

Ideal based graph structures for commutative rings

M. I. Jinnah¹ \bigcirc Shine C. Mathew^{2, \boxtimes} \bigcirc

¹ Formerly of Department of
Mathematics, University of Kerala,
Kariavattom, Thiruvananthapuram,
Kerala, India.
jinnahmi@yahoo.co.in

² Department of Mathematics, St.
Berchmans College, Changanacherry,
Kottayam, Kerala, India.
shinecmathew@gmail.com [□]

ABSTRACT

We introduce a graph structure $\Gamma_2^*(R)$ for commutative rings with unity. We study some of the properties of the graph $\Gamma_2^*(R)$. Also we study some parameters of $\Gamma_2^*(R)$ and find rings for which $\Gamma_2^*(R)$ is split.

RESUMEN

Introducimos una estructura de grafo $\Gamma_2^*(R)$ para anillos conmutativos con unidad. Estudiamos algunas de las propiedades del grafo $\Gamma_2^*(R)$. También estudiamos algunos parámetros de $\Gamma_2^*(R)$ y encontramos anillos para los cuales $\Gamma_2^*(R)$ se escinde.

Keywords and Phrases: Maximal ideal, idempotent, clique number, domination number, split graph.

2020 AMS Mathematics Subject Classification: 13A15, 05C75.

Accepted: 20 July, 2022

Received: 17 November, 2021

1 Introduction

The idea of relating a commutative ring to a graph was introduced by Istvan Beck [3]. He introduced a graph, $\Gamma(R)$, whose vertices are the elements of R and two distinct vertices x and y are adjacent if and only if xy = 0. In [1], Anderson and Livingston modified the definition of Beck to introduce the zero-divisor graph, $\Gamma^*(R)$, and investigated many of its properties. $\Gamma^*(R)$ is the subgraph of $\Gamma(R)$ induced by the set of non-zero zero-divisors of R. Cherian Thomas introduced many graph structures for R in [10] and obtained many interesting results.

Throughout the paper, the word 'ring' shall mean a commutative ring with $1 \neq 0$ which is not a field. We denote the Jacobson radical of a ring R by $\mathfrak{J}(R)$ and the set of all maximal ideals by $\max R$.

For the basic concepts from graph theory refer [4, 9]; for commutative ring theory, see [2].

We give two ideal based graphs, $\Gamma_1(R)$ and $\Gamma_2(R)$, introduced in [10].

The graph $\Gamma_1(R)$ has all ideals of R as vertices and two distinct vertices \mathfrak{a} and \mathfrak{b} are adjacent if and only if $\mathfrak{ab} = 0$.

The graph $\Gamma_2(R)$ has the same vertex set as that of $\Gamma_1(R)$ and two distinct vertices \mathfrak{a} and \mathfrak{b} are adjacent if and only if $\mathfrak{a} + \mathfrak{b} = R$.

In [5], the authors have studied the subgraph $\Gamma_1^*(R)$ of $\Gamma_1(R)$ induced by all the non-zero proper ideals of R.

We state the following result:

Theorem 1.1 ([5]). Let R be an Artin ring. $\Gamma_1^*(R)$ is complete if and only if one of the following holds:

- (i) $R \cong F_1 \oplus F_2$ where F_1 and F_2 are fields.
- (ii) R is local with maximal ideal \mathfrak{m} having index of nilpotency 2.
- (iii) R is local with principal maximal ideal \mathfrak{m} having index of nilpotency 3.

In [8], S. C. Mathew has introduced and studied some basic properties of $\Gamma_2(R)$ which is the subgraph of $\Gamma_2(R)$ induced by the set of all non-zero proper ideals of R. In this paper we include those results, for the sake of completeness. We compare the graphs $\Gamma_1^*(R)$ and $\Gamma_2^*(R)$ and find the clique number and domination number of $\Gamma_2^*(R)$. Also we investigate the properties of rings for which $\Gamma_2^*(R)$ is split.

2 The graph $\Gamma_2^*(R)$ and its properties

In this section we define the graph $\Gamma_2^*(R)$ and investigate some properties of the graph.

Definition 2.1. Let R be a ring. We associate a graph $\Gamma_2^*(R)$ to R whose vertex set is the set of all non-zero proper ideals of R and for distinct ideals \mathfrak{a} and \mathfrak{b} , the corresponding vertices are adjacent if and only if $\mathfrak{a} + \mathfrak{b} = R$.

