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ABSTRACT

In this paper, we study the existence and uniqueness results

of a fractional hybrid boundary value problem with multi-

ple fractional derivatives of ψ−Caputo with different orders.

Using a useful generalization of Krasnoselskii’s fixed point

theorem, we have established results of at least one solu-

tion, while the uniqueness of solution is derived by Banach’s

fixed point. The last section is devoted to an example that

illustrates the applicability of our results.

RESUMEN

En este art́ıculo, estudiamos los resultados de existencia y

unicidad de un problema de valor en la frontera fraccional

h́ıbrido con múltiples derivadas fraccionarias de ψ−Caputo

con diferentes órdenes. Usando una generalización útil del

teorema del punto fijo de Krasnoselskii, establecemos resul-

tados de al menos una solución, mientras que la unicidad de

dicha solución se obtiene a partir del punto fijo de Banach.

La última sección está dedicada a un ejemplo que ilustra la

aplicabilidad de nuestros resultados.
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1 Introduction

Fractional differential equations have received great attention of many researchers working in differ-

ent disciplines of science and technology, especially, since they have found that certain thermal [3],

electrochemical [4] and viscoelastic [16] systems are governed by fractional differential equations.

Recently some publications show the importance of fractional differential equations in the math-

ematical modeling of many real-world phenomena. For example ecological models [10], economic

models [20], physics [12], fluid mechanics [21]. There are many studies on fractional differential

equations with distinct kinds of fractional derivatives in the literature, such as Riemann-Liouville

fractional derivative, Caputo fractional derivative, and Grunwald Letnikov fractional derivative,

etc. For example, see [11, 14, 15]. Very recently, a new kind of fractional derivative the ψ−Caputo’s

derivative, was introduced by Almeida in [1], the main advantage of this derivative is the freedom

of choices of the kernels of the derivative by choosing different functions ψ, which gives us some well

known fractional derivatives such Caputo, Caputo-Erdelyi-Koper and Caputo Hadamard deriva-

tive. For more details on the ψ−Caputo and fractional differential equation involving ψ−Caputo,

we refer the reader to a series of papers [1, 2, 7] and the references cited therein.

Nowadays, many researchers have shown the interest of quadratic perturbations of nonlinear dif-

ferential equations, these kind of differential equations are known under the name of hybrid dif-

ferential equations. Some recent works regarding hybrid differential equations can be found in

[8, 13, 17, 23] and the references cited therein. Dhage and Lakshmikantham [6] discussed the

existence and uniqueness theorems of the solution to the ordinary first-order hybrid differential

equation with perturbation of the first type



















d

dt

(

u(t)

g(t, u(t))

)

= f(t, u(t)), a.e. t ∈ [t0, t0 + T ],

u(t0) = u0, u0 ∈ R,

where t0, T ∈ R with T > 0, g : [t0, t0+T ]×R → R\{0} and f : [t0, t0+T ]×R → R are continuous

functions. By using the fixed point theorem in Banach algebra, the authors obtained the existence

results.

In [9], Dong et al., established the existence and the uniqueness of solutions for the following

implicit fractional differential equation















cDpu(t) = f(t, u(t),cDpu(t)), t ∈ J := [0, T ], 0 < p ≤ 1,

u(0) = u0,

where cDp is the Caputo fractional derivative, f : [0, T ]×R×R→ R is a given continuous function.

Sitho et al. [17] studied existence results for the initial value problems of hybrid fractional sequen-
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tial integro-differential equations:











































Dp













Dqu(t)−
m
∑

i=1

Iηigi(t, u(t))

h(t, x(t))













= f(t, u(t), Iγx(t)), t ∈ J,

u(0) = 0, Dqu(0) = 0,

where Dp, Dq denotes the Riemann-Liouville fractional derivative of order p, q respectively and

0 < p, q ≤ 1, Iηi is the Riemann-Liouville fractional integral of order ηi > 0, h ∈ C(J ×R,R\{0}),
f ∈ C(J × R

2,R) and gi ∈ C(J × R,R) with gi(0, 0) = 0, i = 1, . . . ,m.

