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ABSTRACT

We study a nonlinear anisotropic elliptic problem with non-
local boundary conditions and measure data. We prove an

existence and uniqueness result of entropy solution.

RESUMEN

Estudiamos un problema eliptico nolineal anisotrépico con
condiciones de borde no-locales y data de medida. Probamos
un resultado de existencia y unicidad de la solucién de en-

tropia.
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1 Introduction and assumptions

Let © be a bounded domain in RY (N > 3) such that 95 is Lipschitz and 99 = I'p UT y. with
I'p NTye = 0. Our aim is to study the following problem.

—Z oz, <x au) + |uPr @2y =4 inQ

w=0 onl'p
P(p,p,d) N (L.1)

0
p(u) + / a; (m U> ni =d
Z Tne 0z; on I'ye,

i=1

u = constant

where the right-hand side p is a bounded Radon diffuse measure (that is p does not charge the
sets of zero p,,(.)-capacity), p : R — R a surjective, continuous and non-decreasing function, with
p(0)=0,d € R and n;, i € {1,..., N} are the components of the outer normal unit vector.

For any  C RV, we set

Ci(Q)={hecC(Q): ugsf2 h(z) > 1} (1.2)
and we denote
h* = sup h(z), h™ = inf h(x). (1.3)
z€Q e

For the exponents, p(.) : @ — RN, 5(.) = (p1(.), ..., pn(.)) with p; € C;(Q) for every i € {1,...,N}

and for all z € Q. We put pys(z) = max{p; (), ...,pn(7)} and p,,(z) = min{p; (x), ...,pn(2)} .
We assume that for ¢ = 1,..., N, the function a; : Q x R — R is Carathéodory and satisfies the

following conditions.

o (Hyp): a;(x,&) is the continuous derivative with respect to £ of the mapping A; = A;(z,§),

that is, a;(x, &) = = A;(z, ) such that the following equality holds.

9%
A;(z,0) =0, (1.4)
for almost every = € .

e (Hj) : There exists a positive constant Cy such that

jai(w, €)] < Ciji(x) + €771, (1.5)

for almost every x € Q) and for every £ € R, where j; is a non-negative function in Lp’lt(')(Q)7
1 1
pi(z) ~ pix)
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e (Hj3) : there exists a positive constant C such that

Colg — Pt if g —n| > 1,
(ai(z,8) — ai(x,n))( —n) = o (1.6)
Col§ =mlPe i€ —n| <1,
for almost every z € Q2 and for every &, n € R, with & # .

e (Hy) : For almost every = € Q and for every & € R,

€17 ®) < ay(,).€ < pi(w) Ai(x, &) (1.7)

e (Hj;) : The variable exponents p;(.) : Q — [2, N) are continuous functions for all i = 1,..., N
such that

(1.8)

As examples under assumptions (H;) -(Hs), we can give the following.

(1) Set Ai(x,€) = (55)[€7 @) and ay(x,€) = |7 2¢ | where 2 < pi(x) < N.

pi(x) pi(z)—2

(2) Ai(,€) = () (A + €))7 = 1) and a;(z,€) = (1 +[¢[*) "= &, where 2 < p;(2) < N.

We put for all x € 09,

if p(z) < N,
00 if p(z) > N.

We introduce the numbers
Np-1) . Ng¢g Np-1

(1.9)

N-1 4T TN—¢gT N_p
We denote by M;(€) the space of bounded Radon measure in €2, equipped with its standard norm
-l ;m, (). Note that, if u belongs to My (€2), then |u|(€2) (the total variation of u) is a bounded
positive measure on 2.

Given p € My(Q), we say that u is diffuse with respect to the capacity WOLP(')(Q) (p(.)-capacity
for short) if u(A) = 0, for every set A such that Cap,,(4,€2) = 0.

For every A C (), we denote

Spy(A) ={u € Wol’p(')(ﬂ) NCuy(Q):u=1onAu>0onN}.
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The p(.)-capacity of every subset A with respect to € is defined by

Cap,(1(4,Q) = uesi;:f)(A){ A |VulP®) dz}.

In the case Sp(,)(A) = 0, we set Cap,,(A,Q) = oo.
The set of bounded Radon diffuse measure in the variable exponent setting is denoted by M} ) (Q).
We use the following result of decomposition of bounded Radon diffuse measure proved by Nyan-

quini et al. (see [31]).

Theorem 1.1. Letp(.) : Q — (1,00) be a continuous function and p € My(Q). Then p € Mg(')(ﬂ)
if and only if p € L*(Q) + W17 0(Q).

Remark 1.2. Since p € /\/lf;’”(')(Q)7 the Theorem 1.1 implies that there exist f € L'(Q) and
F e (LP»OQ)N such that
w=f — divF, (1.10)

where =1,Vx e

pm(z) P ()
The study of nonlinear elliptic equations involving the p-Laplace operator is based on the the-
ory of standard Sobolev spaces W™P(Q) in order to find weak solutions. For the nonhomogeneous
p(.)-Laplace operators, the natural setting for this approach is the use of the variable exponent
Lebesgue and Sobolev spaces LP()(Q) and W™P()(Q).
Variable exponent Lebesgue spaces appeared in the literature for the first time in a article by Orlicz
in 1931. In the 1950’s, this study was carred on by Nakano who made the first systematic study of
spaces with variable exponent (called modular spaces). Nakano explicitly mentioned variable expo-
nent Lebesgue spaces as an example of more general spaces he considered (see [30], p. 284). Later,
the polish mathematicians investigated the modular function spaces (see [29]). Note also that H.
Hudzik [18] investigated the variable exponent Sobolev spaces. Variable exponent Lebesgue spaces
on the real line have been independently developed by Russian researchers, notably Sharapudinov
[40] and Tsenov [42]. The next major step in the investigation of variable exponent Lebesgue and
Sobolev spaces was the comprehensive paper by O. Kovacik and J. Rakosnik in the early 90’s [23].
This paper established many of basic properties of Lebesgue and Sobolev spaces with variables
exponent. Variable Sobolev spaces have been used in the last decades to model various phenomena.
In [9], Chen, Levine and Rao proposed a framework for image restoration based on a Laplacian
variable exponent. Another application which uses nonhomogeneous Laplace operators is related
to the modelling of electrorheological fluids see [38]. The first major discovery in electrorheological
fluids was due to Winslow in 1949 (cf. [43]). These fluids have the interesting property that their
viscosity depends on the electric field in the fluid. They can raise the viscosity by as much as
five orders of magnitude. This phenomenon is known as the Winslow effect. For some technical
applications, we refer the readers to the work by Pfeiffer et al [33]. Electrorheological fluids have

been used in robotics and space technology. The experimental research has been done mainly in
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the USA, for instance in NASA laboratories. For more information on properties, modelling and
the application of variable exponent spaces to these fluids, we refer to Diening [11], Rajagopal and
Ruzicka [35], and Ruzicka [36]. In this paper, the operator involved in (1.1) is more general than
the p(.)-Laplace operator. Thus, the variable exponent Sobolev space W'*()(Q) is not adequate
to study nonlinear problems of this type. This leads us to seek entropy solutions for problems
(1.1) in a more general variable exponent Sobolev space which was introduced for the first time by
Mihailescu et al. [28], see also [34, 26, 27].

The need for such theory comes naturally every time we want to consider materials with inho-
mogeneities that have different behavior on different space directions. Non-local boundary value
problems of various kinds for partial differential equations are of great interest by now in several
fields of application. In a typical non-local problem, the partial differential equation (resp. bound-
ary conditions) for an unknown function u at any point in a domain € involves not only the local
behavior of u in a neighborhood of that point but also the non-local behavior of u elsewhere in €.
For example, at any point in Q the partial differential equation and/or the boundary conditions
may contains integrals of the unknown u over parts of €2, values of u elsewhere in D or, generally
speaking, some non-local operator on u. Beside the mathematical interest of nonlocal conditions,
it seems that this type of boundary condition appears in petroleum engineering model for well
modeling in a 3D stratified petroleum reservoir with arbitrary geometry (see [12] and [15]). A lot
of papers ( see [34], [24], [25], [2], [19], [1]) on problems like (1.1) considered cases of generally

boundary value condition. In [6], Bonzi et al. studied the following problems.

N
_ Z iai (:c, 8u> + uPr @2y = f inQ
im1 8951 817,

al 9
Zai (x, u) ni = —|u|"® "2y on 0%,
8:17,;

i=1

(1.11)

which correspond to the Robin type boundary condition. The authors used minimization tech-
niques used in [8] to prove the existence and uniqueness of entropy solution. By the same tech-
niques, Koné and al. proved the existence and uniqueness of entropy solution for the following

problem.

N
- ; a%i‘“ <:c, 88302”> + |uPr @2y = f inQ

a; <x, au) i +Au=g on 012,
8:5,»

(1.12)

M=

=1

which correspond to the Fourier type boundary condition.
In a recent paper we studied a nonlinear elliptic anisotropic problem involving non- local conditions.

We also considered variable exponent and general maximal monotone graph datum at the boundary
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and proved existence and uniqueness of weak solution to the following problem.

