4 0.6 0.8 1.0

0.0005

0.0010

0.0015

0.0020

0.0025

-Ρ9
*
HqL

Figure 3: The graphs of the functions q 7→ −ρ9(q) and q 7→ −ρ∗9(q).

Table 1 additionally confirms the usefulness of the derived formula.

Conclusion. The article demonstrates that with the help of 277 years old Maclaurin series the

perimeter of an ellipse can be accurately estimated, even if an ellipse flattens into a line segment.

This is done only by elementary means, not using complex analysis or elliptical integral theory,

neither arithmetic-geometric means nor hypergeometric functions.
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q 0.00001 0.1 0.2 0.3 0, 4 0, 5

−ρ20(q) < 8·10−5 < 6·10−5 < 2·10−5 < 5·10−6 < 6·10−7 < 4·10−8

−ρ∗20(q) < 6·10−4 < 5·10−4 < 3·10−4 < 9·10−5 < 2·10−5 < 2·10−6

Table 1: The actual error ρ20(q) and the a priori estimated error ρ∗20(q).
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