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ABSTRACT

In this paper we have studied pseudosymmetric, Ricci-pseudosymmetric and projec-
tively pseudosymmetric para-Sasakian manifold admitting a quarter-symmetric metric
connection and constructed examples of 3-dimensional and 5-dimensional para-Sasakian

manifold admitting a quarter-symmetric metric connection to verify our results.

RESUMEN

En este articulo hemos estudiado variedades para-Sasakianas seudosimétricas, Ricci-
seudosimétricas y proyectivamente seudosimétricas que admiten una conexién métrica
cuarto-simétrica, y construimos ejemplos de variedades para-Sasakianas 3-dimensional
y 5-dimensional que admiten una conexién métrica cuarto-simétrica para verificar nue-

stros resultados.

Keywords and Phrases: Para-Sasakian manifold, pseudosymmetric, Ricci-pseudosymmetric,

projectively pseudosymmetric, quarter-symmetric metric connection.

2020 AMS Mathematics Subject Classification: 53C35, 53D40.

@)ev-ne |

(©2020 by the author. This open access article is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License.


http://dx.doi.org/10.4067/S0719-06462020000200257

258 Vishnuvardhana. S.V. & Venkatesha gg(gz(o))

1 Introduction

One of the most important geometric property of a space is symmetry. Spaces admitting some
sense of symmetry play an important role in differential geometry and general relativity. Cartan
[5] introduced locally symmetric spaces, i.e., the Riemannian manifold (M, g) for which VR = 0,
where V denotes the Levi-Civita connection of the metric. The integrability condition of VR = 0
is R+ R = 0. Thus, every locally symmetric space satisfies R - R = 0, whereby the first R stands
for the curvature operator of (M, g), i.e., for tangent vector fields X and Y one has R(X,Y) =
VxVy—=VyVx—V|x y], which acts as a derivation on the second R which stands for the Riemann-
Christoffel curvature tensor. The converse however does not hold in general. The spaces for which
R - R = 0 holds at every point were called semi-symmetric spaces and which were classified by
Szabo [19].

Semisymmetric manifolds form a subclass of the class of pseudosymmetric manifolds. In some
spaces R - R is not identically zero, these turn out to be the pseudo-symmetric spaces of Deszcz
[9, 10, 11], which were characterized by the condition R- R = L Q(g, R), where L is a real function
on M and @Q(g, R) is the Tachibana tensor of M.

If at every point of M the curvature tensor satisfies the condition
R(va)j:LJ[(X/\qy)j]v (11)

then a Riemannian manifold M is called pseudosymmetric (resp., Ricci-pseudosymmetric, projec-
tively pseudosymmetric) when J = R(resp., S, P) . Here (X Ay Y) is an endomorphism and is
defined by (X Ay Y)Z = g(Y,Z2)X —g(X, Z)Y and Ly is some functionon Uy = {x € M : J # 0}
at z. A geometric interpretation of the notion of pseudosymmetry is given in [13]. It is also easy to

see that every pseudosymmetric manifold is Ricci-pseudosymmetric, but the converse is not true.

An analogue to the almost contact structure, the notion of almost paracontact structure was
introduced by Sato [18]. An almost contact manifold is always odd-dimensional but an almost
paracontact manifold could be of even dimension as well. Kaneyuki and Williams [14] studied
the almost paracontact structure on a pseudo-Riemannian manifold. Recently, almost paracontact
geometry in particular, para-Sasakian geometry has taking interest, because of its interplay with
the theory of para-Kahler manifolds and its role in pseudo-Riemannian geometry and mathematical
physics ([4, 7, 8], etc.,).

As a generalization of semi-symmetric connection, quarter-symmetric connection was intro-
duced. Quarter-symmetric connection on a differentiable manifold with affine connection was
defined and studied by Golab [12]. From thereafter many geometers studied this connection on

different manifolds.

Para-Sasakian manifold with respect to quarter-symmetric metric connection was studied by
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De et.al., [16, 1], Pradeep Kumar et.al., [17] and Bisht and Shanker [15].