N
- Z iai (:r, au) + uPr @2y = f inQ
im1 8$i 8a:i

u=20 onI'p

al 0
p(u) + Z/r a; (a:, (%u> 7 Dd
i=1"1Ne v

u = constant

S(p,p. d)

on FNu

where the right-hand side f € L*>°(Q2) and p a maximal monotone graph on R such that D(p) =
Im(p) =R and 0 € p(0), d € R, by using the technique of monotone operators in Banach spaces
(see [21]) and approximation methods. There are two difficulties associated with the study of
problem P(p, u,d). The first is to give a sense to the partial derivative of u which appear in the

term a; u |. As p is a measure (even if p is a integrable function), then we cannot take the

T, —
partial derivg‘fizve of u in the usual distribution sense. The idea consists in considering troncatures
of the solution u (see [5]). The second difficulty appears with the question of uniqueness of solutons.
We obtain existence and uniqueness of a special class of solutions of problem P(p, u,d) that satisfy
an extra condition that we call the entropy condition (see formula (2.9)). An alternative notion of
solution which can leads to existence and uniqueness of solution to problem P(p, i, d) is the notion

of renormalized solution. But in this work, we consider the notion of entropy solution.

The paper is organized as follows. Section 2 is devoted to mathematical preliminaries including,
among other things, a brief discussion on variable exponent Lebesgue, Sobolev, anisotropic and
Marcinkiewicz spaces. In Section 3, we study an approximated problem and in Section 4, we prove

by using the results of the Section 3, the existence and uniqueness of entropy solution of problem

P(p, p, d).

2 Preliminary

This part is related to anisotropic Lebesgue and Sobolev spaces with variable exponent and some
of their properties.
Given a measurable function p(.) : € — [1,00). We define the Lebesgue space with variable

exponent LP()(Q) as the set of all measurable functions u :  — R for which the convex modular

Pp(y(u) == /Q |u\p(:’3)d$

is finite.

If the exponent is bounded, i.e, if p4 < oo, then the expression

. u
|| p(.y := inf {)\ >0: pp(_)(X) < 1}
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defines a norm in LP()(Q), called the Luxembourg norm. The space (LP() (), |.Ip(.)) is a separable

Banach space. Then, LP() () is uniformly convex, hence reflexive and its dual space is isomorphic

/ 1 1
to LP'()(Q), where —— + —— = 1, for all € Q. We have the following properties (see [13]) on

p(z)  p'(x)

the modular pj.).
If u,u, € LP)(Q) and p, < oo, then

. _
fulty < 1= [ < ppy () < Jul, (21)
- +
|U|p(~) >1= |U|Z(.) < pp(,)(u) < |u|§(.), (2.2)
‘U|p(_) < 1(: 1; > 1) = pp()(u) < 1(: ].; > 1), (23)
and
|un|p(~) —0 (‘un|p(.) — OO) <~ pp(‘)(un) =0 (pp(.)(un) — OO) (2'4)

If in addition, (up)nen C Lp(')(Q)7 then limy, o0 [tn — ulp)y = 0 limy o0 ppy (Un —u) = 0 &
(tn)nen converges to u in measure and limy, o0 pp(.)(Un) = pp() ().

We introduce the definition of the isotropic Sobolev space with variable exponent,
Wirl)(Q) = {u e 1PO(Q) : |[Vu| € L”(‘)(Q)} ,
which is a Banach space equipped with the norm
[ullp0) = lulpey + [Vulp)-

Now, we present the anisotropic Sobolev space with variable exponent which is used for the study
of P(p,p,d).

The anisotropic variable exponent Sobolev space W17() () is defined as follow.

WP (Q) == {u e LP0)(Q) g—“ e LP(Q), for all i € {1, ...,N}} .

Lg

Endowed with the norm
ou
8562‘

b

pi(.)
the space (W70 (Q), ||.||5)) is a reflexive Banach space (see [14], Theorem 2.1 and Theorem 2.2).

N
Hu”ﬁ() = |u|PM(~) + Z
=1

As consequence, we have the following.

Theorem 2.1. (see [14]) Let @ C RN (N > 3) be a bounded open set and for alli € {1,...,N}, p; €
L>(Q), pi(x) > 1 a.e. in Q. Then, for any r € L>°(Q) with r(z) > 1 a.e. in Q such that

ess ;Ielg(pM(x) —r(x)) >0,

we have the compact embedding

WP (Q) — L' (Q).
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We also need the following trace theorem due to [7].

Theorem 2.2. Let Q C RN (N > 2) be a bounded open set with smooth boundary and let p(.) €
C(Q) satisfy the condition

1< r(z) < min {pY(2), .. P (2)}, Yo € 0. (2.5)
Then, there is a compact boundary trace embedding

WHEO(Q) — L70(09).

Let us introduce the following notation:

—

P- = (P, PN)-

We will use in this paper, the Marcinkiewicz spaces M9(§2) (1 < ¢ < 0o) with constant exponent.
Note that the Marcinkiewicz spaces Mq(')(Q) in the variable exponent setting was introduced for
the first time by Sanchon and Urbano (see [37]).

Marcinkiewicz spaces M2(Q) (1 < ¢ < o0) contain all measurable function h : @ — R for which

the distribution function

An(7) = meas({z € Q: |h(z)[ > 7}), v =0,

satisfies an estimate of the form Ap(y) < Cvy~4, for some finite constant C' > 0.

The space M?(€2) is a Banach space under the norm

* 1 (1 ‘ *
(23 va () = supt (t/ h (5)d3> ;
t>0 0

where h* denotes the nonincreasing rearrangement of h.
h*(t) :==inf {C : Ay(7) < Cy79, Vy > 0},

which is equivalent to the norm [|h||}1, ) (see [3]).

We need the following Lemma (see [4], Lemma A-2).

Lemma 2.3. Let 1 < g < p < oo. Then, for every measurable function u on €,

B oy < sup (Wmeasle € 2 ul > AL} < [l 0

M oreover,

(i1) / |u|dx < T 7)7|| ||Mp(Q (meas(K)) 7", for every measurable subset K C €.

In particular, MP(Q) C L]

L.(Q), with continuous embedding and v € MP(Q) implies |u|? €

2

M (Q).
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The following result is due to Troisi (see [39]).

Theorem 2.4. Let py,...,pn € [1,00), 5= (p1,...,on); g € WHP(Q), and let

q=p" if p*<N,
(2.6)
q€[l,00) if p*=N;
* N N 1 —x Nﬁ
wh@r@p —ﬁ, ZZ:lE>1 G/ﬂdp _Nfﬁ
=1 pi

Then, there exists a constant C > 0 depending on N, p1,...,pn if P < N and also on q and
meas(Q) if p > N such that

2~

N
99
Iolisey < < TT [l + 192 lumey] 2.1
i=1

i

where pyy = max {p1,...,pn} and % = % Zfil pi In particular, if u € Wol’ﬁ(Q), we have

N T o,
9l Lae) < CH U‘ax
i=1 ¢

In the sequel, we consider the following spaces.

1

. (2.8)
LPi ()

WpP (@) = {£e WPO(Q) : € =00nTp}
and
W}v’f(')(ﬂ) ={¢¢c W,%;’ﬁ(')(Q) : &€ = constant on I'y.}.
Té’ﬁ(')(Q) = {£ measurable on € such that Vk > 0, Ty (&) € Wll)’ﬁ(')(Q)}
and

TaP(Q) = {¢ measurable on  such that Vk > 0, Ty(&) € WaPO(Q)},

e

where T}, is a truncation function defined by
k if s >k,
Ti(s)={s if |s| <k,
-k ifs< —k.
For any v € W;,’f(')(Q), we set Uny = Une 1= Ulpy, -

Definition 2.5. A measurable function u : Q@ — R is an entropy solution of P(p,p,d) if u €
Tj\l,’f(')(Q) and for every k > 0,

al o \ o
. _ Py (w)—2 _
/Q (E a; (J;, 8xiu> axiT’“(“ E)) dx—i—/ﬂ|u\ uTp(u — &)dx < 29)

i=1

/QTk(u —&)dp+ (d — plune))Tr(une — £),

for all € € Wy (Q) N L2(Q).
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Our main result in this paper is the following theorem.

Theorem 2.6. Assume (Hy)-(Hs). Then for any (u,d) € Mg’"(')(ﬂ) x R, the problem P(p, u,d)

admits a unique entropy solution wu.

3 The approximated problem corresponding to P(p, j,d)

We define a new bounded domain Q in RY as follow.
We fix § > 0 and we set Q = QU {z € RN /dist(z,T'n.) < 6}. Then, 9Q = I'p U Ty, is Lipschitz
with I'p N fNe = 0.

Figure 1: Domains representation

Let us consider a;(x,&) (to be defined later) Carathéodory and satisfying (1.4), (1.5), (1.6)
and (1.7), for all z € Q.
We also consider a function d in L'(I'x.) such that
ddo = d. (3.1)
Tne
For any € > 0, we set p. = fo — divF, where fo = T1(f) € L>(Q2) . Note that fo — fase—0in
LHQ) and [ felly < || f]]1-

We set jie = foxa — divFxq, d. =T (d) and we consider the problem

Al 0
_ § P pum(x)—2 — inQ
2 ; (LZ(I', oz, ue) + |ue‘ ueXQ(x) He 111

— 0.
P([), fe, de) ue =0 onl'p (32)
al 0 : .
ﬁ(u€>+zdl(xa 87%“6)7]1 :de on FNe7

i=1

where the function p is defined as follow.
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1 ~ -
e p(s) = =—p(s), where |I'y.| denotes the Hausdorff measure of T'p.

|FNP‘

We obviously have Ve > 0, d. € L=(I'n.).
The following definition gives the notion of solution for the problem P.(p, fi, CZE)

Definition 3.1. A measurable function u. :  — R is a solution to problem P, (D, fes 6) if ue €
Wé’ﬁ(')(fl) and

N
/ﬂ;&i(x, %u §dx+/ |ue|Pr (@) =2y, {d;v—/fefdx—i—/FVf—}—/FNe(d — plue))édo,
(3.3)
for any € € Wlljﬁ(')(fl) NL>(Q).