In 2019, Derbazi et al. [8] proved the existence of solutions for the fractional hybrid boundary

value problem

cDp

[

u(t)− g(t, u(t))

h(t, u(t))

]

= f(t, u(t)), t ∈ J,

with the fractional hybrid boundary value conditions



































a1

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=0

+ b1

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=T

= υ1,

a2
cDδ

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=ξ

+ b2
cDδ

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=T

= υ2 , ξ ∈ J,

where 1 < p ≤ 2, 0 < δ ≤ 1, ξ ∈ J and a1, a2, b1, b2, υ1, υ2 are real constants. Moreover, two

fractional derivatives of Caputo type appeared in the above problem.

Motivated by these works, we mainly investigate the existence and uniqueness of solutions for a

class of hybrid differential equations of arbitrary fractional order of the form

cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













=

f













t, u(t),cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))

























, t ∈ J, (1.1)
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endowed with the hybrid fractional integral boundary conditions











































































































































u(0) = 0, cDq;ψu(0) = 0,

a1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=0

+ b1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=T

= υ1,

a2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=ξ

+

b2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=T

= υ2 , ξ ∈ J,

(1.2)

where J := [0, T ], Dp;ψ, Dq;ψ and Dδ;ψ denote the ψ−Caputo fractional derivative of order 2 <

p ≤ 3 and 0 < q, δ ≤ 1 respectively, Iηi;ψ is the ψ−Riemann-Liouville fractional integral of order

ηi > 0, h ∈ C(J×R,R\{0}), f ∈ C(J×R
2,R) and gi ∈ C(J×R,R) with gi(0, 0) = 0, i = 1, . . . ,m,

a1, a2, b1, b2, υ1, υ2 are real constants such that b1 6= 0 and

2
(

a2Ψ
2−δ
0 (ξ) + b2Ψ

2−δ
0 (T )

)

−Ψ1
0(T )(2− δ)

(

a2Ψ
1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

)

6= 0.

The rest of the paper is arranged as follows. Section 2 gives some background material needed in

this paper, such as fractional differential equations and fixed point theorems. Section 3 treats the

main results concerning the existence and uniqueness results of the solution for the given problem

(1.1)-(1.2) by employing hybrid fixed point theorem for a sum of two operators in Banach algebra

space and Banach’s fixed point. In the last section, an example is presented to illustrate our results.

2 Preliminaries

In this section, we introduce some preliminaries and lemmas that will be used throughout this

paper. We will prove an auxiliary lemma, which plays a key role in defining a fixed point problem

associated with the given problem.

Let ψ : J → R an increasing function satisfying ψ′(t) 6= 0 for all t ∈ J. For the sake of simplicity,

we set Ψr0(t) = (ψ(t) − ψ(0))r.

Definition 2.1 ([2]). The ψ−Riemann-Liouville fractional integral of order (p > 0) of an integrable
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function g : [0,∞) → R is defined by

Ip;ψg(t) =
1

Γ(p)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−1g(s)ds, 0 < s < t.

Definition 2.2 ([2]). The ψ−Caputo fractional derivative of order p (n − 1 < p < n ∈ N) of a

function g ∈ Cn[0,∞) is defined by

cDp;ψg(t) =
1

Γ(p− n)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−n−1Dn
ψ g(s)ds, 0 < s < t,

where n = [p] + 1 and Dn
ψ =

(

1

ψ′(t)

d

dt

)n

. In case, if 2 < p ≤ 3, we have

cDp;ψg(t) =
1

Γ(p− 3)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−4D3
ψg(s)ds, 0 < s < t.

Lemma 2.3 ([2]). Let p > 0. The following hold

• If g ∈ C(J,R), then

cDp;ψIp;ψg(t) = g(t), t ∈ J.

• If g ∈ Cn(J,R), n− 1 < p < n, then

Ip;ψcDp;ψg(t) = g(t)−
n−1
∑

k=0

ckΨ
k
0(t), t ∈ J,

where ck =
Dk
ψg(0)

k!
.

Lemma 2.4. Let 2 < p < 3, 0 < q < 1. For any functions F ∈ C(J,R), H ∈ C(J,R \ {0}) and

Gi ∈ C(J,R) with Gi(0) = 0, i = 1, . . . ,m, the following linear fractional boundary value problem

Dp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













= F (t), 2 < p ≤ 3, 0 < q ≤ 1, t ∈ J, (2.1)
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supplemented with the following conditions











































































































































u(0) = 0, cDq;ψu(0) = 0,

a1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=0

+ b1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=T

= υ1,

a2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=ξ

+

b2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=T

= υ2, ξ ∈ J,

(2.2)

has a unique solution, which is given by

u(t) = Iq;ψ
(

H(s)Ip;ψF (s)
)