Motivated by the above studies in this article we study properties of projective curvature
tensor on para-Sasakian manifold admitting a quarter-symmetric metric connection. The organi-
zation of the paper is as follows: In Section 2, we present some basic notions of para-Sasakian
manifold and quarter-symmetric metric connection on it. Section 3 and 4 are respectively devoted
to study the pseudosymmetric and Ricci-pseudosymmetric para-Sasakian manifold admitting a
quarter-symmetric metric connection. Here we prove that if a para-Sasakian manifold M™ admit-
ting a quarter-symmetric metric connection is Pseudosymmetric (resp., Ricci pseudosymmetric)
then M™ is an Einstein manifold with respect to quarter-symmetric metric connection or it satisfies
Lz = —2 (resp., Lg = —2). Section 5 and 6 are concerned with projectively flat and projectively
pseudosymmetric para-Sasakian manifold M™ admitting a quarter-symmetric metric connection.
Finally, we construct examples of 3-dimensional and 5-dimensional para-Sasakian manifold admit-

ting a quarter-symmetric metric connection and we find some of its geometric characteristics.

2 Preliminaries

A differential manifold M™ is said to admit an almost paracontact Riemannian structure (¢, &, 1, g),
where ¢ is a tensor field of type (1, 1), £ is a vector field, n is a 1-form and ¢ is a Riemannian

metric on M™ such that
P’X =X —n(X)&, nE =1 ¢€ =0 n6X)=0, (2.1)
9(X,8) =n(X), g(¢X,0Y) =g(X,Y) —n(X)n(Y), (2.2)
for all vector fields X, Y € x(M™). If (¢,&,1n,9) on M™ satisfies the following equations
(Vx @)Y = —g(X,Y)E —n(Y)X + 2n(X)n(Y)E, (2.3)
dn=0 and Vx&=¢X, (2.4)
then M™ is called para-Sasakian manifold [3].
In a para-Sasakian manifold, the following relations hold [6]:
(Vxn)Y =—g(X,Y) + n(X)n(Y), (2.5)
n(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X), (2.6)
S(X,8) = —(n—1)n(X), (2.8)
S(¢X,9Y) =S(X,Y) + (n — 1)n(X)n(Y), (2.9)

for every vector fields X,Y, Z on M"™. Here V denotes the Levi-Civita connection, R denotes the

Riemannian curvature tensor and S denotes the Ricci curvature tensor.
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Here we consider a quarter-symmetric metric connection V on a para-Sasakian manifold [16]

given by
VxY = Vx¥ +n(Y)gX — g(6X, Y)E. (2.10)

The relation between curvature tensor R(X,Y)Z of M"™ with respect to quarter-symmetric
metric connection V and the curvature tensor R(X,Y)Z with respect to the Levi-Civita connection
V is given by

R(X,Y)Z = R(X,Y)Z + 3g(¢X, Z)$Y — 39(¢Y, Z)pX
+{n(X)Y —n(YV)X3n(2) = [9(Y, Z)n(X) = n(Y)g(X, Z)IE. (2.11)

Also from (2.11) we obtain

SY,Z2)=85Y,2)+29(Y,Z)— (n+ 1)n(Y)n(Z) — 3tracep g(¢Y, Z), (2.12)

where S and S are Ricci tensors of connections V and V respectively.

3 Pseudosymmetric para-Sasakian manifold admitting a quarter-

symmetric metric connection

A para-Sasakian manifold M"™ admitting a quarter-symmetric metric connection is said to be

pseudosymmetric if
R(X,Y)-R=Lgl(X A,Y) - R] (3.1)

holds on the set Uz = {x € M™ : R # 0 at x}, where L is some function on Us.
Suppose that M™ be pseudosymmetric, then in view of (3.1) we have
R(EY)R(U, V)W — R(R(E,Y)U, V)W — R(U,R(&,Y)V)W
—R(U,V)R(E Y)W = Li[(§ Ag V)R(U, V)W — R((£ Ay YU, V)W
—R(U,(ENg YI)V)W — R(U,V)(€ Ay Y)W, (3.2)