Theorem 3.2. The problem P.(p, ﬁe,de) admits at least one solution in the sense of Definition
3.1.

Step 1: Approximated problem we study an existence result to the following problem. For

any k > 0 we consider

Y9 ) )
- ; 9, 840 5 t1ek) + Te(blue ) xa(a) = e in O
Pea(Pfiesde) § e =0 onTp (3.4)
N P ~ R
Ti(pluer)) + Y ailw, 5 te) i = de on Ty,
i=1 ¢

where b(u) = |u|PM(®)=2y,

We have to prove that P ;(p, fle, d~6) admits at least one solution in the following sense.
L.70) (6 F L0 ()
Uer € W ( ) and for all £ € W57 (),

/QZaz g ten) Z_édx—&— /Q T (b(ues))éde = [ G+ /F (e~ Tl ) el

(3.5)
For any k > 0, let us introduce the operator Ay : Wé’ﬁ(‘)(ﬂ) — (Wé’ﬁ(')(ﬁ))’ such that for any
(u,0) € WP (@) x W5 (@),

(A (u / (Zaz T Fan ait )dw+ /Q Te(b(u))vdz + / To(p(w)vdo.  (3.6)

I'ne

We need to prove that for any k > 0, the operator Ay is bounded, coercive, of type M and therefore,

surjective.

(i) Boundedness of Ay. Let (u,v) € F x W;,’ﬁ(‘)(ﬁ) with F' a bounded subset of Wé’ﬁ(')(fl) .
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We have
T ) )
< i (2, —u)| | — 5
ot < 3 ( f fate g o] o) + [ motnivtae + [ mGaiplas
=I5+ I+ I,

where we denote by I, I and I3 the three terms on the right hand side of the first inequality.

dx>

By (H2) and the Holder type inequality, we have

ol d
L <C / i (x "U dx—i—/
ceay ([ o] as [

pi(z)—1

0

u
8:&

0

v
858@‘

N N i (z)—1
1 1 0 1 1 a |° 0
< <+> |i] ',(.)‘U + (+> ‘ U ‘ v .
; P, P P 0w, ; PP Iz () Ozi |0

Asue F,Vie{l,.., N}, there exists a constant M > 0 such that

N i(z)—1

o p
M.

Z axiu < ;

i=1 p; ()
SO

9 pi(z)—1
8miu <M,vVie{l,..,N}
Pi()
pi(z)—1
Let Cy = i:I{lfi.?fN 8xiu
L pi(.)
As j; € LPi0)(Q), we have
N N
— = . — N
I < C5(Ch,p;, (97) vCB(]i))Z ol T Cs(Ch,p; , () 704)2 a0
i=1 pi(.) i=1 pi(.)
It is easy to see that
I, < k/ |v|da.
Q

Using Theorem 2.1, we have

[oll L1 q) < C7HU||W,§5<'>(Q)'

So,

I, < kC’?HvHW}Dﬁ(v)(Q)-

Similarly, by using Theorem 2.2, we have
I3 < kCSHUHWlljﬁ(-)(Q)D

Therefore, Ay maps bounded subsets of Wllj’ﬁ(')(fl) into bounded subsets of (Wé’ﬁ(')(()))'.
Thus, Ay is bounded on Wé,’ﬁ(')(fl).
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(ii) Coerciveness of A;. We have to show that for any k& > 0, Al w) — 00 as
lellyir0
||'LLHW;),13(.)(Q) — 00.
For any u € Wé’p(‘)(ﬁ), we have
(Ax(a)s0) = (Aw)) + [ Ti(bluyuds + [ Tiata))udo, (3.7
Q Ine
N
. 0 0
where (A(u),u) = Z </Q ai(x, a—xzu) oz, ud:z:> .

i=1
The last two terms on the right-hand side of (3.7) are non-negative by the monotonicity of

Ty, b and p. We can assert that

(A (u), u) > (A(u), u)

2 et el s gy =N

Indeed, since / |T% (b(w))||u|dx +/ |T%(p(w))||uldo > 0, for all u € Wllj’ﬁ(')(fl), we have
Q

Ine

(Ap(u),u) = (Au),u).
So,

0

u
8$i

(Ag(u),u) > ﬁ:(éai(x,;mu)

We make the following notations:

ai‘udx) > Z

=1

(/.

pi(z)
dr | .

0
7= ie{l,...,N}:’ U Sl} and]z{ie{l,...,]\f}: U >1}.
{ Ozi . 0Ti 1,
We have
a pi(z) pi(z)
Ap(u),u) > / U dz | + / u dx
= 3| Jo o 2 \Jolon
pi p;
() (e)
icT Ti Api() ieT Ti Ap,()
> U
i€ Oz; pi(.)
P
7 \197i 1)
N _ _
> Z U — U
i=1 ( 0xi () icT i |,y
N _
o[ )
> > — N.
=1 ( 6mi pi(.)
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We now use Jensen’s inequality on the convex function Z : RT — R*, Z(t) = tPm, p > 1
to get
<Ak (u)7 u> 2 <A(u)’ u>

ol

> — o —
= Nom—1TWLPO@)

Hence, Ay is coercive (as p,,, > 1).
(iii) The operator Ay is of type M.

Lemma 3.3. (¢f [41]) Let A and B be two operators. If A is of type M and B is monotone and
weakly continuous, then A+ B is of type M.
Now , we set (Au,v) := (A(u),v) and (Bru,v) := / Tk (b(w))vdx —i—[ Tr(p(u))vdo.

Q F e
Then, for every k > 0, we have Ay, = A+ Bi. We now have to sﬁow that for every k > 0,
By is monotone and weakly continuous, because it is well-known that A is of type M. For the

monotonicity of By, we have to show that
(Bru — Brv,u —v) > 0 for all (u,v) € Wll)’ﬁ(')(fl) X Wllj’ﬁ(')(fl).
We have

(Bru — Bgv,u —v) = /Q(Tk(b(u)) —T(b(0)))(u — v)dx

+ [ @) = Do) (= )
Ne
From the monotonicity of b, p and the map T}, we conclude that

(Bru — Brv,u —v) >0 (3.8)

We need now to prove that for each k > 0 the operator By is weakly continuous, that is, for all
sequences (U )neny C Wé’ﬁ(')(fl) such that u,, — v in Wé’ﬁ(')(fl), we have Byu,, — Bru as n — oo.

For all ¢ € Wé’ﬁ(')(ﬂ), we have
Bt o)1= [ Tebwn))oda + [ Tulp(un))odo. (3.9)
Q I'ne

Passing to the limit in (3.9) as n goes to oo and using the Lebesgue dominated convergence theorem,
since u, — u in W;,’ﬁ(')(fl); up to a subsequence, we have u, — u in L'(Q) and a.e. in Q. As
| T (b(un))d| < k|¢| and ¢ € Wg’ﬁ(')(f)) — L(Q), for the first term on the right-hand side of (3.9),
we obtain

lim ; Tr (b(uy,))ddx = /QTk(b(u))qﬁdz (3.10)

n—oo
Furthermore, since u,, — wu in Wll)’ﬁ(')(ﬂ); up to a subsequence, we have u, — u in L'(9Q) and
a.e. on 9Q . As |Ti(p(un))¢| < k|¢| and ¢ € Wé’ﬁ(')(fl) < L'(09), we deduce by the Lebesgue

dominated convergence theorem that

lim [ Te(p(un))édz = / Ty (3(u)) b (3.11)

n— o0 =
T'ne T'ne
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From (3.10) and (3.11) we conclude that for every k > 0, By (u,) — Bi(u) as n — oo.

The operator A is type M and as By is monotone and weakly continuous, thanks to Lemma 3.3,
we conclude that the operator Ay is of type M. Then for any L € (Wé’ﬁ(‘)(fl))’, there exists
Ue ks € Wé’ﬁ(')(fl), such that Ay (uer) = L.