Remark 2.2. $\Gamma_2^*(R)$ is totally disconnected if and only if R is local.

Remark 2.3. $\Gamma_2^*(R) = K_1$ if and only if (R, \mathfrak{m}) is local with \mathfrak{m} principal and $\mathfrak{m}^2 = 0$.

Theorem 2.4. Let R be a non-local ring. Then $\Gamma_2^*(R)$ is connected if and only if $\mathfrak{J}(R) = 0$.

Proof. (\Rightarrow): Assume $\Gamma_2^*(R)$ is connected. If $\mathfrak{J}(R) \neq 0$, then $\mathfrak{J}(R)$ is an isolated vertex in $\Gamma_2^*(R)$.

(\Leftarrow): Assume that $\mathfrak{J}(R) = 0$. Now, max R induces a complete subgraph in $\Gamma_2^*(R)$. Let \mathfrak{a} be any proper non-zero non maximal ideal. Since $\mathfrak{J}(R) = 0$, there exists a maximal ideal \mathfrak{m} such that $\mathfrak{a} \nsubseteq \mathfrak{m}$. Thus \mathfrak{a} is adjacent to \mathfrak{m} and hence $\Gamma_2^*(R)$ is connected.

Corollary 2.5. If $\Gamma_2^*(R)$ is connected, diam $\Gamma_2^*(R) \leq 3$.

Remark 2.6. \mathfrak{a} is an isolated vertex of $\Gamma_2^*(R)$ if and only if $\mathfrak{a} \subseteq \mathfrak{J}(R)$.

Next result follows from the proof of Theorem 2.4 and Remark 2.6.

Theorem 2.7. $\Gamma_2^*(R)$ is connected except for isolated vertices. That is, $\Gamma_2^*(R)$ has at most one component different from K_1 .

Theorem 2.8. $\Gamma_2^*(R) \cong K_2$ if and only if R is a direct sum of two fields.

Proof. (\Rightarrow): Let $R \cong F_1 \oplus F_2$ where F_1 and F_2 are fields. Then the ideals of R are $F_1 \oplus 0$, $0 \oplus F_2$, $0 \oplus 0$ and $F_1 \oplus F_2$. Then, $\Gamma_2^*(R) \cong K_2$.

(\Leftarrow): Suppose $\Gamma_2^*(R) \cong K_2$. Then R is non-local. Also, R cannot have more than two maximal ideals. Therefore R has exactly two maximal ideals, say \mathfrak{m}_1 and \mathfrak{m}_2 with $\mathfrak{m}_1 \cap \mathfrak{m}_2 = 0$. This implies $R \cong \frac{R}{\mathfrak{m}_1} \oplus \frac{R}{\mathfrak{m}_2}$, a direct sum of two fields.

Theorem 2.9. The only triangle free connected graphs that can be realized as $\Gamma_2^*(R)$ are K_1 and K_2 .

Proof. Let G be a triangle free connected graph. Since G is triangle free R can have at most two maximal ideals. Also since G is connected the result follows.

Theorem 2.10. $\Gamma_2^*(R)$ is complete if and only if either R is a direct sum of two fields or R is local with principal maximal ideal having index of nilpotency 2.

- Proof. (\Rightarrow): If $\Gamma_2^*(R)$ is complete, R can have at most two maximal ideals. For, assume R has 3 maximal ideals say, $\mathfrak{m}_1, \mathfrak{m}_2$ and \mathfrak{m}_3 . Then $\mathfrak{m}_1\mathfrak{m}_2=0$; otherwise $\mathfrak{m}_1\mathfrak{m}_2$ is a vertex of $\Gamma_2^*(R)$ and will not be adjacent to \mathfrak{m}_1 and \mathfrak{m}_2 . For the same reason, $\mathfrak{m}_1\mathfrak{m}_3=0$. Then $\mathfrak{m}_1(\mathfrak{m}_2+\mathfrak{m}_3)=0$. This implies $\mathfrak{m}_1=0$ which is not possible. Now assume that R has exactly 2 maximal ideals say, \mathfrak{m}_1 and \mathfrak{m}_2 . Then $\mathfrak{J}(R)=\mathfrak{m}_1\mathfrak{m}_2=\{0\}$. Thus R is a direct sum of 2 fields. Now, if R is local with maximal ideal \mathfrak{m} , since $\Gamma_2^*(R)$ is complete, \mathfrak{m} must be principal with index of nilpotency 2.
- (\Leftarrow): If R is a direct sum of two fields, $\Gamma_2^*(R) \cong K_2$ and if R is local with principal maximal ideal having index of nilpotency 2, $\Gamma_2^*(R) \cong K_1$.