(t) +

m
∑

i=1

Iηi+q;ψGi(s)(t)

+ Iq;ψ
(

H(s)
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1

b1
− Ip;ψF (s)

)

)

(t)

+ Ω1

(

υ2 − a2I
p−δ;ψF (ξ)− b2I

p−δ;ψF (T )
)

Iq;ψ
(

H(s)
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t),

(2.3)

where

Ω1 =
Γ(3− δ)

2
(

a2Ψ
2−δ
0 (ξ) + b2Ψ

2−δ
0 (T )

)

−Ψ1
0(T )(2− δ)

(

a2Ψ
1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

) ,

Ω2 =
a2Ψ

1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

Γ(2− δ)Ω1

, Ω3 = 1 + Ω2Ψ
1
0(T ).

Proof. Applying the ψ−Caputo fractional integral of order p to both sides of equation in (2.1) and

using Lemma 2.3, we get

cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)
= Ip;ψF (t) + c0 + c1Ψ

1
0(t) + c2Ψ

2
0(t), (2.4)

where c0, c1, c2 ∈ R .

Next, applying the ψ−Caputo fractional integral of order q to both sides (2.4), we get
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u(t) = Iq;ψ
(

H(s)Ip;ψF (s)
)

(t) +

m
∑

i=1

Iηi+q;ψGi(s)(t)

+ Iq;ψ
(

H(s)
(

c0 + c1Ψ
1
0(s) + c2Ψ

2
0(s)

))

(t) + c3, c3 ∈ R.

(2.5)

With the help of conditions u(0) = 0 and cDq;ψu(0) = 0, we find, c3 = 0 and c0 = 0 respectively.

Applying the boundary conditions (2.2), and from (2.4), we obtain

c1Ψ
1
0(T ) + c2Ψ

2
0(T ) =

υ1

b1
− Ip;ψF (T ),

and

c1

Γ(2− δ)

(

a2Ψ
1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

)

+
2c2

Γ(3− δ)

(

a2Ψ
2−δ
0 (ξ) + b2Ψ

2−δ
0 (T )

)

= υ2 − a2I
p−δ;ψF (ξ) − b2I

p−δ;ψF (T ).

Solving the resulting equations for c1 and c2, we find that

c1 =
(υ1

b1
− Ip;ψF (T )

)

Ω3 −
(

υ2 − a2I
p−δ;ψF (ξ)− b2I

p−δ;ψF (T )
)

Ω1Ψ
1
0(T ),

c2 =
(

υ2 − a2I
p−δ;ψF (ξ)− b2I

p−δ;ψF (T )
)

Ω1 −
(υ1

b1
− Ip;ψF (T )

)

Ω2.

Inserting c1 and c2 in (2.5), which leads to the solution system (2.3).

Let E = C(J,R) be the Banach space of continuous real-valued functions defined on J . We define

in E a norm ‖ · ‖ by

‖u‖ = sup
t∈J

|u(t)|,

and a multiplication by

(uv)(t) = u(t)v(t), ∀t ∈ J.

Clearly E is a Banach algebra with above defined supremum norm and multiplication.

Lemma 2.5 ([5]). Let S be a nonempty, convex, closed, and bounded set such that S ⊆ E, and

let A : E → E and B : S → E be two operators which satisfy the following:

(1) A is contraction,

(2) B is completely continuous, and

(3) u = Au +Bv, for all v ∈ S ⇒ u ∈ S.

Then the operator equation u = Au+Bu has at least one solution in S.

Theorem 2.6 ([18]). Let S be a non-empty closed convex subset of a Banach space E, then any

contraction mapping A of S into itself has a unique fixed point.
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3 Main result

In this section, we derive conditions for the existence and uniqueness of a solution for the problem

(1.1)-(1.2).

The following assumptions are necessary in obtaining the main results.

(H1) The functions h ∈ C(J × R,R \ {0}), and f ∈ C(J × R
2,R) are continuous, and there exist

bounded functions L,M : J → [0,∞), such that

|h(t, u(t))− h(t, v(t))| ≤ L(t)|u(t)− v(t)|,

and

|f(t, u(t), v(t))− f(t, u(t), v(t))| ≤M(t)
(

|u(t)− u(t)|+ |v(t) − v(t)|
)

,

for t ∈ J and u, v, u, v ∈ R.