We now consider L € (Wll)’ﬁ(')(f)))’ defined by L(v) = /

vdpe +/ d.vdo, for v € Wé’ﬁ(')(fl)
Q Tne

and we obtain (3.5)0]

Step 2: A priori estimates

Lemma 3.4. Let ucy, a solution of P (p, ﬂe,de). Then

1p(ue)| < ki = max{|[delloc, (7e 0 071)(lpellc)} a-e. on e,

~ _ (3.12)
[b(ue,k)| < k2 := max{|pe|[oos (b0 P(;l)(|FNe|||deHOO)} a.e.in Q.
Proof. For any 7 > 0, let us introduce the function H, : R — R by
0 ifs<0,
H,(s) = il ifo<s<m,
T
1 ifs>rT.
In (3.5) we set & = H, (uc, — M), where M > 0 is to be fixed later. We get
0
Zal ue k) 5 Hr (e — M)da + T (b(twe ) Hr (e o — M)da =
i Q (3.13)
/ H, (e — M)dpe +[ (d. — T (p(ue, k) Hy (ue — M)do.
I'nve
The first term in (3.13) is non-negative. Indeed,
N
0 1 0
/ Zaz u6 k)s—Hr(ue, — M)dex = 7/ Z a; u6 k)5 Ue kdz > 0.
Ox; {0<u. o~ M<7} = Ox;

From (3.13) we obtain

/ T (b(ue k) Hr (tey — M)dx < / H:(uer — M)dpe —i—ﬁ (cf€ — Tk (p(ue, k) Hr (e, — M)do.
Q Q

I'ne

Then, one has

/Q (Tyb(ue ) — T (b(M))) Hy (e — M) + / (T (5(11e, K)) — T (M) Hy (e — M)dar <

Ne

/Q (1t — Th(b(M)))H (ue pp — M)dx + (de — Ti(p(M)))Hy (ue iy — M)do.

1:‘Ne
Letting 7 go to 0 in the inequality above, we get

/Q (T (bt x)) — Tk (b(M))) " de: + / (Ty(p(ue ) — Te(F(M))) do <

I'ne

/Q (ke — Ty (b(M)))signg (g — M)dz + [ (de — Ti(3(M)))signg (uey, — M)do.

T'ne
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As Im(b) = Im(p) = R, we can fix M = My = max{b~'(||ic]lo0), 25 (ITnel[|dc]loo)}. From the

above inequality we obtain

/Q(T/c(b(ue,k)) —Tk(b(MO)))+d$+[ (T (p(uc,r) — Ti(p(Mo))) T do <

I'nve
[ 1 = Tilelo)sion (we = Moo+ [ (d = Tildlc))signg (e~ Mo)do:
Q I'ne
For k > ko := max{||ptc||, [|de||oc }, it follows that
[ Bbu) = Do)+ [ (Tlptues)) = T o <0, (314)

From (3.14), we deduce that

Ti(p(uer)) < Ti(p(Mp)) a.e. on T e,
Ty (b(ue k) < Ti(b(Mp)) a.e. in Q.

(3.15)

From (3.15), we deduce that for every k > ki := max{||dc oo, lfte||oo, b(Mo), p(Mo)},
ﬁ(ue,k) < ﬁ(MO) a.c. on fNe

and

b(ue,r) < b(Mp) a.e. in .
Note that with the choice of My and the fact that D(p) = D(b) = R, for every k > ki :=
max{||de]|oc, [[1ellocs b(Mo), 5(Mo)}, we have

b(uek) < max{[|pello, bo P61(|f‘N6|||J6H00) }ae. inQ,

- . (3.16)
Puer) < max{||delloc, (P 0 b_l)(HMGHOO)} a.e. on I'ye.
We need to show that for any k large enough,
b(ue ;) > — max{||tte s, bopgt Trellldelloo)} ave. in Q,
(te,k) {llpel o (ITnvellldello)} (3.17)

5(“6,/6) > — maX{HCLHOO, (po b_l)(”MeHOO)} a.c. on I~‘Ne~

It is easy to see that if (ue ) is a solution of P, (P, fie, de), then (—ue ) is a solution of

= 0 9 :
_ Zz_; aixldz(x; %Ue,k) + Tk(b(ue,k}))XQ(Jﬁ) — /le in®Q

Pe,k(ﬁaﬂmde) uek:() OHFD

\K

Tk( on fN€7

=
e
o
ol
S~—
S~—
+
Q>
=
o
=
o
B
S~—
=
Il
&a)
m

where a;(z, &) = —a;(x, =€), p(s) = —p(—s), b(s) = —b(—s), fic = —fic and d = —d..
Then for every k > ko := max{||dc||oo, ||ftellocs —b(—=Mp), —p(—My)}, we have
—b(ter) < max{|picl|oos b o py (ITwelllde]|o0)} ae. in €,

—p(uck) < max{lldenoo’ (po b_l)(||N6HOO)} a.e. on 1:‘Nea
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which implies (3.17).
From (3.16) and (3.17), we deduce (3.12). O

Step 3. Convergence Since ucy is a solution of P x(p, fi, cfe), thanks to Lemma 3.4 and the
fact that Q is bounded, we have p(uc ) € L' (Tne) and b(uc i) € L'(Q). For k = 1 + max(ky, ko)
fixed, by Lemma 3.4, one sees that problem P.(p, fic, CL) admits at least one solution u, [J

Remark 3.5. Using the relation (3.12) and the fact that the functions b and p are non-decreasing,
it follows that for k large enough, the solution of the problem P(p, fic,de) belongs to L>(2) N
L®(Tne) and |ue| < ¢(b,ky) a.e. in Q and |uc| < ¢(p, k2) a.e. on T e.

1
Now, we set a;(z,€) = a;(z,&)xa(z) + e) |€
consider the following problem. P.(p, fi., aﬂ)

pi(w)*ngﬂ\Q(m) for all (z,¢) € Q x RN and we

a 1 B pi(x)—2 D)
Ue ”M(’”)‘Quex = jic in O
| l " (3.18)
e = 0 on FD
N 9 ~ )
ﬁ(u€)+ZEL’L($a %Us)m = Ue on I'ne.
—1 i

Thanks to Theorem 3.2, P.(p, ,&E,cie) has at least one solution. So, there exists at least one

measurable function u, : { — R such that

Y o a
a; | T, =— —&da —|— / ( u [P =2y ~> dx

+ / |u€|pM<“’>* wbdz = / it / (d. — p(ue)édo,
Q Q Tne

where u, € Wé’ﬁ(')(fl) and £ € Wll-;ﬁ(')(ﬁ) N L>(Q).
Moreover u, € L=(2) N L (T ne).

Our aim is to prove that these approximated solutions u. tend, as € goes to 0, to a measurable
function u which is an entropy solution of the problem P(p, i, CZ) To start with, we establish some

a priori estimates.

Proposition 3.6. Let uc be a solution of the problem P.(p, fie, CL) Then, the following statements
hold.

(i) Yk >0,

> o

pi(x

pi(x) B
) da < k(| s .y + 1 (9));
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(ii)
/Q|ug|pM(ac)—1d:c+/f |p(ue)lde < ([dll gy + 111());
Ne
(iii) Yk > 0,
a pil2) i
1—21/9 aIiTk(Ue) dx < k([|d] 1 5. + 111(2))-

Proof. For any k > 0, we set £ = Tj(u) in (3.19), to get

Z/( ( )aaTkm)dw—kZ/ (61;11)

/|u6|pM(”’) QUETk(uG)da::/Tk(ue)d,uE—i—/ (de—p(ue))Tk(ue)dU.
Q Q I'ne

e )

(3.20)
(i) Obviously, we have

@2y g N 1|0 pile)
- eiT € dr = —— |77 € d 207
Z/Q 6”1(95 3% Oz, " 0, ) | de ;/Q\Q eri(@) | O k(1) !
plue)Ty(ue)do > 0 and / |u€|pM(x)_2ueTk(ue)da: > 0.
Tne Q
1\/I<§]1reove1r7
/Tk(ue)due+/ d. Ty, (u)do gk/ du6+k/ |d.|do
Q Tne I'ne (321)
e+ [ das).
I'nve
Using the inequalities above and (1.7), it follows that
8T pz(i) ~
Z/ il dargk(|u(9)+/ |dda>. (3.22)
Q 890@ Tne

N
As ;/ﬂ (ai (:a 889311“) aiﬂ(w)) dx > 0, /FN p(ue) Ty (ue)do > 0 and

/ [ue|PM @) =24, Ty, (ue)da > 0, therefore, we get from (3.20),
Q

Z/Q\Q (6,,1(,) |am ke (uc) Mz)) de <k <u|(Q) + /ﬁNG |J|da) (3.23)

Adding (3.22) and (3.23), we obtain (i).
(i) The first two terms in (3.20) are non-negative and using (3.21), we have from (3.20) the

following

/_ ﬁ(uE)Tk(uE)da—k/ e PM @ =20, Ty (u)da < k (,u|(Q)+/_ |J|do—).
I'ne Q I'ne

We divide the above inequality by & > 0 and let k go to zero, to get

/ ﬁ(ue)sign(ue)da—l—/ e [P @) =24 sign(ue)da / |ﬁ(u6)|da—|—/ |ue|PM @~ dg
e Q Ine Q

(e + [ dlds).

IN
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(#3) For all k > 0, we have

N pi(x) pi(x) pi()
Ty (ue d Ue dz,
;/@ ox; k(ue) ) IJFZ/\Q e@acz (ue) .
for any 0 < € < 1. According to (i), we deduce that
pi(z) B
Tk (ue) dr <k (|,u|(Q) —|—/ |d|d0> .
a |0z e
O
Lemma 3.7. There is a positive constant D such that
k
meas{|uc| > k} < DPm (1+ ), Vk > 0.
kpm—1
Proof. Let k > 0; by using Proposition 3.6-(iii), we have
N m (%) N P (2)
9T, (ue) | 0Ty (ue) [P .
;/@ oz, dr < ;/{‘8Tk Ue) 1} o dx + Nmeas(Q)
N i(z)
T (ue P ~
< Zl/ 0 gxqj dz + Nmeas(Q)
< ( )+ |d|da> + Nmeas(Q)
< C'(k+1),

with ¢’ = max (<|,u(§2) Jr/~ |J|d0> ;Nmeas(Q)) .
Ine

We can write the above inequajuvlity as

N

i=1

1

0Ty (ue) [P,
)| < )
o 'L+ k) or Tl i

By the Poincaré inequality in constant exponent, we obtain

1

HTk(Ue)||me(Q) D(1+ k)em .