The following corollary is immediate.

Corollary 2.11. The only complete graphs that can be realized as $\Gamma_2^*(R)$ are K_1 and K_2 .

3 Comparison between $\Gamma_1^*(R)$ and $\Gamma_2^*(R)$

Theorem 3.1. Assume diam $\Gamma_2^*(R) = 2$. Then any two vertices in $\Gamma_2^*(R)$ which are not adjacent are also not adjacent in $\Gamma_1^*(R)$. That is, $\Gamma_1^*(R)$ is a subgraph of $\Gamma_2^*(R)$.

Proof. Let diam $\Gamma_2^*(R) = 2$. Suppose \mathfrak{a} and \mathfrak{b} are not adjacent in $\Gamma_2^*(R)$. Then, there exists a maximal ideal \mathfrak{m} such that $\mathfrak{a} + \mathfrak{m} = R = \mathfrak{b} + \mathfrak{m}$. Therefore, $(\mathfrak{a} + \mathfrak{m})(\mathfrak{b} + \mathfrak{m}) = R$. That is, $\mathfrak{ab} + \mathfrak{am} + \mathfrak{bm} + \mathfrak{m}^2 = R$.

But, $\mathfrak{ab} + \mathfrak{am} + \mathfrak{bm} + \mathfrak{m}^2 \subseteq \mathfrak{ab} + \mathfrak{m}$. Therefore, $\mathfrak{ab} + \mathfrak{m} = R$. This implies, in particular, $\mathfrak{ab} \neq 0$. Thus, \mathfrak{a} and \mathfrak{b} are not adjacent in $\Gamma_1^*(R)$.

Remark 3.2. Suppose \mathfrak{a} and \mathfrak{b} are adjacent in $\Gamma_2^*(R)$. Then, $\mathfrak{a} + \mathfrak{b} = R$. This implies $\mathfrak{a}\mathfrak{b} = \mathfrak{a} \cap \mathfrak{b}$. Hence \mathfrak{a} is adjacent to \mathfrak{b} in $\Gamma_1^*(R)$ if and only if $\mathfrak{a} \cap \mathfrak{b} = 0$. This must hold for every pair of comaximal ideals \mathfrak{a} and \mathfrak{b} .

Theorem 3.3. Let R be a non-local ring. Then, $\Gamma_2^*(R)$ is a subgraph of $\Gamma_1^*(R)$ if and only if R is a direct sum of two fields; and hence $\Gamma_1^*(R) = \Gamma_2^*(R)$ only when R is a direct sum of two fields.

Proof. (\Rightarrow): $\Gamma_2^*(R)$ is a subgraph of $\Gamma_1^*(R)$ if and only if for any pair of comaximal ideals \mathfrak{a} and \mathfrak{b} of R, $\mathfrak{a}\mathfrak{b}=0$. So, if $\Gamma_2^*(R)$ is a subgraph of $\Gamma_1^*(R)$, in particular, $\mathfrak{m}_1\mathfrak{m}_2=0$ where \mathfrak{m}_1 and \mathfrak{m}_2 are two maximal ideals of R. Hence, $R\cong \frac{R}{\mathfrak{m}_1}\oplus \frac{R}{\mathfrak{m}_2}$.

(⇐): If R is a direct sum of two fields, $\Gamma_1^*(R) = \Gamma_2^*(R) = K_2$.

Theorem 3.4. If R is a finite direct sum of fields, $\Gamma_1^*(R) \cong \Gamma_2^*(R)$.

Proof. Let $R = F_1 \oplus F_2 \oplus \cdots \oplus F_n$ where F_i 's are fields. Thus, an ideal \mathfrak{a} of R is of the form, $\mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_n$ where, $\mathfrak{a}_i = 0$ or F_i .