By virtue of (2.7) and (2.11), (3.2) takes the form
(L +2)[(RUVIW)Y = g(Y, RU,V)W)E = n(U)R(Y, V)W + g(Y,U)R(E, V)W
—n(VR(U, Y)W + g(Y,V)R(U, )W — n(W)R(U, V)Y + g(Y,W)R(U,V)¢] = 0. (3.3)
Taking inner product of (3.3) with & and using (2.6) and (2.11), we get
(Lg+2)[g(Y, RUVIW) + 39(oU, W)g(¢V,Y) — 3g(¢V, W)g(¢U,Y)

FnW){n(U)g(V,Y) = n(V)g(U,Y)} = {g(V,W)n(U) = n(V)g(U, W)}n(Y)
+2{g(V,W)g(Y,U) — g(V,Y)g(U,W)}] = 0. (3.4)
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Assuming that Lz 4 2 # 0, the above equation becomes

9(Y, R(U, V)W) + 39(oU, W)g(¢V,Y) = 3g(oV, W)g(¢U,Y)
FnW){n(W)g(V,Y) =n(V)g(U,Y)} = [g(V, W)n(U) —n(V)g(U, W)In(Y')
+2[g(V, W)g(Y,U) — g((V,Y)g(U, W)] = 0. (3.5)

Putting V = W = e;, where {e;} is an orthonormal basis of the tangent space at each point

of the manifold and taking summation over 7, : = 1,2,3,--- ,n, we get

S(Y,U) = —2(n—1)g(Y,U). (3.6)

Hence, we can state the following:

Theorem 1. If a para-Sasakian manifold M™ admitting a quarter-symmetric metric connection
is pseudosymmetric then M™ is an Einstein manifold with respect to quarter-symmetric metric

connection or it satisfies L = —2.

4 Ricci-pseudosymmetric para-Sasakian manifold admitting

a quarter-symmetric metric connection

A para-Sasakian manifold M™ admitting a quarter-symmetric metric connection is said to be

Ricci-pseudosymmetric if the following condition is satisfied
R(X,Y)-§ = Lg[(X A, ) - §). (4.1)
on Ug.

Let para-Sasakian manifold M™ admitting a quarter-symmetric metric connection be Ricci-

pseudosymmetric. Then we have

S(R(X,Y)Z,W)+S(Z,R(X,Y)W) = Lg[S(X Ny Y)Z,W) + 5(Z, (X Ny Y)W)]. (4.2)

By taking Y = W = ¢ and making use of (2.7), (2.8) and (2.11), the above equation turns
into
(Lg+2)[S(X,Z2) +2(n—1)g(X,Z)] =0 (4.3)

Thus, we have the following assertion:

Theorem 2. If a para-Sasakian manifold M™ admitting a quarter-symmetric metric connection is
Ricci-pseudosymmetric then M™ is an Finstein manifold with respect to quarter-symmetric metric

connection or it satisfies Ls = —2.
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5 Projectively flat para-Sasakian manifold admitting a quarter-

symmetric metric connection

The projective curvature tensor on a Riemannian manifold is defined by [2]

P(X,Y)Z =R(X,Y)Z — [S(Y,Z)X — S(X, Z)Y]. (5.1)

1
(n—1)
For an n-dimensional para-Sasakian manifold M"™ admitting a quarter-symmetric metric con-
nection, the projective curvature tensor is given by
- - 1 - -
P(X,Y)Z=R(X,Y)Z — ﬁ[S(Y, )X - S(X,2)Y]. (5.2)
n —
Theorem 3. A projectively flat para-Sasakian manifold M™ admitting a quarter-symmetric metric

connection is an Finstein manifold with respect to quarter-symmetric metric connection.

