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ABSTRACT

In this paper, the existence of solutions for a second-order

impulsive differential equation with a parameter on the half-

line is investigated. Applying Lax-Milgram Theorem, we

deal with a linear Dirichlet impulsive problem, while the non-

linear case is established by using standard results of critical

point theory.

RESUMEN

En este art́ıculo, se investiga la existencia de soluciones de

una ecuación diferencial de segundo orden impulsiva con un

parámetro en la semi-recta. Aplicando el Teorema de Lax-

Milgram, tratamos un problema lineal impulsivo de Dirich-

let, mientras que el caso no lineal es establecido usando re-

sultados estándar de teoŕıa de punto cŕıtico.
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1 Introduction

In recent years, many researchers have extensively applied variational methods to study boundary

value problems (BVPs) for impulsive differential equations on the finite intervals. More precisely,

employing critical point theory, Nieto and O’Regan [8] studied a linear Dirichlet boundary value

problem with impulses














−u′′(t) + λu(t) = σ(t), a.e. t ∈ [0, T ],

△u′(tj) = dj , j ∈ {1, 2, . . . , l},

u(0) = u(T ) = 0,

(1.1)

and a nonlinear impulsive problem














−u′′(t) + λu(t) = f(t, u(t)), a.e. t ∈ [0, T ],

△u′(tj) = Ij(u(t
−
j )), j ∈ {1, 2, . . . , l},

u(0) = u(T ) = 0,

(1.2)

where λ is a positive parameter.

Moreover, the study of solutions for impulsive BVPs on the infinite intervals by using variational

methods has received considerably more attention, see for example [1, 2, 3, 9, 10], and the references

therein.

In the present paper, our aim is to improve some assumptions made in [8] in order to extend

problems (1.1) and (1.2) on the half-line via variational approach.

This paper is organized as follows. In Section 2 we state some preliminaries. In Section 3 we

consider the linear Dirichlet problem with impulses in the derivative. Due to the Lax-Milgram

Theorem, we show the existence of weak solutions that are precisely the critical points of some

functionals. The last section is to deal with the nonlinear Dirichlet problem. To investigate the

existence of solutions, we use standard results of critical point theory. Also, some examples are

given to illustrate our main results.

2 Preliminaries

We cite some basic and celebrated theorems from critical point theory which are crucial tools in

the proof of our main results.

Let H be a Hilbert space.

Theorem 2.1 (Lax-Milgram [4, 5]). Let a : H × H → R be a bounded bilinear form. If a is

coercive, i.e., there exists α > 0 such that a(u, u) ≥ α‖u‖2 for every u ∈ H, then for any σ ∈ H ′

(the conjugate space of H) there exists a unique u ∈ H such that

a(u, v) = (σ, v), for every v ∈ H.



CUBO
24, 2 (2022)

Variational methods to second-order Dirichlet boundary value... 229

Moreover, if a is also symmetric, then the functional ϕ : H → R defined by

ϕ(v) =
1

2
a(v, v)− (σ, v)

attains its minimum at u.

Theorem 2.2 ([7]). If ϕ is weakly lower semi-continuous (w.l.s.c.) on a reflexive Banach space

X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Now, let us recall some necessary concepts that will be needed in our argument. Let us define the

following reflexive Banach space

H1
0 (0,∞) =

{

u : [0,∞) → R is absolutely continuous, u, u′ ∈ L2(0,∞), u(0) = u(∞) = 0
}

,

equipped with the norm

‖u‖ =





+∞
∫

0

|u(t)|2dt+

+∞
∫

0

|u′(t)|2dt





1
2

.

Set the space

Cl,p[0,+∞) = {u ∈ C([0,+∞),R) : lim
t→∞

p(t)u(t) exists}

with the norm

‖u‖∞,p = sup
t∈[0,+∞)

p(t)|u(t)|,

where the function p : [0; +∞) → (0,+∞) is continuously differentiable and bounded, satisfying

C = 2max(‖p‖L2, ‖p′‖L2) < +∞.

Concerning the above spaces, we get the following vital embeddings.

Lemma 2.3 ([6]). The space H1
0 (0,∞) embeds continuously in Cl,p[0,∞), more precisely ‖u‖∞,p ≤

C‖u‖ for every u ∈ H1
0 (0,∞).