Define $\varphi: V(\Gamma_1^*(R)) \to V(\Gamma_2^*(R))$ by $\varphi(\mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_n) = \mathfrak{b}_1 \oplus \mathfrak{b}_2 \oplus \cdots \oplus \mathfrak{b}_n$ where

$$\mathfrak{b}_i = \begin{cases} F_i, & \text{if } \mathfrak{a}_i = (0) \\ 0, & \text{if } \mathfrak{a}_i = F_i. \end{cases}$$

Clearly, φ is a bijection.

Suppose \mathfrak{a} and \mathfrak{b} are adjacent in $\Gamma_1^*(R)$. Thus \mathfrak{b} must contain 0 at the positions in which \mathfrak{a} contains F_i 's. Therefore, $\varphi(\mathfrak{b})$ contains F_i 's at the positions where $\varphi(\mathfrak{a})$ contains 0. Then, $\varphi(\mathfrak{a})$ is adjacent to $\varphi(\mathfrak{b})$.

Similarly, if $\varphi(\mathfrak{a})$ and $\varphi(\mathfrak{b})$ are adjacent in $\Gamma_2^*(R)$ then, \mathfrak{a} and \mathfrak{b} are adjacent in $\Gamma_1^*(R)$. Thus, φ is a graph isomorphism. That is, $\Gamma_1^*(R) \cong \Gamma_2^*(R)$.

Remark 3.5. In the context of Theorem 3.4, we can explicitly determine $\Gamma_1^*(R)$ and $\Gamma_2^*(R)$ by identifying the vertex set with the power set $P(X) \setminus \{X, \emptyset\}$ where $X = \{1, 2, ..., n\}$ and $A \subset X$ with $\bigoplus_{i \in A} F_i$. Then A and B are adjacent in $\Gamma_1^*(R)$ if and only if $A \cap B = \emptyset$ and A and B are adjacent in $\Gamma_2^*(R)$ if and only if $A \cup B = X$.

Theorem 3.6. $\Gamma_1^*(R)$ and $\Gamma_2^*(R)$ are edge disjoint if and only if R has no non-trivial idempotents.

Proof. (\Rightarrow): Suppose that R contains a non-trivial idempotent e. Then, $R = Re \oplus R(1 - e)$. This implies, Re + R(1 - e) = R and $Re \cap R(1 - e) = ReR(1 - e) = 0$. That is, $\Gamma_1^*(R)$ and $\Gamma_2^*(R)$ are not edge disjoint.

(\Leftarrow): Assume that $\Gamma_1^*(R)$ and $\Gamma_2^*(R)$ are not edge disjoint and then there exist two ideals \mathfrak{a} and \mathfrak{b} such that $\mathfrak{a} + \mathfrak{b} = R$ and $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b} = 0$. Then, $R = \mathfrak{a} \oplus \mathfrak{b}$ and hence, $\mathfrak{a} = Re$ and $\mathfrak{b} = R(1-e)$ for some idempotent e. Since \mathfrak{a} and \mathfrak{b} are non-zero proper ideals, e must be non-trivial. \square

Theorem 3.7. Let R be a non-local ring. If $\Gamma_1^*(R) = \overline{\Gamma_2^*(R)}$, R is not semi-local.

Proof. Assume that R is semi-local with maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n$. Then, there are the following possibilities.

Case (I): $\Gamma_2^*(R)$ is connected.

This assumption implies $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=0$, by Theorem 2.4. Therefore, $(\mathfrak{m}_1\cdots\mathfrak{m}_{n-1}),\mathfrak{m}_n$ are adjacent in $\Gamma_1^*(R)$ as well as in $\Gamma_2^*(R)$, which means $\Gamma_1^*(R)\neq\overline{\Gamma_2^*(R)}$.

Case (II): $\Gamma_2^*(R)$ is disconnected.

This implies $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=\mathfrak{J}(R)\neq 0$. We subdivide this case into two.

Case (II)(a): $\mathfrak{J}(R)$ is nilpotent.

Then there exist least positive integers k_1, k_2, \ldots, k_n such that $\mathfrak{m}_1^{k_1} \mathfrak{m}_2^{k_2} \cdots \mathfrak{m}_n^{k_n} = 0$ with at least one $k_j > 1$ for $1 \le j \le n$, say $k_n > 1$.