(H2) There exist functions ϑ, χ, ϕi ∈ C(J, [0,∞)) such that

|f(t, u(t), v(t))| ≤ ϑ(t) for each t, u ∈ J × R,

|h(t, u(t))| ≤ χ(t) for each t, u ∈ J × R,

|gi(t, u(t))| ≤ ϕi(t) for each t, u ∈ J × R, i = 1, . . . ,m,

for t ∈ J and u ∈ R.

(H3) The functions gi ∈ C(J ×R,R) are continuous, and there exist bounded functions Ki : J →
(0,∞), such that

|gi(t, u(t))− gi(t, v(t))| ≤ Ki(t)|u(t)− v(t)|.

We set L∗ = supt∈J |L(t)|, M∗ = supt∈J |M(t)|, χ∗ = supt∈J |χ(t)|, ϑ∗ = supt∈J |ϑ(t)| and ϕ∗
i =

supt∈J |ϕi(t)|, K∗
i = supt∈J |Ki(t)|, i = 1, 2, . . . ,m.

3.1 Existence of solutions

In this subsection, we prove the existence of a solution for the problem (1.1)–(1.2) by applying a

generalization of Krasnoselskii’s fixed point theorem.

Theorem 3.1. Assume that hypotheses (H1)–(H2) hold and if

Λ =
Ψp0(T )

Γ(p+ 1)

(

χ∗M∗

1−M∗
+ ϑ∗L∗

)(

Ψq0(T )

Γ(q + 1)
+

|Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)

+ |Ω1|(q + 4)
Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|L∗ +
|a2|Ψp−δ0 (ξ) + |b2|Ψp−δ0 (T )

Γ(p− δ + 1)

×
(

χ∗M∗

1−M∗
+ ϑ∗L∗

))

+
|υ1|L∗

|b1|

( |Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)

< 1.

(3.1)

Then the problem (1.1)–(1.2) has at least one solution on J .
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Proof. First, we choose r > 0 such that

r ≥χ∗ϑ∗
Ψp+q0 (T )

Γ(p+ 1)Γ(q + 1)
+ χ∗

( |Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)

( |υ1|
|b1|

+
Ψp0(T )

Γ(p+ 1)
ϑ∗
)

+ χ∗|Ω1|
(q + 4)Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|+ ϑ∗
|a2|Ψp−δ0 (ξ) + |b2|Ψp−δ0 (T )

Γ(p− δ + 1)

)

+

n
∑

i=1

ϕ∗
i

Ψηi+q0 (T )

Γ(ηi + q + 1)
.

Set

Br = {u ∈ E : ‖u‖ ≤ r}.

Clearly Br is a closed, convex and bounded subset of the Banach space E.

Let u(t) be a solution of the problem (1.1)–(1.2). Define

Fu(t) := f













t, u(t),cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))

























.

Then

cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













= Fu(t),

supplemented with the conditions (1.2), then by Lemma 2.4, we get

u(t) = Iq;ψ
(

h(s, u(s))Ip;ψFu(s)
)

(t) +

m
∑

i=1

Iηi+q;ψgi(s, u(s))(t)+

+ Iq;ψ
(

h(s, u(s))
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1

b1
− Ip;ψFu(s)

)

)

(t)

+ Ω1

(

υ2 − a2I
p−δ;ψFu(ξ)− b2I

p−δ;ψFu(T )
)

Iq;ψ
(

h(s, u(s))
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t),

Let us define three operators Cp, Cp−δ : E → E and D : E → E such that

Cpu(t) =
1

Γ(p)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−1Fu(s)ds, t ∈ J,

Cp−δu(t) =
1

Γ(p− δ)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−δ−1Fu(s)ds, t ∈ J,

and

Du(t) = h(t, u(t)), t ∈ J.

Then, using assumptions (H1)–(H2) , we have

|Cpu(t)− Cpv(t)| ≤
1

Γ(p)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−1|Fu(s)− Fv(s)|ds, (3.2)



282 F. Fredj & H. Hammouche CUBO
24, 2 (2022)

and

|Fu(t)− Fv(t)| ≤ |f(t, u(t), Fu(t)) − f(t, v(t), Fv(t))|

≤M(t)
(

|u(t)− v(t)|+ |Fu(t)− Fv(t)|
)

≤ M(t)

1−M(t)
‖u(·)− v(·)‖.