Lemma 2.4 ([6]). The embedding H1
0 (0,∞) →֒ Cl,p[0,∞) is compact.

3 Impulsive linear problem

We consider the following linear Dirichlet boundary value problem with impulses in the derivative

at the prescribed instants tj , j ∈ N
∗ = {1, 2, 3, . . .}















−u′′(t) + λu(t) = σ(t), a.e. t ∈ [0,∞), t 6= tj ,

△u′(tj) = d(tj), j ∈ N
∗,

u(0) = u(+∞) = 0,

(3.1)
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where λ ∈ R, σ ∈ L2(0,∞), 0 = t0 < t1 < t2 < · · · < tj < · · · < tm → ∞, as m → ∞, are

the impulse points, d : [0,∞) → R satisfies

∞
∑

j=1

d(tj)

p(tj)
< ∞ and △u′(tj) = u′(t+j ) − u′(t−j ) for

u′(t±j ) = limt→t
±

j
u′(t).

Now, multiply the equation in problem (3.1) by v ∈ H1
0 (0,∞), and then integrate over (0,+∞),

we obtain

−

+∞
∫

0

u′′v + λ

+∞
∫

0

uv =

+∞
∫

0

σv.

We have

−

+∞
∫

0

u′′v = −
∞
∑

j=0

tj+1
∫

tj

u′′v,

and
tj+1
∫

tj

u′′v = u′(t−j+1)v(t
−
j+1)− u′(t+j )v(t

+
j )−

tj+1
∫

tj

u′v′.

Consequently,

−

+∞
∫

0

u′′v =

∞
∑

j=1

△u′(tj)v(tj) + u′(0)v(0)− u′(∞)v(∞) +

+∞
∫

0

u′v′

=

∞
∑

j=1

d(tj)v(tj) +

+∞
∫

0

u′v′.

This leads to define the bilinear form a : H1
0 (0,∞)×H1

0 (0,∞) → R, by

a(u, v) =

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv, (3.2)

and the linear operator l : H1
0 (0,∞) → R by

l(v) =

+∞
∫

0

σv −

∞
∑

j=1

d(tj)v(tj). (3.3)

Definition 3.1. We say that a function u is a weak solution of the impulsive problem (3.1) if

u ∈ H1
0 (0,∞) such that a(u, v) = l(v) is valid for any v ∈ H1

0 (0,∞).

In what follows we refer to problem (3.1) as (LP ).

It is easily verified that a and l defined by (3.2), (3.3) respectively are continuous, and a is coercive

if λ > 0.

Consider the functional ϕ : H1
0 (0,∞) → R, defined by

ϕ(u) =
1

2

+∞
∫

0

u′2 +
λ

2

+∞
∫

0

u2 −

+∞
∫

0

σu+

∞
∑

j=1

d(tj)u(tj). (3.4)
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It is clear that ϕ is differentiable at any u ∈ H1
0 (0,∞) and

ϕ′(u)v =

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv −

+∞
∫

0

σv +

∞
∑

j=1

d(tj)v(tj) = a(u, v)− l(v).

Thus, a critical point of (3.4) gives us a weak solution of the problem (LP ).

Definition 3.2. We mean by a classical solution of the problem (LP ) a function u ∈ H2(tj , tj+1)

for all j ∈ N
∗, where

H2(tj , tj+1) =
{

u : [0,∞) → R is absolutely continuous, u′, u′′ ∈ L2(tj , tj+1)
}

,

and u satisfies the first equation of (3.1) a.e. on [0,∞) with u(0) = u(∞) = 0, the limits u′(t+j ),

u′(t−j ), j ∈ N
∗ exist and the impulse conditions hold.

Lemma 3.3. If u ∈ H1
0 (0,∞) is a weak solution of (LP ), then u is a classical solution of (LP ).

Proof. Since u ∈ H1
0 (0,∞), it is evident that u(0) = u(∞) = 0.

For j ∈ {1, 2, . . .}, choose any v ∈ H1
0 (0,∞) such that v(t) = 0 for t ∈ [0, tj] ∪ [tj+1,+∞). Then

tj+1
∫

tj

u′v′ + λ

tj+1
∫

tj

uv =

tj+1
∫

tj

σv.

Hence, −u′′ + λu = σ a.e. on (tj , tj+1). So, u ∈ H2(tj , tj+1) and satisfies the previous equation

a.e. on [0,∞).