If $k_n > 2$, we have $(\mathfrak{m}_1 \cdots \mathfrak{m}_n) + \mathfrak{m}_n \neq R$ and $(\mathfrak{m}_1 \cdots \mathfrak{m}_n) \mathfrak{m}_n \neq 0$. That is, $\Gamma_1^*(R) \neq \overline{\Gamma_2^*(R)}$.

Now consider the case when $k_n = 2$. If $k_i > 1$ for some $i \neq n$, $(\mathfrak{m}_1 \cdots \mathfrak{m}_n) + \mathfrak{m}_n \neq R$ and $(\mathfrak{m}_1 \cdots \mathfrak{m}_n)\mathfrak{m}_n \neq 0$. If $k_i = 1 \ \forall i \neq n$, $(\mathfrak{m}_1 \cdots \mathfrak{m}_{l-1}\mathfrak{m}_{l+1} \cdots \mathfrak{m}_n^2) + \mathfrak{m}_l = R$ where $l \neq n$. But, $(\mathfrak{m}_1 \cdots \mathfrak{m}_{l-1}\mathfrak{m}_{l+1} \cdots \mathfrak{m}_n^2)\mathfrak{m}_l = 0$. So, $\Gamma_1^*(R) \neq \overline{\Gamma_2^*(R)}$.

Case (II)(b): $\mathfrak{J}(R)$ is not nilpotent.

In this case we have $(\mathfrak{m}_1 \cdots \mathfrak{m}_n) + \mathfrak{m}_1 \neq R$ and $(\mathfrak{m}_1 \cdots \mathfrak{m}_n) \mathfrak{m}_1 \neq 0$.

Thus, if
$$\Gamma_1^*(R) = \overline{\Gamma_2^*(R)}$$
, R cannot be semi-local.

Theorem 3.8. Let (R, \mathfrak{m}) be an Artin local ring. Then, $\Gamma_1^*(R) = \overline{\Gamma_2^*(R)}$ if and only if either \mathfrak{m} has index of nilpotency 2 or \mathfrak{m} is principal with index of nilpotency 3.

Proof. Follows from Remark 2.2 and Theorem 1.1.

4 Some parameters of $\Gamma_2^*(R)$

In this section we find the clique number and the domination number of $\Gamma_2^*(R)$.

Theorem 4.1. $cl(\Gamma_2^*(R)) = |\max R|$.

Proof. Clearly $\max R$ induces a complete subgraph. Let \mathfrak{a} be any non-zero non-maximal proper ideal of R. Then \mathfrak{a} is contained in a maximal ideal. That is, there exists a maximal ideal \mathfrak{m} such that \mathfrak{a} is not adjacent to \mathfrak{m} . Thus, $\max R$ induces a maximal complete subgraph.

Now suppose $S = \{\mathfrak{a}_i : i \in \Lambda\}$, where Λ is an index set, induces a complete subgraph in $\Gamma_2^*(R)$. Then one maximal ideal can contain at most one $\mathfrak{a}_i \in S$. That is, there exists an injective map from S to $\max R$. This implies, $|S| \leq |\max R|$. Thus, $cl(\Gamma_2^*(R)) = |\max R|$.

Theorem 4.2. Let R be a semi local ring with $|\max R| = n > 2$. Then, $\gamma(\Gamma_2^*(R)) = |\max R| + N$ umber of isolated vertices in $\Gamma_2^*(R)$.

Proof. Let $\Gamma_2^{**}(R)$ be the connected component of $\Gamma_2^*(R)$ induced by the non-isolated vertices of $\Gamma_2^*(R)$. Now, by Theorem 2.7, it is enough to show that $\gamma(\Gamma_2^{**}(R)) = |\max R|$.

Let $\max R = \{\mathfrak{m}_1, \mathfrak{m}_2, \dots, \mathfrak{m}_n\}$. Clearly $\max R$ is a dominating set for $\Gamma_2^{**}(R)$. Now consider, $S = \{\mathfrak{m}_2 \cdots \mathfrak{m}_n, \mathfrak{m}_1 \mathfrak{m}_3 \cdots \mathfrak{m}_n, \dots, \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{n-1}\}$, which is an independent set in $\Gamma_2^{**}(R)$. Note that any ideal $\mathfrak{a} \notin S$ can be adjacent only to at most one element of S. So every dominating set

in $\Gamma_2^{**}(R)$ must contain at least n elements. Thus, $\gamma(\Gamma_2^{**}(R)) = n = |\max R|$. Hence the result follows.