The above inequality implies that
/ | Ty (ue) [P da < DPm (14 k),
Q

from which we obtain
(1+k)

— )
m

meas {|ue| >k} < DPm

since

/~ | Tk (ue) [ dav :/ | Tk (ue) [P de +/ Tk (uc)|Pm o,
Q {luc|>k} {Juc|<k}

< [C'(1 + k)]
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we get

/ | T (ue) P dze < / | T (ue) [P dac
{Juc|>k} o

and

kPmmeas {|uc| > k} < [ | T (we) [Prmda < DPm (1 + k)
Q

O
Lemma 3.8. There is a positive constant C' such that
N p;
Z/ ( Ti(ue) ) dr < C(k+1), Yk > 0. (3.24)
—~ Ja ox;

Proof. Let k > 0, we set ; = {u| < k; Ue

< 1} and Qy = {|u| < k;

Ue| > 1}; using

9 9
ox; O0x;

Proposition 3.6-(4ii), we have

ﬁ:/ﬁ ( &ciTk(ue) pi) de = Z/Q ( iTk Ue) )dx—!—Z/ <8szk ” 1’) dz
- pi(r)
< Nmeas +Z/ ( >d:r
< Nmeas(@) +k (|ul(@) + ||d||L1(fNe>) <Clk+1),
WithC:max{Nmeas( ); (\M|< )+IIJ\\L1@N€>)}~ O

Lemma 3.9. For all k > 0, there is two constants C; and Co such that

(i) ”uen/\/(q*(()) < Cy;

9.,
61‘1‘ ¢

Proof. (i) By Lemma 3.8, we have

o If k > 1, we have

(ii) < Cy.

MPi q/p(Q)

p;

8 Tk (’U,E)

de <C(1+k),Vk>0andi=1,...,N.
83:,»

p;

dx < C'k,

k()

>l

which means T (u.) € WH @1 --Px)(Q). Using relation (2.8), we deduce that

83,1

L
N

0
7Tk (ue) .
3% LPi )

N
HTk(Ue)”L(ﬁ)*(Q <C H
=1
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So,
1 1®"
N p; N -
®" 9 pi
- 1 1@
N S
< C// H(k)sz
i=1
r )~
s
S Cl/ ki:l Np;
(p)*
S C”k ]5
Thus,
/ T ()| P de < /\Tk(u6)|(ﬁ)*dx
{|“6|>k} Q
(p)*
< C'k P
and so,

(p)*
(k)P meas{z € Q:|u| >k} < C'k P ;

which means that

1
" (=-1)
A (B)<C'k P =

. C'k™9, Vk > 1.
o If 0 <k <1, we have

Au, (k) = meas

— =

xEQ:|u6|>k}

IN

meas({)
< meas(Q)k7 .
So,
A, (k) < (C" 4+ meas(Q)k™7 = C1k~7 .
Therefore,

HUEHMq*(Q) < (.



42 A. Kaboré & S. Ouaro CUBO

23, 1 (2021)

(ii) ® Let a > 1. For all k > 1, we have

> a})
> o ue| < k}) + meas ({’(’ME
6.131‘

} dz + Xy, (k)

Oue
Adu, () = meas <{‘ oz,

3:1%
= meas aue
- 8$i

e

8:1:7;
Oue

[ G
{Jucl<ky \@ | 0

a P C'k+ Ok~
B (ofpi_ k+ k*q*) ,

> i lue| > k})

IA

Sa;lue| <k

IN

Py
) dx + Ay (k)

IN

IN

with B = max(C’; C).

Let g: [1;00) = R, 2 — g(z) = f, +a79,
oL
We have ¢'(z) = 0 with x = (q*o#f) e +1,

1
We set k = (q*a”;) 7" +1 > 1 in the above inequality to get,

i ) g
Aou, (@) < B la™P x (q*a”;) 1y (q*a”;) ¢ +1
Ox; L
I 1 - (17 1 ) —q" - ¢
< BT Tl xa "\ @+ (@t xqatl

IA
=
S

IA
=
=}

—_
|
LS
*
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¢ ¢ (N —p)
T +1 Np—-1)+N—-p
_ ¢(N-p)

Np—p
_ NG-1)

(N —-1)p
- 1

=

e If 0 < a < 1, we have.

~ | Oue
Aou, (@) = meas ({m eN: ‘3%—

83%‘
_4q
R
< meas(Q)a P
Therefore,
_4q
- —p; =
Adu, () < (M + meas(Q)) a P, Vax>o.
8a:i
So,
’ Oue < Cy,
axi H
Pi 4
where H = M(Q) P O

Proposition 3.10. Let u. be a solution of the problem P(p, fi., dNE) Then,

(i) ue — u in measure, a.e. in Q and a.e. on T y;

(ii) For alli=1,...N,

8Tk (ue) N 8Tk (u)

= 04n LPi ()
oz, oz, 0dn LP: (Q\ Q).

Proof. (i) By Proposition 3.6 (i), we deduce that (Tk(uc))eso is bounded in Wé’ﬁ(')(ﬁ) —

L”m(')(fl) — LPn (Q) (with compact embedding). Therefore, up to a subsequence, we can
assume that as € — 0, (Th(uc))eso converges strongly to some function oy in LPm (), a.e. in
Q and a.e. on f‘Ne.

Let us see that the sequence (u¢)eso is Cauchy in measure.

Indeed, let s > 0 and define:

Ey = [lue,| > k]|, B2 = [Jue,| > k] and B3 = [[Tk(ue, ) — Th(ue,)| > s,

where k > 0 is fixed. We note that

[|e, — Uey| > 8] C E1 U E2 U Ej;
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hence,
3
meas([|[te, — Ue,| > s]) < Zmeas(Ei). (3.25)
i=1
Let 8 > 0, using Lemma 3.7, we choose k = k() such that
0 0
meas(Ey) < 3 and meas(Eq) < 3 (3.26)
Since (Tk(uc))eso converges strongly in LPm= (), then, it is a Cauchy sequence in LPm (Q).
Thus,
- 0
meas(Es) < / T (tter) — Ti (1) [P < 2, (3.27)
Spafn Q 3
for all €1, €3 > no(s, ). Finally, from (3.25), (3.26) and (3.27), we obtain
meas([|tue, — te,| > s]) < 0 for all €1, €3 > ng(s,); (3.28)
which means that the sequence (uc)e>o is Cauchy in measure, so u. — « in measure and up to
a subsequence, we have u, — u a.e. in Q. Hence, o, = Tj(u) a.e. in Q and so, u € ’Tl -P(- )(Q)
(ii) According to the proof of (i), we have Ty(u.) — Ti(u) in Wll)’ﬁ(')(fl) — Wll)’ﬁ‘(fl) which

aTk (ue) N 8Tk (u>

&m Xr;

T; T, -
Oi(ue) _ OTe(u) in LP/()(Q) and then for all i = 1,...N,

Lri (Q\ Q).

implies on one hand that for all ¢ = 1,...N, in Lp'i(')(fl) and on the other

hand that for all s = 1,...N,

Ty (ue) 0T (u) in
8171' 8ZEZ

1 8Tk (ue)

Let ¢ = 1,..., N, by Proposition 3.6-(i), we can assert that ( 3
€ €Z;

> is bounded in
e>0

LPe (Q\ Q). Indeed, let k > 0, we set Q' = {x € O\ Q; |u(z)] < k; ’;ue(x)
z;

< e} and

Q2:{x€(~2\9;u|§kz;

0
8—%(95) > e}; using Proposition 3.6-(7), we have
Z;

a 10T, (ue) [P
Z/Q\Q (6 Ox; e
6Tk UE N 1 8 P
- Z/Q< o )dw—kZ/m(e o Ti(ue) )dm

Tk (ue)

ox;

pi(w)
< Nmeas(2\ Q) +Z/ ( )dm

< Nmeas(@\ Q) +k (Jul(@) + [dls¢r,) ) < C(k+1),

with ¢’ = max {Nmeas(ﬁ \ Q); (|,u|(Q) + ||d||Ll(fNe)) } To end, we have

fo G258 e [ (2

0Ty (ue
ox;

0Ty (ue) |
ox;

)d;z:, for any: =1,..., N.
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Therefore, there exists O € LPi (Q\ Q) such that

%aTgi?e) — O in LPi (Q\ Q) ase— 0.
For any ¢ € L®)™ (2\ ), we have
T, 10T,
/ OTelue) g / (W - @k> (ev))dz + € (3.29)
Q\Q Ox; o\Q \€ Ox; O\Q

As (e))eso converges strongly to zero in L®) ™ (Q\ Q), we pass to the limit as e — 0 in (3.29),

to get
LT;ZG) —0in IP (O Q).
Hence, one has
0T (ue) N 0Tk (u)

=0in LP (Q\ Q),

for any i =1,...,N.