Multiplying −u′′ + λu = σ by v ∈ H1
0 (0,∞) and integrating over [0,∞), we get

∞
∑

j=1

△u′(tj)v(tj) =
∞
∑

j=1

d(tj)v(tj).

Therefore, △u′(tj) = d(tj) for every j ∈ N
∗, and the impulsive conditions are satisfied.

Lemma 3.4. If u ∈ H1
0 (0,∞) is a critical point of ϕ defined by (3.4), then u is a weak solution

of the impulsive Dirichlet problem (LP ).

Proof. Let u ∈ H1
0 (0,∞). The assumption that u is a critical point of ϕ means that ϕ′(u)v = 0,

for all v ∈ H1
0 (0,∞). Thus,

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv −

+∞
∫

0

σv +

∞
∑

j=1

d(tj)v(tj) = 0, ∀v ∈ H1
0 (0,∞).

Hence,
+∞
∫

0

u′v′ + λ

+∞
∫

0

uv =

+∞
∫

0

σv −
∞
∑

j=1

d(tj)v(tj), ∀v ∈ H1
0 (0,∞).

This implies that a(u, v) = l(v) is valid for any v ∈ H1
0 (0,∞). As a result, u is a weak solution of

the (LP ).
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In view of Lax-Milgram theorem, we formulate the following main result.

Theorem 3.5. If λ > 0, then the Dirichlet impulsive problem (LP ) has a weak solution u ∈

H1
0 (0,∞) for any σ ∈ L2(0,∞). Moreover, u ∈ H2(0,∞) and u is a classical solution and

minimizes the functional (3.4) and hence it is a critical point of (3.4).

Proof. For λ > 0, it follows that the bilinear a is coercive. The fact that a is continuous, by applying

Theorem 2.1, for any σ ∈ L2(0,∞), there exists a unique u ∈ H1
0 (0,∞) such that a(u, v) = l(v)

for all v ∈ H1
0 (0,∞). So, the problem (LP ) has a weak solution u ∈ H1

0 (0,∞).

Owing to Lemma 3.3, a weak solution of (LP ) is a classical solution. In addition, a is symmetric,

then the functional ϕ attains its minimum at u which is exactly a critical point of ϕ since it is

differentiable.

Example 3.6. As an example, let λ = 1 and p(t) = 1
1+t2

·

This impulsive boundary value problem















−u′′(t) + u(t) = 1
1+t

, a.e. t ∈ [0,∞),

△u′(j) = e−j, j ∈ N
∗,

u(0) = u(+∞) = 0,

(3.5)

has a solution.

4 Impulsive nonlinear problem

In the nonlinear situation we consider the following impulsive boundary value problem















−u′′(t) + λu(t) = f(t, u(t)), a.e. t ∈ [0,∞), t 6= tj ,

△u′(tj) = g(tj)Ij(u(t
−
j )), j ∈ N

∗,

u(0) = u(+∞) = 0,

(4.1)

where λ is a positive parameter, the functions f : [0,∞) × R → R, Ij : R → R, j ∈ N
∗, and

g : [0,∞) → [0,∞) are continuous with
∞
∑

j=1

g(tj) < ∞.

We refer to problem (4.1) as (NP ).

Definition 4.1. A weak solution of (NP ) is a function u ∈ H1
0 (0,∞) such that

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv +

∞
∑

j=1

g(tj)Ij(u(tj))v(tj)−

+∞
∫

0

f(t, u(t))dt = 0,

for every v ∈ H1
0 (0,∞).
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Setting F (t, u) =
u
∫

0

f(t, s)ds, we define the functional ϕ : H1
0 (0,∞) → R by

ϕ(u) =
1

2

+∞
∫

0

u′2(t)dt+
λ

2

+∞
∫

0

u2(t)dt+

∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt. (4.2)

Now we present our principal results for this part.

Theorem 4.2. Suppose that the following conditions hold:

(H1) There exists a positive bounded function M ∈ L1(0,+∞) with
M

p
∈ L1(0,+∞) such that

|f(t, u)| ≤ M(t) for (t, u) ∈ [0,+∞)× R.

