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1 Introduction

The idea of relating a commutative ring to a graph was introduced by Istvan Beck [3]. He introduced
a graph, I'(R), whose vertices are the elements of R and two distinct vertices « and y are adjacent
if and only if zy = 0. In [1], Anderson and Livingston modified the definition of Beck to introduce
the zero-divisor graph, I'*(R), and investigated many of its properties. I'*(R) is the subgraph of
I'(R) induced by the set of non-zero zero-divisors of R. Cherian Thomas introduced many graph

structures for R in [10] and obtained many interesting results.

Throughout the paper, the word ‘ring’ shall mean a commutative ring with 1 # 0 which is not a
field. We denote the Jacobson radical of a ring R by J(R) and the set of all maximal ideals by

max R.
For the basic concepts from graph theory refer [4, 9]; for commutative ring theory, see [2].
We give two ideal based graphs, I'1 (R) and I's(R), introduced in [10].

The graph I';(R) has all ideals of R as vertices and two distinct vertices a and b are adjacent if

and only if ab = 0.

The graph I';(R) has the same vertex set as that of I'1(R) and two distinct vertices a and b are
adjacent if and only if a + b = R.

In [5], the authors have studied the subgraph I'j(R) of I'; (R) induced by all the non-zero proper
ideals of R.

We state the following result:

Theorem 1.1 ([5]). Let R be an Artin ring. T'i (R) is complete if and only if one of the following
holds:

(i) R = Fy ® Fy where F1 and F» are fields.

(i1) R is local with mazimal ideal m having index of nilpotency 2.

(iii) R is local with principal mazimal ideal m having index of nilpotency 3.

In [8], S. C. Mathew has introduced and studied some basic properties of T'5(R) which is the
subgraph of I';(R) induced by the set of all non-zero proper ideals of R. In this paper we include
those results, for the sake of completeness. We compare the graphs I'j (R) and I'5(R) and find the
clique number and domination number of T'5(R). Also we investigate the properties of rings for

which T'(R) is split.
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2 The graph I';(R) and its properties

In this section we define the graph I';(R) and investigate some properties of the graph.

Definition 2.1. Let R be a ring. We associate a graph I';(R) to R whose vertex set is the set
of all non-zero proper ideals of R and for distinct ideals a and b, the corresponding vertices are

adjacent if and only if a + b = R.
Remark 2.2. T5(R) is totally disconnected if and only if R is local.
Remark 2.3. T5(R) = K; if and only if (R, m) is local with m principal and m? = 0.

Theorem 2.4. Let R be a non-local ring. Then T'5(R) is connected if and only if J(R) = 0.

Proof. (=): Assume I'5(R) is connected. If J(R) # 0, then J(R) is an isolated vertex in I';(R).

(«<): Assume that J(R) = 0. Now, max R induces a complete subgraph in I'5(R). Let a be any
proper non-zero non maximal ideal. Since J(R) = 0, there exists a maximal ideal m such

that a ¢ m. Thus a is adjacent to m and hence I';(R) is connected. O
Corollary 2.5. IfT'5(R) is connected, diamT'5(R) < 3.

Remark 2.6. a is an isolated vertex of I';(R) if and only if a C J(R).

Next result follows from the proof of Theorem 2.4 and Remark 2.6.

Theorem 2.7. T5(R) is connected except for isolated vertices. That is, T'5(R) has at most one

component different from K.

Theorem 2.8. T'5(R) = Ky if and only if R is a direct sum of two fields.

Proof. (=): Let R = Fy @ F» where F} and F; are fields. Then the ideals of R are F; &0, 06 Fs,
0®0 and F1 D FQ. Then, F;(R) = KQ.

(«<): Suppose I'5(R) = Ko. Then R is non-local. Also, R cannot have more than two maximal
ideals. Therefore R has exactly two maximal ideals, say m; and my with m; Nmy = 0. This

R R
implies R~ — @ —, a direct sum of two fields. O
my mo

Theorem 2.9. The only triangle free connected graphs that can be realized as T'5(R) are K3
and K.