Proof. Consider a projectively flat para-Sasakian manifold admitting a quarter-symmetric metric

connection. Then from (5.2) we have

g(R(X,Y)Z,W) = = i )

[S’(Ya Z)Q(X’ W) _S(Xv Z)g(Y, W)] (5'3)

Setting X = W = ¢ in (5.3) and using (2.7), (2.8), (2.11) and (2.12), we get

S(X,7) = —2(n —1)g(X, 2). (5.4)

Hence, the proof is completed. O

6 Projectively pseudosymmetric para-Sasakian manifold ad-

mitting a quarter-symmetric metric connection

A para-Sasakian manifold admitting a quarter-symmetric metric connection is said to be projec-
tively pseudosymmetric if
RXY)- P = Lal(X A, V) P, (6.1)
holds on the set Up = {x € M™: P # 0 at 2}, where L is some function on Up.
Let M™ be projectively pseudosymmetric, then we have
R(X,§)P(U, V)¢ = P(R(X,)U, V)¢ — P(U, R(X, V)¢
—P(UV)R(X,£)¢ = Lp|(X Ay )P(U.V)E = P((X Ay U, V)E
—P(U, (X Ag OV)E = P(UV)(X Ag ). (6.2)
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By virtue of (2.11), (2.12) and (5.2), (6.2) becomes

(Lp+2)P(U, V)X = 0. (6.3)

So, one can state that:

Theorem 4. If a para-Sasakian manifold M™ admitting a quarter-symmetric metric connection is
projectively pseudosymmetric then M™ is projectively flat with respect to quarter-symmetric metric

connection or Lp = —2.

In view of theorem 3, one can state the above theorem as

Theorem 5. If a para-Sasakian manifold M™ admitting a quarter-symmetric metric connection is
projectively pseudosymmetric then M™ is an Finstein manifold with respect to quarter-symmetric

metric connection or Lp = —2.

7 Examples

7.1 Example

We consider a 3-dimensional manifold M = {(z,y,2) € R3 : z # 0}, where (z,y, z) are standard
coordinates in R3. Let {E, E, E3} be a linearly independent global frame field on M given by

0 0 0 0
R Ey=e*(— — — Es=—
1 € ayv 2 € (ay a$)7 3 (92’
If g is a Riemannian metric defined by
1, i=j
g(ElvEJ) =
0, i#]

for 1 <i,5 <3, and if 7 is the 1-form defined by 1n(Z) = g(Z, E3) for any vector field Z € x(M).
We define the (1, 1)-tensor field ¢ as

O(E1) = E1,  ¢(E2) = —E», ¢(E3) =0.
The linearity property of ¢ and g yields that

n(E3) =1,
¢°U =U —n(U)Es,
g(@U,¢V) = g(U, V) —nU)n(V),
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for any U,V € x(M).

Now we have

[EluEQ] :Ov [E17E3] :E17 [E27E3] :Eg.
The Riemannian connection V of the metric g known as Koszul’s formula and is given by

29(VXY= Z) = Xg(Y, Z)"I‘Yg(ZvX) - Zg(va) —g(X, [Y, Z])
—g(Y, [Xv Z]) +g(27 [Xv Y])

Using Koszul’s formula we get the followings in matrix form

Ve, E1 Ve Ey Vg Es -Es 0 E;
VE2E1 VE2 Eg VE2 E3 - 0 —E3 Eg
VesB1 VgsEy Vg Es 0 0 0

Clearly (¢,&,1,9) is a para-Sasakian structure on M. Thus M(#,&,n,g) is a 3-dimensional

para-Sasakian manifold.