(I1) There exist Mj > 0, j ∈ N
∗, satisfying

∞
∑

j=1

Mjg(tj) < ∞ and

∞
∑

j=1

Mjg(tj)

p(tj)
< ∞, such that

the impulsive functions Ij are bounded i.e.,

|Ij(u)| ≤ Mj for every u ∈ R, j ∈ {1, 2, . . .}.

Then there is a critical point of ϕ, and (NP ) has at least one solution.

Proof. Claim 1. ϕ is weakly lower semi-continuous (w.l.s.c).

Let (un) ⊂ H1
0 (0,∞) be a sequence such that un ⇀ u in H1

0 (0,∞), when n → ∞. Then,

‖u‖ ≤ lim inf
n→∞

‖un‖,

and by Lemma 2.4 we have that (un) converges to u in Cl,p[0,∞), hence un(t) converges to

u(t) for all t ∈ [0,∞).

From (H1) and (I1), using the continuity of f and Ij , j ∈ N
∗, together with the Lebesgue

Dominated Convergence Theorem, we obtain

lim inf
n→+∞

ϕ(un) = lim inf
n→+∞







1

2

+∞
∫

0

u
′2
n +

λ

2

+∞
∫

0

u2
n +

∞
∑

j=1

g(tj)

un(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, un(t))dt







≥
1

2

+∞
∫

0

u
′2 +

λ

2

+∞
∫

0

u2 +

∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt = ϕ(u).

Thus, ϕ is w.l.s.c.

Claim 2. ϕ is coercive.

For any u ∈ H1
0 (0,∞), the fact that λ > 0, there exists α > 0 such that

ϕ(u) ≥ α‖u‖2 +
∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt.
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Using conditions (H1), (I1) and Lemma 2.3, we have

ϕ(u) ≥ α‖u‖2 −

∞
∑

j=1

Mjg(tj)

p(tj)
p(tj)|u(tj)| −

+∞
∫

0

M(t)

p(t)
p(t)|u(t)|dt

≥ α‖u‖2 − ‖u‖∞,p

∞
∑

j=1

Mjg(tj)

p(tj)
− ‖u‖∞,p

+∞
∫

0

M(t)

p(t)
dt

≥ α‖u‖2 − C‖u‖

∞
∑

j=1

Mjg(tj)

p(tj)
− C‖u‖

∥

∥

∥

∥

M

p

∥

∥

∥

∥

L1

≥ α‖u‖2 − C





∞
∑

j=1

Mjg(tj)

p(tj)
+

∥

∥

∥

∥

M

p

∥

∥

∥

∥

L1



 ‖u‖,

for some C > 0. Then, the above inequality implies that lim
‖u‖→+∞

ϕ(u) = +∞. Hence, ϕ is

coercive.

Applying Theorem 2.2, ϕ possesses a minimum which is a critical point of ϕ. Finally, by (H1) and

(I1), it is easy to check that ϕ is continuous and differentiable for any u ∈ H1
0 (0,∞) and that

ϕ′(u)v =

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv +

∞
∑

j=1

g(tj)Ij(u(tj))v(tj)dt−

+∞
∫

0

f(t, u(t))v(t)dt. (4.3)

Therefore, a critical point of ϕ is a weak solution of the problem (NP ).

Remark 4.3. Assume M ∈ L2(0,∞) in (H1), then it is easy to see that a weak solution u is in

H2(0,∞).

Example 4.4. Take λ = 1, p(t) = e−t, M(t) = e−2t, g(t) = e−2t, Mj =
1

j
and Ij(s) =

1

j + s2
,

j ∈ N
∗.

The following IBVP:



















−u′′(t) + u(t) = e−3t, a.e. t ∈ [0,∞),

△u′(j) =
e−2j

j + u2(j)
, j ∈ N

∗,

u(0) = u(+∞) = 0,

has at least one solution. (See Figure 1)
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Figure 1

Theorem 4.5. Assume the following conditions are satisfied:

(H2) The function f is sublinear i.e., there exist a constant γ ∈ [0, 1) and positive functions

a, b ∈ L1(0,∞) with
a

p
,
b

pγ
, b
pγ+1 ∈ L1[0,∞) such that

|f(t, u)| ≤ a(t) + b(t)|u|γ for (t, u) ∈ [0,+∞)× R.