Proof. Let G be a triangle free connected graph. Since G is triangle free R can have at most two

maximal ideals. Also since G is connected the result follows. O

Theorem 2.10. I'5(R) is complete if and only if either R is a direct sum of two fields or R is

local with principal mazimal ideal having index of nilpotency 2.
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Proof. (=): If T'5(R) is complete, R can have at most two maximal ideals. For, assume R has 3
maximal ideals say, my, my and m3. Then myms = 0; otherwise mymsy is a vertex of I'5(R) and
will not be adjacent to m; and mg. For the same reason, myms = 0. Then my(mg +m3) = 0.
This implies m; = 0 which is not possible. Now assume that R has exactly 2 maximal ideals
say, m; and my. Then J(R) = myme = {0}. Thus R is a direct sum of 2 fields. Now, if R
is local with maximal ideal m, since I'5(R) is complete, m must be principal with index of

nilpotency 2.

(«): If R is a direct sum of two fields, I'5(R) & K> and if R is local with principal maximal ideal
having index of nilpotency 2, I';(R) = Kj. O

The following corollary is immediate.

Corollary 2.11. The only complete graphs that can be realized as T5(R) are K1 and K.

3 Comparison between I'j(R) and I5(R)

Theorem 3.1. Assume diamT'5(R) = 2. Then any two vertices in T'5(R) which are not adjacent

are also not adjacent in T3 (R). That is, T (R) is a subgraph of T5(R).

Proof. Let diamT'5(R) = 2. Suppose a and b are not adjacent in I'5(R). Then, there exists a
maximal ideal m such that a + m = R = b + m. Therefore, (a + m)(b + m) = R. That is,
ab+am + bm +m? = R.

But, ab + am + bm + m? C ab + m. Therefore, ab 4+ m = R. This implies, in particular, ab # 0.
Thus, a and b are not adjacent in I'f (R). O

Remark 3.2. Suppose a and b are adjacent in I';(R). Then, a + b = R. This implies ab =anNb.
Hence a is adjacent to b in I'j(R) if and only if aN'b = 0. This must hold for every pair of

comaximal ideals a and b.
Theorem 3.3. Let R be a non-local ring. Then, I'5(R) is a subgraph of T5(R) if and only if R is

a direct sum of two fields; and hence T5(R) = T'5(R) only when R is a direct sum of two fields.

Proof. (=): T5(R) is a subgraph of I'{ (R) if and only if for any pair of comaximal ideals a and b
of R, ab =0. So, if T'5(R) is a subgraph of ' (R), in particular, m;my = 0 where m; and my

are two maximal ideals of R. Hence, R = m% &) m%.
(«): If R is a direct sum of two fields, T'j(R) =T'5(R) = Ka. O

Theorem 3.4. If R is a finite direct sum of fields, T (R) 2 T'5(R).
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Proof. Let R = Fy @& F> @ --- @ F,, where F}’s are fields. Thus, an ideal a of R is of the form,

arPasP---Pa, where, a; =0 or F;.

Define ¢ : V(I'f(R)) = V(I'5(R)) by p(a1 ®as @ --- P a,) =b1 &by P --- P b, where

Fi if a;, = (O)
0, ifa;=F,.

Clearly, ¢ is a bijection.

Suppose a and b are adjacent in T'f (R). Thus b must contain 0 at the positions in which a contains
F;’s. Therefore, ¢(b) contains F;’s at the positions where ¢(a) contains 0. Then, ¢(a) is adjacent
to (b).

Similarly, if ¢(a) and ¢(b) are adjacent in I'5(R) then, a and b are adjacent in I'f (R). Thus, ¢ is
a graph isomorphism. That is, Tj(R) 2 T'5(R). O

Remark 3.5. In the context of Theorem 3.4, we can explicitly determine T'i(R) and T3(R) by
identifying the vertex set with the power set P(X)\ {X, @} where X = {1,2,...,n} and A C X
with @,c 4 Fi. Then A and B are adjacent in T'7(R) if and only if ANB = @ and A and B are
adjacent in I's(R) if and only if AUB = X.

Theorem 3.6. I'5(R) and I'5(R) are edge disjoint if and only if R has no non-trivial idempotents.