(3.3)

By replacing (3.3) in (3.2), we obtain

|Cpu(t)− Cpv(t)| ≤
M∗Ψp0(T )

(1−M∗)Γ(p+ 1)
‖u(·)− v(·)‖,

and

|Du(t)−Dv(t)| ≤ L∗‖u(·)− v(·)‖,

|Cpu(t)| ≤
Ψp0(T )

Γ(p+ 1)
ϑ∗,

and

|Du(t)| ≤ χ∗.

Now we define two more operators A : E → E and B : Br → E such that

Au(t) = Iq;ψ
(

Du(s)Cpu(s)
)

(t) + Iq;ψ
(

Du(s)
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1

b1
− Cpu(s)

)

)

(t)

+ Ω1

(

υ2 − a2Cp−δu(ξ)− b2Cp−δu(T )
)

Iq;ψ
(

Du(s)
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t),

and

Bu(t) =

m
∑

i=1

Iηi+q;ψgi(s, u(s))(t).

We need to show that the two operators A and B satisfy all conditions of Lemma 2.5. This can

be achieved in the following steps.

Step 1. First we show that A is a contraction mapping. Let u(t), v(t) ∈ Br, then we have

|Au(t)−Av(t)|

≤ Iq;ψ
(

∣

∣Du(s)Cpu(s)−Dv(s)Cpv(s)
∣

∣

(

1 +
∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

)

)

(t)

+ Iq;ψ
( |υ1|
|b1|

∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

∣

∣Du(s)−Dv(s)
∣

∣

)

(t)

+ |Ω1|Iq;ψ
(

∣

∣Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

∣

∣

(

|υ2|
∣

∣Du(s)−Dv(s)
∣

∣+ |a2|
∣

∣Du(s)Cp−δu(ξ)

−Dv(s)Cp−δv(ξ)
∣

∣ + |b2|
∣

∣Du(s)Cp−δu(T )−Dv(s)Cp−δv(T )
∣

∣

)

)

(t)
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≤ Iq;ψ
(

(

∣

∣Du(s)
∣

∣

∣

∣Cpu(s)− Cpv(s)
∣

∣+
∣

∣Cpv(s)||Du(s)−Dv(s)
∣

∣

)

×
(

1 +
∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

)

)

(t) + Iq;ψ
( |υ1|
|b1|

∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

∣

∣Du(s)−Dv(s)
∣

∣

)

(t)

+ |Ω1|Iq;ψ
(

∣

∣Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

∣

∣

(

∣

∣Du(s)−Dv(s)
∣

∣

(

|υ2|+ |a2|
∣

∣Cp−δv(ξ)
∣

∣ + |b2|
∣

∣Cp−δv(T )
∣

∣

)

+
∣

∣Du(s)
∣

∣

(

|a2|
∣

∣Cp−δu(ξ)− Cp−δv(ξ)
∣

∣ + |b2|
∣

∣Cp−δu(T )− Cp−δv(T )
∣

∣

)

))

(t)

Using the hypotheses (H1)–(H2) and taking the supremum over t, we get

‖Au(·)−Av(·)‖ ≤ Λ‖u(·)− v(·)‖. (3.4)

Therefore from (3.1), we conclude that the operator A is a contraction mapping.

Step 2. Next, we prove that the operator B satisfies condition (2) of Lemma 2.5, that is, the

operator B is compact and continuous on Br. Therefore first, we show that the operator B is

continuous on Br.

Let un(t) be a sequence of functions in Br converging to a function u(t) ∈ Br. Then, by the

Lebesgue dominant convergence theorem, for all t ∈ J , we have

lim
n→∞

Bun(t) = lim
n→∞

m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))ηi+q−1gi(s, un(s))ds

=

m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))ηi+q−1 lim
n→∞

gi(s, un(s))ds

=

m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))ηi+q−1gi(s, u(s))ds.

Hence limn→∞Bun(t) = Bu(t). Thus B is a continuous operator on Br.

Further, we show that the operator B is uniformly bounded on Br. For any u ∈ Br, we have

‖Bu(·)‖ ≤ sup
t∈J

{ m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))ηi+q−1|gi(s, u(s))|ds
}

≤
m
∑

i=1

Ψηi+q0 (T )

Γ(ηi + q + 1)
ϕ∗
i ≤ r.

Therefore Bu(t) ≤ r, for all t ∈ J , which shows that B is uniformly bounded on Br.