(I2) There exist constants δ ∈ [0, 1) and aj , bj > 0, j ∈ {1, 2, . . .} with

∞
∑

j=1

ajg(tj),

∞
∑

j=1

ajg(tj)

p(tj)
,

∞
∑

j=1

bjg(tj)

pδ(tj)
,

∞
∑

j=1

bjg(tj)

pδ+1(tj)
are convergent series, such that the impulsive functions Ij have

sublinear growths i.e.,

|Ij(u)| ≤ aj + bj |u|
δ for every u ∈ R, j ∈ {1, 2, . . .}.

Then there is a critical point of ϕ, and (NP ) has at least one solution.

Proof. Claim 1. ϕ is weakly lower semi-continuous.

Under (H2) and (I2), arguing analogously to the proof of Theorem 4.2, we find the weak

lower semi-continuity of ϕ.

Claim 2. ϕ is coercive.

In view of conditions (H2), (I2) and (4.2), for any u ∈ H1
0 (0,∞), we have

ϕ(u) =
1

2

+∞
∫

0

u′2 +
λ

2

+∞
∫

0

u2 +

∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt

≥ α‖u‖2 −
∞
∑

j=1

g(tj)

u(tj)
∫

0

(aj + bj|s|
δ)ds−

+∞
∫

0

(

a(t)|u(t)|+
b(t)

γ + 1
|u(t)|γ+1

)

dt
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ϕ(u) ≥ α‖u‖2 −

∞
∑

j=1

g(tj)

(

aj

p(tj)
p(tj)|u(tj)|+

bj

(δ + 1)pδ+1(tj)
|p(tj)u(tj)|

δ+1

)

−

+∞
∫

0

a(t)

p(t)
p(t)|u(t)|dt −

1

(γ + 1)

+∞
∫

0

b(t)

pγ+1(t)
|p(t)u(t)|γ+1dt

≥ α‖u‖2 − ‖u‖∞,p

∞
∑

j=1

ajg(tj)

p(tj)
− ‖u‖δ+1

∞,p

∞
∑

j=1

bjg(tj)

pδ+1(tj)
− ‖u‖∞,p

∥

∥

∥

∥

a

p

∥

∥

∥

∥

L1

− ‖u‖γ+1
∞,p

∥

∥

∥

∥

b

pγ+1

∥

∥

∥

∥

L1

.

Hence, by Lemma 2.3, we get

ϕ(u) ≥ α‖u‖2 − C‖u‖
∞
∑

j=1

ajg(tj)

p(tj)
− Cδ+1‖u‖δ+1

∞
∑

j=1

bjg(tj)

pδ+1(tj)
− C‖u‖

∥

∥

∥

∥

a

p

∥

∥

∥

∥

L1

− Cγ+1‖u‖γ+1

∥

∥

∥

∥

b

pγ+1

∥

∥

∥

∥

L1

≥ α‖u‖2 − C





∥

∥

∥

∥

a

p

∥

∥

∥

∥

L1

+

∞
∑

j=1

ajg(tj)

p(tj)



 ‖u‖ − Cδ+1





∞
∑

j=1

bjg(tj)

pδ+1(tj)



 ‖u‖δ+1

− Cγ+1

∥

∥

∥

∥

b

pγ+1

∥

∥

∥

∥

L1

‖u‖γ+1.

Since δ, γ ∈ [0, 1), then lim
‖u‖→+∞

ϕ(u) = +∞. This means, ϕ is coercive.

Using Theorem 2.2, ϕ has a minimum, which is a critical point of ϕ. Finally, from (H2) and (I2),

we get the differentiability of ϕ such that its differentiable is defined by (4.3). Consequently, (NP )

has at least one solution.

Remark 4.6. In (H2), assume a,
b

pγ
∈ L2(0,∞), then a weak solution u is in H2(0,∞).

Example 4.7. Consider the following problem























−u′′(t) + u(t) = e−2t
√

|u(t)|+ e−3t, a.e. t ∈ [0,∞),

△u′(j) = e−2j

(

1

j2
+

|s|
1
4

j

)

, j ∈ N
∗,

u(0) = u(+∞) = 0,

where λ = 1, p(t) = e−t, g(t) = e−2t, aj =
1

j2
, bj =

1

j
and Ij(s) =

1

j2
+

|s|
1
4

j
, j ∈ N

∗.

By simple calculations, all conditions in Theorem 4.5 are satisfied, then (4.1) has at least one

solution.
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