Proof. (=): Suppose that R contains a non-trivial idempotent e. Then, R = Re ® R(1 —e). This
implies, Re + R(1 —e) = R and ReN R(1 —e) = ReR(1 — e) = 0. That is, T'{(R) and T'}(R)

are not edge disjoint.

(«<):  Assume that I';(R) and I';(R) are not edge disjoint and then there exist two ideals a and b
such that a+b = R and anb = ab = 0. Then, R = a®b and hence, a = Re and b = R(1 —e¢)
for some idempotent e. Since a and b are non-zero proper ideals, e must be non-trivial. [

Theorem 3.7. Let R be a non-local ring. If T'5(R) =T'5(R), R is not semi-local.

Proof. Assume that R is semi-local with maximal ideals my, ms,...,m,. Then, there are the

following possibilities.

Case (I): T'5(R) is connected.

This assumption implies mymg - - - m,, = 0, by Theorem 2.4. Therefore, (my - --m,_1), m,, are

adjacent in I'j (R) as well as in I'5(R), which means I'; (R) # I';(R).

Case (II): T'5(R) is disconnected.

This implies mymy - - -m,, = J(R) # 0. We subdivide this case into two.
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Case (II)(a): J(R) is nilpotent.
Then there exist least positive integers ki, ks, . . ., k, such that m]flmgz -oombr =0 with
at least one k; > 1 for 1 < j <, say k, > 1.

If k, > 2, we have (m;---m,) +m, # R and (my---my)m, # 0. That is, T (R) #
T3 (R).

Now cousider the case when k,, = 2. If k; > 1 for some i # n, (my---m,)+m, # R and
(my---mp)m, #0. If ki = 1 Vi #n, (my---my_ymyyq---m2) +m; = R where [ # n.

But, (mq---my_ymy4q---m2)m; = 0. So, I'1(R) # I3(R).
Case (II)(b): J(R) is not nilpotent.
In this case we have (my---m,) +my; # R and (my ---m,)my # 0.

Thus, if T (R) =T4(R), R cannot be semi-local. O

Theorem 3.8. Let (R,m) be an Artin local ring. Then, I'i(R) = I's(R) if and only if either m

has index of nilpotency 2 or m is principal with index of nilpotency 3.

Proof. Follows from Remark 2.2 and Theorem 1.1. O

4 Some parameters of [';(R)

In this section we find the clique number and the domination number of I'(R).

Theorem 4.1. c[(T5(R)) = |max R|.

Proof. Clearly max R induces a complete subgraph. Let a be any non-zero non-maximal proper
ideal of R. Then a is contained in a maximal ideal. That is, there exists a maximal ideal m such

that a is not adjacent to m. Thus, max R induces a maximal complete subgraph.

Now suppose S = {a; : i € A}, where A is an index set, induces a complete subgraph in I';(R).
Then one maximal ideal can contain at most one a; € S. That is, there exists an injective map

from S to max R. This implies, |S| < |max R|. Thus, cl(T'5(R)) = | max R)|. O

Theorem 4.2. Let R be a semi local ring with |max R| = n > 2. Then, y(I'3(R)) = |max R| +

Number of isolated vertices in T5(R).

Proof. Let I';*(R) be the connected component of I';(R) induced by the non-isolated vertices of
I';(R). Now, by Theorem 2.7, it is enough to show that v(I's*(R)) = | max R).

Let max R = {my, mg,...,m,}. Clearly max R is a dominating set for I';*(R). Now consider,
S ={mg---m,,mmg---my,..., myms---m,_1}, which is an independent set in I';*(R). Note

that any ideal a ¢ S can be adjacent only to at most one element of S. So every dominating set
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in I'5*(R) must contain at least n elements. Thus, v(I'5*(R)) = n = | max R|. Hence the result

follows. O

Remark 4.3. If R is a semi-local ring with | max R| = 2 then, the above result is not true. For

example, if R is a direct sum of two fields, y(T'5(R)) = v(K2) = 1 but |max R| = 2.

5 Splitness

A graph (V, E) is said to be a split graph if V is the disjoint union of two sets K and S where
K induces a complete subgraph and S is an independent set. Then, we can assume either K is
a clique or S is a maximal independent set. In [6] & [7], the authors have carried out a detailed
study on splitness of some graphs associated with a ring. In this section we continue the study in

the case of T'5(R).
Lemma 5.1. Let R = Ry X Ry X R3 be a ring. If T5(R) is split, each R; must be a field.