Now, we show that the operator B is equi-continuous. Let t1, t2 ∈ J with t1 > t2. Then for any
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u(t) ∈ Br, we have

|Bu(t1)−Bu(t2)|

≤
m
∑

i=1

1

Γ(ηi + q)

∣

∣

∣

∣

∫ t2

0

ψ′(s)
(

(ψ(t1)− ψ(s))ηi+q−1 − (ψ(t2)− ψ(s))ηi+q−1
)

gi(s, u(s))ds

∣

∣

∣

∣

+

m
∑

i=1

1

Γ(ηi + q)

∣

∣

∣

∣

∫ t1

t2

ψ′(s)(ψ(t1)− ψ(s))ηi+q−1gi(s, u(s))ds

∣

∣

∣

∣

≤
m
∑

i=1

ϕ∗
i

Γ(ηi + q + 1)

(

2|ψ(t1)− ψ(t2)|ηi+q +
∣

∣Ψηi+q0 (t2)−Ψηi+q0 (t1)
∣

∣

)

.

As t2 → t1, so the right-hand side tends to zero. Thus B is equi-continuous. Therefore, it follows

from the Arzelá–Ascoli theorem that B is a compact operator on Br. We conclude that B is

completely continuous.

Step 3. It remains to verify the condition (3) of Lemma 2.5. For any v ∈ Br, we have

‖u(·)‖ = ‖Au(·) +Bv(·)‖

≤ ‖Au(·)‖+ ‖Bv(·)‖

≤ sup
t∈J

{∣

∣

∣

∣

Iq;ψ
(

Du(s)Cpu(s)
)

(t) + Iq;ψ
(

Du(s)
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1

b1
− Cpu(s)

)

)

(t)

+ Ω1

(

υ2 − a2Cp−δu(ξ)− b2Cp−δu(T )
)

Iq;ψ
(

Du(s)
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t)

∣

∣

∣

∣

}

+ sup
t∈J

{ m
∑

i=1

Iηi+q;ψ
∣

∣gi(s, v(s))
∣

∣(t)

}

≤ χ∗ϑ∗
Ψp+q0 (T )

Γ(p+ 1)Γ(q + 1)
+ χ∗

( |Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)( |υ1|
|b1|

+
Ψp0(T )

Γ(p+ 1)
ϑ∗
)

+ χ∗|Ω1|
(q + 4)Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|+ ϑ∗
|a2|Ψp−δ0 (ξ) + |b2|Ψp−δ0 (T )

Γ(p− δ + 1)

)

+

n
∑

i=1

ϕ∗
i

Ψηi+q0 (T )

Γ(ηi + q + 1)
.

Which implies, from the choice of r that ‖u‖ ≤ r, and so u ∈ Br. Hence all conditions of Lemma

2.5 are satisfied. Therefore, the operator equation u(t) = Au(t) + Bu(t) has at least one solution

in Br. Consequently, the problem (1.1)–(1.2) has at least on solution on J . Thus the proof is

completed.

3.2 Uniqueness of solutions

In the next result, we apply the Banach fixed theorem to prove the uniqueness of solutions for the

problem (1.1)–(1.2).
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Theorem 3.2. Assume that the hypotheses(H1)–(H3) together with the inequality

Λ +

m
∑

i=1

K∗
i

Ψηi+q0 (T )

Γ(ηi + q)
< 1.

are satisfied, then the problem (1.1)–(1.2) has an unique solution.

Proof. According to Lemma 2.4, we define the operator Q : E → E by

Qu(t) = Au(t) +Bu(t).

First, we show that Q(Br) ⊂ Br. As in the previous proof (step 3) of Theorem 3.1, we can obtain

for u ∈ Br and t ∈ J

‖Qu(·)‖ ≤ χ∗ϑ∗
Ψp+q0 (T )

Γ(p+ 1)Γ(q + 1)
+ χ∗

( |Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)( |υ1|
|b1|

+
Ψp0(T )

Γ(p+ 1)
ϑ∗
)

+ χ∗|Ω1|
(q + 4)Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|+ ϑ∗
|a2|Ψp−δ0 (ξ) + |b2|Ψp−δ0 (T )

Γ(p− δ + 1)

)

+

n
∑

i=1

ϕ∗
i

Ψηi+q0 (T )

Γ(ηi + q + 1)
≤ r.

This shows that Q(Br) ⊂ Br.