Lemma 3.11. b(u) € LY(Q) and p(u) € LY (Tne).

Proof. Having in mind that by Proposition 3.6- (i),

/Q|b(u€)dx+/fm |A(uc)ldo < (|pl(Q) + Il g1 )5

we deduce that

/Q [b(u)lde < (|pl(Q) + lldll 1 ¢y, )

and
/ 1Al < () + 1)
By Fatou’s lemma, the continuity of b, p and using Proposition 3.10, we have
“?i}(?f/ﬂ |b(ue)|dz > /Q |b(w)|dz
and

e—0

lim inf / p(ud)|do > / ()| do.
T'ne T'ne
Using (3.30)-(3.33), we deduce that
[ bwlds < (@ + dlsr,..)

and

/f p(u)ldo < (1) + [1d] 11 .-

Therefore, b(u) € L' (Q) and p(u) € L' (Tne).

(3.30)

(3.31)

(3.32)

(3.33)
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Lemma 3.12. Assume (1.4)-(1.8) hold and u. be a weak solution of the problem P(p, fic,d.).
Then,

.0 .
(i) =—u. converges in measure to u .
0

T T /
(i) a; (96, 0 giue)) — a;(z, 8(9’;(u)) strongly in L*(Q) and weakly in LPi)(Q), for all i=1,...,N.

In order to give the proof of Lemma 3.12, we need the following lemmas.

Lemma 3.13 (Cf [6]). Let u € TYPO(Q). Then, there ewists a unique measurable function
v; : 0 — R such that
0
ViX{lu|<k} = a—Tk(u) forae.xeQ, Vk>0andi=1,...,N;
T
where x o denotes the characteristic function of a measurable set A.

68 u. Moreover, if u belongs to W' PC)(Q), then v; € LPi()(Q) and
z;

coincides with the standard distributional gradient of u i.e. v; = —u.

8o:i

Lemma 3.14 (Cf [37], lemma 5.4). Let (vn)nen be a sequence of measurable functions. If vy,

The functions v; are denoted

converges in measure to v and is uniformly bounded in LP()(Q) for some 1 << p(.) € L>=(), then
vy, — v strongly in LY(Q).
The third technical lemma is a standard fact in measure theory (Cf [16]).

Lemma 3.15. Let (X, M, u) be a measurable space such that (X)) < oo.

Consider a measurable function v : X — [0;00] such that

p({z € X :y(z) =0}) = 0.
Then, for every € > 0, there exists § such that

w(A) <€, for all A € M with / ~ydx < 0.
A

Proof of Lemma 3.12. (i) We claim that (;ué> is Cauchy in measure. Indeed, let
Li eeN

s > 0, consider

0
A =< |=— — B = —
nm (’hiun >h}U{‘8xium‘ >h}7 nom 2= {|tun — uUm| >k} and
0

Cn,m = aixz’un < h, 87%’&7” < h, |’an - Uml < k}, 673%“” - aixlum > S }, where h and
k will be chosen later. One has

iu —iu >s5p CApmUBymUC (3.34)

(9!.171‘ n axi m n,m n,m n,m:- .

Let ¥ > 0. By Lemma 3.9, we can choose h = h(9)) large enough such that meas(Ay m) <

for all n,m > 0. On the other hand, by Proposition 3.10, we have that meas(B,, m)

IN
Wl w|
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for all n,m > ng(k, ). Moreover, by assumption (Hj), there exists a real valued function

v : Q — [0,00] such that meas{z € Q: vy(z) =0} =0 and
(ai(ﬂﬁ,f) - az‘(l‘,f/))-(f - €l) > ’Y(SL‘), (335)

forall e =1,...,N, |£,|€| < h, | =& > s, for a.e. z € Q. Indeed, let’s set K = {({,n) €
RxR: [ <h,|n <h,|§—n|>s}. Wehave K C B(0,h) x B(0,h) and so K is a compact
set because it is closed in a compact set.

For all z € Q and for all i = 1,..., N, let us define ¢ : K — [0; oc] such that

(& n) = (ai@,§) — ai(z,n))-(§ = n).

As for a.e. x € Q, a;(x,.) is continuous on R, v is continuous on the compact K, by Weier-

strass theorem, there exists (£,10) € K such that
V(fﬂ) € K7 1/1(5777) 2 1/}(507770)-

Now let us define v on  as follows.

v(x) = ¥i(o,m0) = (ai(w, &) — ai(z,1))-(€ — 10)-

Since s > 0, the function v is such that meas ({x € Q:y(x) =0}) = 0. Let § = d(¢) be
given by Lemma 3.15, replacing ¢ and A by % and Cy, ., respectively. Taking respectively
5: Ti(tp — Uy,) and éz Tk (um — uy,) for the weak solutions u,, and u,, in (3.19) and after

adding the two relations, we have

N d d o

o 0 () = (2 0m)) (=)

+/ << 1| Qu, [ 8un> B ( 1 P2 8um>> (8(un —Um)> da
0 epi(T) Ox; epi(x) o0x; ox;

8xi
- / ([t [P @) =200, — 20 |[PM @ =200, ) (T (g — ) da + / (p(un) — () T (i, — Uy )do
Q

Ine
=92 (/ Th(Up — U )dpe +/ czeTk(un — um)dcr) ,
Q T'ne

where Q@ = {Q\ QN {|un — um| < k}}. As the three last terms on the left hand side are

8um

8.’E1‘

non-negative and

/Q Th(ttm — um)dpte + / 0Tt — ) < B[l (2) + [ 1 7o)
Ne

we deduce that

N

o) o (= 52)) () !
a; |z, — | —a; | x, dr < 2k D)+||d]| ;1,7 .
> /{ wM}( (1 5 s » (@4l )
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Therefore, using (Hs) we have

0 0 o
< . - o _
~/Cn,m /ydx - /Cn,m (al (277 (9.17; un) @i <{L‘7 axz um)) o, (un um) dx
N
0 o o
< . = . _
< ;/Cnm (az <x7 oz, Un> a; (137 pr um>> Er (tn — Uy )dx
< 2k(ldl g gy, + () <6,

by choosing k = §/4 (||JHL1(1:N€) + |,u|(Q)) From Lemma 3.15 again, it follows that

9
meas(Ch,,m) < —. Thus, using (3.35) and the estimates obtained for A,, .., By.m and Cy .,

3
0 0
-2 < .
meas ({’axlun 8xium’ > s}) <49, (3.36)

for all n,m > ny(s, ), and then the claim is proved.

it follows that

As consequence, <8u6> converges in measure to some measurable function v;.
i eeN

In order to end the proof of Lemma 3.12, we need the following lemma.

0
Lemma 3.16. (a) For a.e. k € R, ——T(uc) converges in measure to VX {ju|<k}-

8£EZ'
9]
(b) For a.e. k € R, ?Tk(u) = ViX{|u|<k}-

3

(c) 8ZT}C(U) = ViX{|u|<k} holds for all k € R.

0 0

Proof. (a) We know that D e — v; in measure. Thus D, X dlul<k) = ViX{|u|<k} D

i Lq
measure.

0
Now, let us show that (x{|u‘|<k} — X{|u\<k}) a—u6 — 0 in measure.
: s
For that, it is sufficient to show that (X{|u€\<k} - X{\u|<k}) — 0 in measure. Now, for
0
all 6 > 0, {|X{|u€|<k} = X{Jul<k}| ‘%ue’ > 5} C {IX{uc 1<k = XgJul<k}] # 0} C {Ju| =

)

E}U{ue <k <u}U{u<k<wu}U{u <—-k<u}U{u<—k <uc}. Thus,

7))

meas ({|u| = k}) + meas ({ue < k < u})

0
meas <{|X{u€|<k} - X{|u\<k:}‘ ‘81}“6

IN

+meas ({u < k < ue}) (3.37)

+meas ({ue < —k < u})

+meas ({u < —k < u.}).

Note that
meas ({|u] = k}) <meas({k—h<u<k+h})+meas({-k—h<u<-—-k+h})—0
as h — 0 for a.e. k> 0, since u is fixed function.

Next, meas ({ue < k < u}) < meas ({k <u < k+ h}) + meas ({|ue —u| > h}), for all
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h > 0.

Due to Proposition 3.10, we have for all fixed h > 0, meas ({Juc —u| > h}) — 0 as
e — 0. Since meas ({k <u < k+h}) = 0as h — 0, for all § > 0, one can find N such
9 0
that for all n > N, meas ({|u] = k}) < = + = = 9 by choosing h and then N. Each

2 2
of the other terms on the right-hand side of (3.37) can be treated in the same way as

>6}}> — 0 as

for meas ({ue < k < u}). Thus, meas < IX{lue) <k} = X{ul<k}]

oz;
€ — 0. Finally, since T%Tk(ue) = BTUZ-USX{‘“EKH’ the claim (a) follows.
. L . 0 0 :
(b) Using the Proof of Proposition 3.10-(ii) we have ax_Tk(ue) — x_Tk(u) weakly in

0
T (u.) converges to Tk (u)

LPi (Q). The previous convergence also ensures that
T L

weakly in L'(Q). On the other hand, by (a), ng(ue) converges t0 ViX{|u|<k} iD
z;

Ty (u¢) is uniformly bounded in LPi () (see Lemma

measure. By Lemma 3.14, since

Zi
3.8) hence in LP: (), the convergence is actually strong in L(£); thus it is also weak
in L*(€2). By the uniqueness of the weak L'-limit, ;X {juj<k} coincides with o Ty (u).
o . 0
(c) Let 0 < k < s, and s be such that v;x{ju<s} coincides with a—Ts(u). Then,
L4
0 0
T, - T (T,
Ti(w) = Te(Tu(u)
= g, s WX{ITs ()l <k}
= ViX{|u|<s} X{|u|<k}
= ViX{ju|<k}-
O
O

Now, we can end the proof of Lemma 3.12. Indeed, combining lemmas 3.16 (c) and 3.13; (3)
follows.