Using (2.10) and the above equation, one can easily obtain the following;:

Ve, E1 Vg E, Vg FEs —2F; 0 2B
@EQEI @EZEQ @EzEg - 0 —2E3 2E2
Ve, F1 Ve,By Vg,Es 0 0 0

With the help of the above results it can be easily verified that

R(E1,E2)E3 =0, R(Es, E3)E3 = —Es, R(Er, Es)E3 = —E4,
R(E1, E2)Ey = —Ey, R(Es, Es3)Es = Es, R(E1,E3)Ey =0,
R(Ey, E)E; = Es, R(Es, E3)E; =0, R(E,, E3)E; = Es.
and
R(E,, Ey)E3 =0, R(E,, E3)Es = —2E,, R(E,, E3)Es = —2E;,
R(Ey,Ey)Ey = —4Ey,  R(E, E3)E, = 2E;, R(Ey,E3)E, =0,
R(E\, Ey)E) = 4E;, R(Ey, E3)E) =0, R(E,, E3)E, = 2FEs. (7.1)

Since E1, Es, E3 forms a basis, any vector field X,Y,Z € x(M) can be written as X =
a1FE1 +b1Es +1FE3, Y = asFE1 + boFEo + coFE3, Z = asFEq1 + bsFEs + c3E3, where a;,b;,¢; € R,

i =1,2,3. Using the expressions of the curvature tensors, we find values of Riemannian curvature
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and Ricci curvature with respect to quarter-symmetric metric connection as;

R(X,Y)Z = [—4{a1bs —braz}bs + 2{c1a2 — a1ca}c3|En

+ [—4{bias — ai1ba}as + 2{c1ba — bica}cs)Fa

+ [—2{cias — ajca}az — 2{c1by — bic2}bs] E3, (7.2)
S(E\,E1) = S(Ey, Ey)=—6, S(E3,E3) = —4. (7.3)

Using (7.1), (7.3) and the expression of the endomorphism (X A;Y)Z = ¢(Y, Z2) X —g(X, 2)Y,

one can easily verify that

S(R(X, E3)Y, E3) + S(Y, R(X, E3)Es) = =2[S((X Ay E3)Y, E3) + S(Y, (X Ay E3)E3)],  (74)

here Lg = —2. Thus, the above equation verify one part of the Theorem 2 of section 4.

Moreover, the manifold under consideration satisfies

R(X,Y)Z = -R(Y,X)Z,
R(X,Y)Z+R(Y,Z)X + R(Z,X)Y = 0.

Hence, from the above equations one can say that this example verifies the condition (¢) of Theorem

3.1 in [1] and first Bianchi identity.

7.2 Example

We consider a 5-dimensional manifold M = {(z1, 2, 23,24, 75) € R%}, where (21,22, 3, T4, T5)

are standard coordinates in R®. We choose the vector fields

0] 0 0 9] 9] 9] 0 9] 9]
Ei=— Ey=— Fa=—-—" FEj=—-—" FEr=x— - - — 4+
! 8:1717 2 8:172, 3 8:03’ 4 8:1747 5 1 8:01 +$2 8:172 +$C3 8:03 +$4 8:04 + 8x5’

which are linearly independent at each point of M.

Let ¢ be a Riemannian metric defined by

1, i=j

0, i#j

g(Eiij) =

for 1 <i,5 <5, and if 7 is the 1-form defined by 1n(Z) = g(Z, E5) for any vector field Z € x(M).
Let ¢ be the (1, 1)-tensor field defined by

#(E1) = E1, ¢(E2) = Ea, ¢(E3) =E3, ¢(Fy)=FEy, ¢(Es)=0.
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The linearity property of ¢ and g yields that

for any U,V € x(M).

Now we have

[En, B2
[E2, B3]
[E3, E]

0,
0,
0,

n(Es) =
¢*U =U —n(U)Es,

L,

g(@U,¢V) = g(U, V) —nU)n(V),

[E1, Es] =0,
[E2, E4] =0,
[Es, Es] = E3,

[E1, E4] =0,
[E2, Es] = E»,
[E4, E5] = FE,.

[E1, Es] = Ey,

By virtue of Koszul’s formula we get the followings in matrix form

Vg, Er
Ve, B
Vs £
Vi, 1
Vg, Er

Vg, E2
Vs, B
Vs Eo
Vg, Eo
Vs B2

Vg Es
Vg, E3
Vg, Es
VE,Es
Vs E3

Vg, B4
Vi, Ea
Vs Ey
VE,Ey
Vs E4

Vg, Es
Vg, Es
Vi, Es
VE,Es
Vs Es

—E5 0 0
0 —Es 0
0 0 —-Es
0 0 0
0 0 0

0 E;
0 E»
0 Es
—Es Ey
0 0

Above expressions satisfies all the properties of para-Sasakian manifold. Thus M (¢,&,n, g) is

a b-dimensional para-Sasakian manifold.