Next, we prove that the operator Q is a contractive operator. For u, v ∈ Br

‖Qu(·)−Qv(·)‖ ≤ ‖Au(·)−Av(·)‖ + ‖Bu(·)−Bv(·)‖,

and

‖Bu(·)−Bv(·)‖

≤ sup
t∈J

{ m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))ηi+q−1
∣

∣gi(s, u(s))− gi(s, v(s))
∣

∣ds

}

≤
m
∑

i=1

K∗
i

Ψηi+q0 (T )

Γ(ηi + q + 1)
‖u(·)− v(·)‖.

(3.5)

From (3.4) and (3.5), we get

‖Qu(·)−Qv(·)‖ ≤
(

Λ +
m
∑

i=1

K∗
i

Ψηi+q0 (T )

Γ(ηi + q + 1)

)

‖u(·)− v(·)‖.

This implies that the operator Q is a contractive operator. Consequently, by Theorem 3.2, we

conclude that Q has an unique fixed point, which is a solution of the problem (1.1)–(1.2). This

completes the proof.
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4 Example

Consider the following fractional hybrid differential equation















































































































































cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













= f













t, u(t),cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))

























,

u(0) = 0, cD
3
4 ;tu(0) = 0,

2













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t=0

+
2

7













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t=1

=
7

2
,

7

13
cD

4
5 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t= 4
5

+
1

2
cD

4
5 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t=1

= 2 ,

(4.1)

where

3
∑

i=1

Iηi;tgi(t, u(t))(s) = I
1
3 ;t

(

sin2 x(s)

8(s+ 1)2

)

(t) + I
3
2 ;t

(

1

2π
√
81 + s2

|x(s)|
2 + |x(s)|

)

(t)

+ I
7
3 ;t

(

sinx(s)

3π
√
49 + s2

)

(t),

h(t, u(t)) =
e−3t cosu(t)

2t+ 40
+

1

80
(t3 + 1),

and

f













t, u(t),cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))

























=
1

60
√
t+ 81













|x(t)|
3 + |x(t)| − arctan













cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))





































.
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Here T = 1, p = 5
2
, q = 3

4
,m = 3, η1 = 1

3
, η2 = 3

2
, η3 = 7

3
, δ = 4

5
, a1 = 2, a2 = 7

13
, b1 = 2

7
,

b2 =
1
2
, υ1 = 7

2
, υ2 = 2, ξ = 4

5
, g1 =

sin2 x(t)

8(t+ 1)2
, g2 =

1

2π
√
81 + t2

|x(t)|
2 + |x(t)| , g3 =

sinx(t)

3π
√
49 + t2

.

The hypotheses (H1), (H2) and (H4) are satisfied with the following positives functions: L(t) =
e−3

2t+ 40
, M(t) = ϑ(t) =

1

60
√
t+ 81

, ϕ1(t) = K1(t) =
1

8(t+ 1)2
, ϕ2(t) = K2(t) =

1

2π
√
81 + t2

,

ϕ3(t) = K3(t) =
1

3π
√
49 + t2

and χ(t) =
e−3

2t+ 40
+

1

80
(t3+1), which gives us L∗ = 1

40
, M∗ = ϑ∗ =

1
540

, χ∗ = 3
80
, ϕ∗

1 = K∗
1 = 1

8
, ϕ∗

2 = K∗
2 = 1

18π
, ϕ∗

3 = K∗
3 = 1

21π
.

With the given data, we find that

Ω1 ≃ 1.81820508, Ω2 ≃ 0.60797139, Ω3 ≃ 1.60797139,

and

Λ ≃ 0.48820986 < 1.

By Theorem 3.1, the problem (4.1) has a solution on [0, 1].

Also, we have

Λ +

3
∑

i=1

K∗
i

Ψηi+q0 (1)

Γ(ηi +
7
4
)
≃ 0.61782704 < 1.

In view of Theorem 3.2 the problem (4.1) has an unique solution.

5 Conclusion

In this manuscript, we have successfully investigated the existence, uniqueness of the solutions for

a new class of ψ−Caputo type hybrid fractional differential equations with hybrid conditions. The

existence of solutions is provided by using a generalization of Krasnoselskii’s fixed point theorem

due to Dhage [5], whereas the uniqueness result is achieved by Banach’s contraction mapping

principle. Also, we have presented an illustrative example to support our main results. In future

works, many results can be established when one takes a more generalized operator. Precisely,

it will be of interest to study the current problem in this work for the fractional operator with

variable order [22], and ψ-Hilfer fractional operator [19].
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d’identification non entiers pour la résolution de problèmes inverses en conduction”, Int. J.
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