0
Next, by lemmas 3.14 and 3.16, we have for all £k > 0,i=1,.... N, a; (m, 8Tk(ue)) con-
&L

0
verges to a; | ©, =— Tk (u) | in L}(Q) strongly. Indeed, let s,k > 0, consider

al’i
ou, 0 0
B, = Un _ Tm >S,|un|§k,|um|§/€ , Bs = o >3a|un|>ka|um|gk , Be =
Ox; Oz, Ox;
{ ZZ‘ZL > s, |un| < k; |um| > k}
We have

{‘8Tk(un)  OT(um)

o, oz, ‘ > S} C E4UFE5 U Eg. (338)
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V9 > 0, by Lemma 3.7, there exists k(+J) such that

0 U
meas(Es) < 3 and meas(Eg) < 3 (3.39)
Using (3.36)-(3.39), we get
meas iT (un) — iT (um)| >sp | <9 (3.40)
axi k\Un 6IZ k\Um = U, .
0Ty (u oT,
for all n,m > nqy(s,¥). Therefore, ak(u ) converges in measure to ak(u) Using lem-
€T; L
0Ty (u 0T,
mas 3.8 and 3.14, we deduce that —r e converges to 6k(u) in L'(Q). So, after pass-
0Ty (. 0Ty (u
ing to a suitable subsequence of ( k(ue) ) , we can assume that k(ue) converges to
8331‘ >0 Ti
T T (ue
aak(u) a.e. in ). By the continuity of a;(z,.), we deduce that a; (a:, O} (u )) converges
x; Z;

Tk (u
to a; (:13, 8k< )) a.e. in . As Q is bounded, this convergence is in measure. Using lem-
Ly

0
mas 3.14 and 3.16, we deduce that for all k > 0,7 =1,...,N, a; (m, aTk(u6)> converges
T

to a; <:c, ;Tk(u)) in LY(Q) strongly and a; (1:, ;Tk(ue)> converges to yr € LPi()(Q)
T; L
weakly in LPQ(')(Q). Since each of the convergences implies the weak L'-convergence, yj can

0 ,
be identified with a; (m, aTk(u)); thus, a; (:Jc7 Tk(u)) e LPi)(Q)
Z;

afﬂi

By using Lebesgue generalized convergence theorem and above results, we deduce the following

result.

Proposition 3.17. For any k >0 and anyt=1,...,N , as € tends to 0, we have
oT,
W) | OTi(w)

(“) i (1’, 8% ) 83@1- AN 8.1%' 6%
o 0T (ue) 0T (u)
(iii) o, — oz,

()

n €,

a.e. in Q2 and strongly in L*(Q),

strongly in LPi(®) ().

4 Existence and uniqueness of solution to P(p, u,d)

We are now able to prove Theorem 2.6.

Proof of Theorem 2.6

O (u)
&ri .
VEk > 0, Ti(u) = constant a.e. on Q2 \ Q. Hence, we conclude that u € T]\l,f(‘)(Q).

Thanks to the Proposition 3.10 and as Yk > 0, Vi = 1,..., N, = 0in LP7 (Q\ Q), then,
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We already state that b(u) € L*().
To show that u is an entropy solution of P(p, i, d), we only have to prove the inequality in (2.9).
Let ¢ € W;,‘ﬁ(‘)(Q) N L>(£2). We consider the function ¢; € I/V1 Pl )(Q) N L () such that

p1 = Pxa + PNXa\-

We set € = Tj(ue — 1) in (3.19) to get

3 [ (o () it )

pi(z)—2 9 P
+Z/ <6P1(I) > T (ue — QDN)> dx (4.1)

dx; < Oz
/ b(ue) Ty (ue — p)da = /QTk(uE — )dp. +/f (d~E — p(ue))Tk(ue — on)do.

Q

Ue.

The following convergence result hold true.

Lemma 4.1. For any k>0, foralli=1,....N, as € — 0,

O (e = o) =

ox; (u — ) strongly in Lpi(')(Q).

0
a.’L'Z'

Proof. Let k>0,:=1,..., N. We have

0 pi(x)
T (te — ) — _
pi(x)
= / 0 Ue — 0 U dx
Qnllu.—pl<k,ju—p|<k] | OTi O
duc  Ou |
< / Yo _ S0V g, with =k + o]l
onflu. <tful<t) | 0Ti O
9 ) pile)
= Ti(u) — —T, d
/Q ox; () = ox; () *

— 0 ase— 0 by Proposition 3.17 — (44).

We need to pass to the limit in (4.1) as € — 0. We have

S o) ) ] o (o 250) - )

with [ = k 4 ||¢]|co, then, by Lemma 3.12- (ii) and Lemma 4.1, we have

S o (- 82) o o (209 )

that is

i e e )= 5 ) )
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For the second term in the left hand side of (4.1), we have

1 0 0 0
] — . pi(z)—2_~ . T (ue — dz > 0. 4.3
H?—f(l)lpiz/ﬁ\ﬁ (epi(z) |3l’¢u | 3%‘” Ox; blue = o) v = (43)
Indeed N =)
1 o [P™2 a9 9
— | —=u. —Ue——T} (U — d
Z/Q\Q (Epi(z) axiu 8Iiu ox; k(u SDN)) v

2 .

= b (@) —2 - ]
Z/Q\Qﬂ[uE | <K] <6P7(r)|ax el”" 8 8:@( QDN)) x

B Z/ < 1 |8
NON[ue—pl<k] \€P1@) Dz,

Hence, we get (4.3).

2

pi(z)) dx > 0.

Let us examine the last term in the left hand side of (4.1).

we have

[ BB = o = [ (b = b)) Tilue — o) + [ ) Tulue ~ o).
Q Q Q
As b is non-decreasing,

(b(ue) — b()) T (ue — @) > 0 a.e. inQ

and we get by Fatou’s lemma that

timinf | (b(u0) = M Tile = 9o > [ () = M) T = )i

e—0

As ¢ € L>™(Q), we obtain b(p) € L>(Q) and so b(¢) € L1 (Q2) (as Q is bounded) and by Lebesgue

dominated convergence theorem, we deduce that

tim [ W) Tuw = oo = [ BITiu = o).

Consequently,

e—0

lim Sup/ﬂb(ue)Tk(uE —p)dz > /Qb(u)Tk(u —p)dz. (4.4)

As f. — f strongly in L' (Q) and T (uc —v) —* Tp(u—v) in L>=(Q), using the Lebesgue generalized

convergence theorem we have

hm/ feTk(ue — p)dx = / Ty (u — p)dz,
e—0 Q Q

R ~ (4.5)
lim/ deTy(ue — pn)do = / dTy(u — ¢N)do.
e—0 f‘Ne Q
Since VT (ue — @) — VTi(u — @) in (LP»O(Q))N and F € (LPn()(Q))N
lim [ F.VT(u. — )de = / ENVTi(u— p)dx. (4.6)
e—0 Jo Q

We know that Vk > 0, Ty (u) = constant on Q \ , then, it yields that u = constant on Q \ Q. So,
one has
lim d: Ty (ue — @)dz = dT)(un — @N). (4.7)

e—0 TNe
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At last, we have
| dudTitu— s = [ (3~ pomDTiu — on)do + [ plowTilu — )i
I'nve I'nve Ine
As p is non-decreasing,

(p(ue) — plon))Ti(ue — pn) > 0 ace. in T

and we get by Fatou’s lemma that

e—0
Ne

liminf/f (p(ue) — plon))Tk(ue — on)do > /f (pun) — plon))Tk(uny — pn)do
‘ (p

(un) — plen))Tr(un — ¢nN).

As oy € LOO(fNe), we obtain p(¢n) € L°°(I~‘Ne) and so p(en) € Ll(f’Ne) (as Ty is bounded)

and by the Lebesgue dominated convergence theorem, we deduce that

lim p(on)Th(ue — on)do = / pen)Ti(un — on)do = p(on)Ti(un — @n).

=0 1:‘Ne I'ne

Hence,

lim sup / P T (e — o) > plpn) Tr(uy — o). (4.8)

e—0

Passing to the limit as ¢ — 0 in (4.1) and using (4.2)-(4.8), we see that u is an entropy solution of
P(p, p,d).