From the above expressions and the relation of quarter symmetric metric connection and

Riemannian connection, one can easily obtain the following:

Ve, By Ve, Ey Vg Es Vg E, Vg Es
Ve,F1 Ve,Ey Vg,Es Vg,Ey Vg,Es
Ve, Ei Vp,Ey Vp,Es Vp,E, Vg,FEs
Ve, By Ve,EBEy Vg,Es Vg,E, Vg,FEs
Ve, By Ve,Ey Vp.Es Vg E, Vg.Es

—2F5 0 0
0 —2F5 0
0 0 —2E;5
0 0 0
0 0 0

0 2B
0 2B,
0 2Es
—2F5 2E,
0 0

With the help of the above results it can be easily obtain the non-zero components of curvature

tensors as

2, R(E1, Ey)Ey = —Ex,
1, R(Ev,Ei)Ey=—Ey,
3, R(E2, E3)E3 = —E»,
5, R(E2, E5)Es = —En,
5, R(Es, E5)E5 = —Es,
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and

( ) ( VE, =4Fs, R(E,,E3)Es = —4E;,
( ) ( VE, =2Es, R(Ey,Es)Es = —2FE,

R(Ey,E3)Ey = 4E3, R(Fs, E3)E3 = —4Ey, R(Fs,E4)Ey = 4E,, R(Fs, E))E,; = —4F,,
( ) ( )
( )

Es =4FE,, R(Es,E )Ey = —4Es,

Since En, Es, Es, Ey, E5 forms a basis, any vector field X,Y,Z € x(M) can be written as
X=aE1+b0Es+ciBEs+diEy+ f1E5, Y = agF1 + boEy + coFs + doEy + foFEs, Z = asky +
bsFEs + csFE3 + d3E4 + f3Es, where a;,b;,¢;,d;, f; € R, i = 1,2,3,4,5. Using the expressions of
the curvature tensors, we find values of Riemannian curvature and Ricci curvature with respect to

quarter-symmetric metric connection as;

R(X,Y)Z = [—4{a1(babs + cacs + dads) — a2(bibs + c1c3 + dids)} — 2(a1 fo — fra2) f3]Er

+  [=4{bi(azas + cacs + dads) — ba(araz + cics + dids)} — 2(b1 fo — f1b2) f3] B2

+  [~4{c1(azaz + babs + dads) — ca(araz + bibs + didz)} — 2(c1fo — fica) f3] Es

+  [~4{di(aza3 + babs + cac3) — da(aras + bibs + cic3)} — 2(d1 fa — fidz) f3]Ea

+  [2{(a1f2 = fraz)az + (b1 f2 — fib2)bs + (c1fo — fica)es + (dif2 — fid2)ds}] Es,
S(Ey,E1) = S(Ey, E) = S(Es, Es) = S(Ey, Es) = —14, 5(E5, E5) = —8. (7.6)

In view of (7.5), (7.6) and the expression of the endomorphism one can easily verify the
equation (7.4) and hence the Theorem 2 of section 4 is verified. This example also verifies the

condition (¢) of Theorem 3.1 in [1] and first Bianchi identity.

Above two examples verifies the one part of the Theorem 2, that is, if a para-Sasakian manifold
M™ admitting a quarter-symmetric metric connection is Ricci pseudosymmetric then M™ satisfies
Lg = —2 (M™ is not Einstein manifold with respect to quarter-symmetric metric connection).
Another part of the theorem is that, if a para-Sasakian manifold M "™ admitting a quarter-symmetric
metric connection is Ricci pseudosymmetric then M™ is an Einstein manifold with respect to
quarter-symmetric metric connection (Lg # —2). Now, the second part of the Theorem 2 can be

verified by using the proper example.