Proof. Suppose R; is not a field. Then there exists a proper non-zero ideal I of R;. Then,
{I x Ry x R3,R1 X Ry x 0,0 X Ry X R3, R; X 0 x 0} induces a Cy4 in T'5(R), a contradiction. O

Lemma 5.2. If F; (1 <i<3) are fields and R = Fy x Fy x F5 then I'5(R) is split.

Proof. V(T'5(R)) can be partitioned into K = {F} x F» x 0, F; x 0 X F5,0 x Fy x F3} and S =
{F1 x0x0,0x Fyx0,0x0x F3} where K induces a complete subgraph and S is an independent
set. O

Lemma 5.3. Let F be a field and Ry a local ring. Let R = Ry x F. Then I'5(R) is split.

Proof. Let {I; : j € J} be the collection of non-zero proper ideals of R;. Then {I; x F': j €
JYU{I; x0:j € J}is an independent set and {0 x F, Ry x 0} is a K5. This forms a partition of
V(T5(R)). Thus, I';(R) is split. O

Lemma 5.4. Suppose R has exactly n mazimal ideals m; (1 < i < n) with each m; being generated
by an idempotent e;. Then R =2 HE where each F; = R/m;, a field.

=1

Proof. Let e = []_, e;. Then e € J(R). Therefore, 1 — e is a unit (and an idempotent). So,
1—e=1=e=0. Then by the Chinese Remainder Theorem,

2

R R " R
Hi:l Re; ﬂi:l Re; 1_[1 Re;
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Theorem 5.5. Let R be a ring. T'5(R) is a split graph if and only if one of the following conditions

holds:

(i) R is local.

(ii)) R= Ry x F where Ry is a local ring and F is a field.

(ii) R = Fy X Fy x F3 where F;’s are fields.

Proof. First we note that I'5(R) is split if and only if T'2(R) is split. Also, if R is local, T'5(R)

is split. Sufficiency of other conditions follows from the lemmas. To prove the necessity of the

conditions, we assume that R is not local and V(I'3(R)) is the disjoint union of two sets K and S

where K induces a complete subgraph and S is an independent set. We assume that K and S are

non-empty. Also, S can contain at most one maximal ideal.

Case

Case

(I): S contains a maximal ideal, say m;.

In this case, R can have only one maximal ideal other than m;. For, if ms and mj3 are distinct
maximal ideals other than my, then my and ms are in K. Then, momz € .S, m; € S. Clearly,
my + momg = R, a contradiction. Thus, R contains only one maximal ideal other than my,
say mg which belongs to K. Let z; € m; (i = 1,2) withx14+22 = 1. Asm3+m; =R, m3 € K
which implies m2 = my. Similarly, as Rzy +m; = R, Rry € K which implies my = Rzs.
Then, ms is a finitely generated maximal ideal which is idempotent. Hence, ms is generated
by an idempotent. So, R & R; x F where F is a field and ms is isomorphic to the ideal
R; x {0}. Further, R; must be local.

(IT): S contains no maximal ideal.

In this case, R can have at most three maximal ideals, for, if my, mo, m3 and my are distinct
maximal ideals, myms and msmy are in S which leads to a contradiction. If R has only two
maximal ideals, say, m; and ma, then my,my € K. Since, m? +m; # R (i = 1,2), we have
m?, m3 € S. But m + m3 = R. So, to avoid a contradiction we have to assume m? = m; or
m% =my. That is, R = Ry X F where F' is a field and R; is a local ring. So, let us assume
R has exactly 3 maximal ideals m;, my and ms. Note that m; € K (i = 1,2,3). Then, as
m; + momg = R, there exists £1 € my such that Rx; + moms = R which implies Rz, € K
and hence, Rr; = my. Similarly arguing with m% + moms = R, we get my = m%. Then my
is generated by an idempotent. Similarly each m; (j = 2,3) is generated by an idempotent.

Then by the Lemma 5.4, R = Fy X Fy x F3 where F; (1 <1 < 3) are fields. O
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