‘We now prove the uniqueness part of Theorem 2.6.
Let u and v be two entropy solutions of P(p, i, d).
Let h > 0. For u, we take £ = T}, (v) as test function and for v, we take & = T (u) as test function

in (2.9), to get for any k > 0 with k < h,

/Q (f: a; (x, (iu) aii T (u — Th(v))> da +/Qb(U)Tk(u ~ T (0))da <

i=1 (4.9)
/ FTo(u — Th(v))dz + / FVTh(u — Ty (0))de + (d — p(une))Te(une — Th(0))
Q Q
and
al o\ 9
/Q (; a; (95, MU) oz, Ti(v— Th(u))> dz + /Q b(v)T (v — Th(u))dx < (4.10)

/ fT(v — Ty (u))dx + / FNT(v —Ty(u))dx 4+ (d — p(vne)) Tk (vne — Th(uw)).
Q Q
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By adding (4.9) and (4.10), we obtain

LS o) st
(i ai (33 31”) %Tk(v - Th(“))) da = A(h, k)

—|—/ b(u)Te(u — Tp(v))dx + [ b(v)Tk(v — Ty(uw))dx := B(h,k)
Q Q

(4.11)
+p(une)Tr(une — Th(v)) + plvve) Te(vne — Th(u) = C(h, k)
< / FTo(u — Th(v))dz + / FTe(0 — T(u))da — D(h, k)
Q Q
+ /Q FNT(u— Tjy(v))da + /Q FNTi(v— Tp(w))de :=T(h,k)
+di(uNe — Th(v)) + di(UNe — Th(u)) = E(h, k)

Let us introduce the following subsets of 2.

Ay = [lu—v| <k |ul <hlv| <h
A = [u=Th() <k, o] = B]

A = (o= Th(w)| <k, u] > B]

Ay = [u—Th)| <k Jul = b, o] < h]
Ay = (o= Tu(w)| <k, Jo| = b, |u] < h].

We have the following assertion (see [22] for the proof).

Assertion 4.2. If u is an entropy solution of P(p, i, d), then Ay C Fy, j, and Ay C Fj,_ 2k, where
Fh,k = {h < |u| <h+kh>0k >0}

Assertion 4.3. Let u be an entropy solution of P(p, u,d). On As (and on Ay) we have according
to Holder inequality.

1

7o\ — W - P;l,
F.Nudz < (/ | F|(P) dx) (/ |Vu|pm> dr, (4.12)
Ao Aoz Az

1

1
with lim (/ |F|(plm)dx> ) (/ |Vu|pmdx> = 0.
h—o0 Ao Ao
1 1
7o\ — (Pén)f — m
F.Vudzx < (/ | F|(P) dx) (/ |Vu|pmdx) e (4.13)
Ay Ay Ay

1

1
h—o00 A, A,
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1
Proof. (1) han;o (/A F(p:n)_dac) T 0 (see [22]).
2

|Vu|Pm d:c) " is bounded with respect to h.

b1l

Now, it remains to prove that ( /
Az
We make the following notations:

- {ic .y {|of <1

‘We have

and J = {1'6 {1,..,N}: {‘gjju

Pi (m

o pi(x) b pi(z)
dr = / u dr | + / U dz
Z/F 83’31 et Fok ox; ;7 Frx ox;
pi(x)
> / g u dx
i \Jru. 10z
p;b
> / 0 uw| dx
ieJ Fn Ox;
N - _
a | / 9 |Pm
> u| dr | — u| dx
N a o
> n — Nmeas(2
; L o @
N 9 P
> _
> Z 8% . N Nmeas(Q)
i=1 (LPm (Fp,x))
> C|Vu ||pm — Nmeas(Q).
(LPm (Fp, )N
‘We deduce that
pl(az N
Z/ u dzx > C/ |Vu|Pmdr — Nmeas(€2). (4.14)
Fy, 81’1 Fi 1

Choosing Ty, (u) as test function in (2.9), we get

N

/Q (Z . (I (f%u))ailT (u—Th(u ) dx +/ Jul[P @) =2 Ty (u — Ty (u))de <

i=1
/ fTe(u — Tp(u))dx + / FNTi(u—Th(u))dz + (d — p(une))Te(une — Th(une)).

. : (4.15)

According to the fact that VI (u — Tj,(u)) = Vu on {h < |u] < h + k} and zero elsewhere,

/ [P () =2y Ty (u—Ty, (u))dz > 0 and p(une)Tr(une—Th(une)) > 0, we deduce from (4.15)

that
N
0 0
AN - <
L}L,k (Z i (:L.7 (9177 u) ax7Tk(u Th(”))) dx <

=1
1 (4.16)

2 e — e
k | f|dz +/ () pm p (Cpm) Pm gy da 4 k|d|.
u>h Fux [\CPm 2
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Using (1.7) (in the left hand side of (4.16)), Young inequality (in the right hand side of (4.16))

and setting
(Phn)

0(2_) p;l pT:lev
Opm Pm

pi(T)

we obtain

dz <

>,

k/ |f\dx+c/ |F|(p/)v_ndx+g |VulPmdx + k|d).
|u|>h Frk 2 Fn

o, (4.17)

From (4.14) and (4.17), we deduce

C/ |Vu
Fy

1, ke

- C _
k/ \f|da:+c/ |F|P)m da + 7/ |Vu|Pmde + k|d| + Nmeas(S).
[u|>h .,k 2 Fpk

Pmdy <

Therefore,
C

—/ |VulPmde <
2 Fp

N (4.18)
k |f|dac—|—c/ ||V dz + k|d| + Nmeas(Q).
{lu|>h} Fi x

Since Ay C F}, 1, , we deduce from (4.18) that / |Vu|Pmdz is bounded.
As

(2) lim (/ |F|(Pin>dx) "0 (see [22)).
h—o0 Al

1

Now, it remains to prove that (/ |Vu|p71dx) "™ is bounded with respect to h.
A

1

Pmdz is bounded.

Since Ay C Fp_g 2k , we deduce from (4.18) that / |[Vu
As

Remark 4.4. Similarly, we prove that if v is an entropy solution of P(p, f,d), then

and

lim F.Vvdx <0

h—
3 o0 A/2

lim F.Yvdx <0.

h—o00 All

Now, we have

A= [ (z (o (2 ) = o (s ) ) ) = 1ob

N

/ (Z;a< 0, )aiﬂ)d“/, (

1 S (v 20) agiv) " .
/ (i L< " Oy )aii(“”)> dzx ;1,2 (iai x,(,iv) ai(vu)) dr = Iy(h,k).

8
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The term I3 (h, k) is non-negative since each term in I (h, k) is non-negative.

For the term I»(h, k), as

al 0 0 al o\ o
Iy(h, k) + /A2 (Z a; <x7 ﬁfmu) 8@0) dr + // (Z a; (:I:, &Civ> 81“1”) dz = I (h, k),

i=1

S0,
N N
0 0 0
>
Iy(h, k) > (/A (Zaz (:c,a 7u) aﬁv) d:c—l-/; (;az (33,8 ) o, )dx)
0 0
Let us show that — T, —u | —v | dr | goes to 0 as h — oo.
We have
N
0
<
<Z_: 8:132 ) o0x; (v)) de| <
N p7(1)_ av
Z |l a : . :
i—1 TilLpiO ({h<|ul<h+k}) ) 1 OFi 1 LriO ({h—k<|v|<h})

pi(xz)—1
For all i = 1,...N, the quantity <j1-|pfb_(,) +

0 . .
—_— is finite since
6l‘i

u="Thix(u) € TN’p( (Q) and j; € LPi()(Q); then by Lemma 3.8, the last expression converges to

L7 O ({h<|u|<h+k})

zero as h tends to infinity.
N

Similarly we can show that — (/Az (Z a; (:v, aiv) 8(; (u)) dx) goes to 0 as h — oo, hence,

i=1

we obtain

al 9 ) ]
= [ [ () (e ) e
1}?Lsolip (h, k) S L_l a; |z aIiu a; |z axiv axi(u v) | dx (4.19)

By using the Lebesgue dominated convergence theorem, it yields that

lim B(h, k) = /Q (b(u) — b(v)) Ti(u — v)dz and hli_}n;o D(h,k) = 0. (4.20)

h—o0

For h large enough, we get

lim C(h,k) = (p(un) — p(vn)) Ti(un — vy) and hli_}n;@ E(h,k) =0. (4.21)

h—o0

T(h,k) = FNudx + [ F.Vuvdz
Ay A}

+/ FV(u—v)dz+ / FN(v—u)dx.
As l2

T(h,k‘):/ F.Vuder/ F.Vvdz
Aq 4

+ FNudx — F.Vudr + F.Vudr — F.Vudx.
As Ag Af Aj
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Using Assertion 4.3 and Remark 4.4, it is easy to see that hlim |T(h, k)| = 0.
— 00
Letting h go to oo in (4.11) and combining (4.20)-(4.21), we obtain

/[lu—v|<k] [ﬁ: (ai (x 383%”) o (x 383%”)) 31‘ (- 0)1 o (4.22)

+ / (b(u) — b(0)) Th(u — v}z + (p(un) — plo)) Tr(un — vx) < 0.

All the terms in the left hand side of (4.22) are non-negative so that we get Vk > 0,

[ [ (o) (s ) oo im0 ez

/Q (b(w) — b(v)) Te(u — v)da = 0

(p(un) = pon)) Ti(uny — vn) = 0.

and

(4.24)

0
Relation (4.23) gives 8—(u —wv) =0 a.e. in §; we deduce that there exists a constant ¢ such that
i
u—v=cae. in Q. According to (4.24), b(u) = b(v). Since b is invertible, we deduce that u = v
in Q and so

u=wva.e. in

plun) = p(vn);

which prove the uniqueness part.
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