7.3 Example

We consider a 5-dimensional manifold M = {(z,y, z,u,v) € R}, where (z,y, 2,u,v) are standard

coordinates in R®. Let {E1, Ea, B3, E4, E5} be a linearly independent global frame field on M given
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) R R R, B
%7 E2—€ 8_(7], E3—€ 827 E4—€ ) E5—€

FE =

Let g be a Riemannian metric defined by
1, i=3j
0, i#]

for 1 <i4,5 <5, and if 7 is the 1-form defined by n(Z) = g(Z, E1) for any vector field Z € x(M).
Let the (1, 1)-tensor field ¢ be defined by

g(ElvEJ) =

o(Er) =0, ¢(Ez) =Ey, ¢(E3)=E;, ¢(Es)=FEs, ¢(E5)=Es.
With the help of linearity property of ¢ and g, we have
n(Er) =1,
$V =V —y(V)E,
9(0X, 9Y) = g(X,Y) = n(X)n(Y),
for any X,Y € x(M).
Now we have

[E1,E3) = —FEy, [Ei,Es3)=—FE3, [Ei,E)=—Es, [Ei,Es]=—Fs,
[E2, E3) = [Es, E4] = [Es, E5| = [Es3, E4| = [E3, E5| = Ey, Es] = 0.

With the help of Koszul’s formula we get the followings in matrix form

Ve, By Vg By Vg By Vg Ei Vg Es O 0 0 0 0
Ve,BEi Ve,Ey VeEs; VeEi VgFEs By -E;, 0 0 0
Ve,Bi Ve,By Ve,BEs VeE, VeBEs |=| Es 0 —-E 0 0
Ve, By Vp,Es Vg,E; VgEi VgFEs E, 0 0 —-FE 0
Ve, By Vp.Ey Vg E; Vp.Ei Vg Es Es 0 0 0 -E

In this case, (¢,&,n,g) is a para-Sasakian structure on M and hence M(¢,&,n,g) is a 5-

dimensional para-Sasakian manifold.

Using (2.10) and the above equation, one can easily obtain the following;:

Ve, Ei Vg, Ey, Vg Es Vg E, Vg Es 0 0 0 0 0
Ve,By Ve,Ey Vg,Es Vg,Ey Vg,Es 2B, —2E; 0 0 0
Ve, B1 Ve,Ey Vp,Es Vg,Ey, VeEs |=]| 285 0 2B 0 0
Ve,Ei Vg,Ey Vg,Es VgE, Vg,FE;s 2E, 0 0 —2E 0

Ve,Ei Vp,Ey Vp,Es Vg E, VgFE;s 2E5 0 0 0 —2E
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From above results it can be easily obtain the non-zero components of Riemannian curvature

and Ricci curvature tensors as

and

) ( VE, = 2Fs, R(E,,E3)Es = —2E,
) ( VE, =2Fs, R(E),Es)Es = —2F),
) Ey,E3)Es = —2F,, R(Ey, E4)Ey = 2E;, R(Es, E4)Ey = —2F»,
Ey,E5)Ey = 2Es, R(E3, Es)Es = —2F,, R(Es, E4)Es =2E,;, R(Es, E;)Eq = —2Fs,
Es3,E5)Es = 2Es, R(Fs, Es)Es = —2Es, R(Ey, Es)Ey = 2Es, R(Ey, Es)Es = —2E4, (7.7)
S(E\,Ey) = S(Ey, Ey) = S(Es3, E3) = S(Ey, E4) = S(
(X,Y) =-2(5-1)g(X,Y) = —89(X,Y),

Es,E5) = -8, (7.8)

where X = CL1E1 + blEQ + ClEg + d1E4 + f1E5 and Y = a2E1 + b2E2 + CQEg + d2E4 + f2E5.

From (7.7), (7.8) and the expression of the endomorphism one can easily substantiate, the
equation (7.4) and hence second part of the Theorem 2 (for Lg # —2).
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