Remark 4.3. If R is a semi-local ring with $|\max R| = 2$ then, the above result is not true. For example, if R is a direct sum of two fields, $\gamma(\Gamma_2^*(R)) = \gamma(K_2) = 1$ but $|\max R| = 2$.

5 Splitness

A graph (V, E) is said to be a *split graph* if V is the disjoint union of two sets K and S where K induces a complete subgraph and S is an independent set. Then, we can assume either K is a clique or S is a maximal independent set. In [6] & [7], the authors have carried out a detailed study on splitness of some graphs associated with a ring. In this section we continue the study in the case of $\Gamma_2^*(R)$.

Lemma 5.1. Let $R = R_1 \times R_2 \times R_3$ be a ring. If $\Gamma_2^*(R)$ is split, each R_i must be a field.

Proof. Suppose R_1 is not a field. Then there exists a proper non-zero ideal I of R_1 . Then, $\{I \times R_2 \times R_3, R_1 \times R_2 \times 0, 0 \times R_2 \times R_3, R_1 \times 0 \times 0\}$ induces a C_4 in $\Gamma_2^*(R)$, a contradiction. \square

Lemma 5.2. If F_i $(1 \le i \le 3)$ are fields and $R = F_1 \times F_2 \times F_3$ then $\Gamma_2^*(R)$ is split.

Proof. $V(\Gamma_2^*(R))$ can be partitioned into $K = \{F_1 \times F_2 \times 0, F_1 \times 0 \times F_3, 0 \times F_2 \times F_3\}$ and $S = \{F_1 \times 0 \times 0, 0 \times F_2 \times 0, 0 \times 0 \times F_3\}$ where K induces a complete subgraph and S is an independent set.

Lemma 5.3. Let F be a field and R_1 a local ring. Let $R = R_1 \times F$. Then $\Gamma_2^*(R)$ is split.

Proof. Let $\{I_j : j \in J\}$ be the collection of non-zero proper ideals of R_1 . Then $\{I_j \times F : j \in J\} \cup \{I_j \times 0 : j \in J\}$ is an independent set and $\{0 \times F, R_1 \times 0\}$ is a K_2 . This forms a partition of $V(\Gamma_2^*(R))$. Thus, $\Gamma_2^*(R)$ is split.

Lemma 5.4. Suppose R has exactly n maximal ideals \mathfrak{m}_i $(1 \leq i \leq n)$ with each \mathfrak{m}_i being generated by an idempotent e_i . Then $R \cong \prod_{i=1}^n F_i$ where each $F_i \cong R/\mathfrak{m}_i$, a field.

Proof. Let $e = \prod_{i=1}^{n} e_i$. Then $e \in \mathfrak{J}(R)$. Therefore, 1 - e is a unit (and an idempotent). So, $1 - e = 1 \Rightarrow e = 0$. Then by the Chinese Remainder Theorem,

$$R \cong \frac{R}{\prod_{i=1}^{n} Re_i} \cong \frac{R}{\bigcap_{i=1}^{n} Re_i} \cong \prod_{i=1}^{n} \frac{R}{Re_i}.$$

Theorem 5.5. Let R be a ring. $\Gamma_2^*(R)$ is a split graph if and only if one of the following conditions holds:

- (i) R is local.
- (ii) $R \cong R_1 \times F$ where R_1 is a local ring and F is a field.
- (iii) $R \cong F_1 \times F_2 \times F_3$ where F_i 's are fields.

Proof. First we note that $\Gamma_2^*(R)$ is split if and only if $\Gamma_2(R)$ is split. Also, if R is local, $\Gamma_2^*(R)$ is split. Sufficiency of other conditions follows from the lemmas. To prove the necessity of the conditions, we assume that R is not local and $V(\Gamma_2(R))$ is the disjoint union of two sets K and S where K induces a complete subgraph and S is an independent set. We assume that K and S are non-empty. Also, S can contain at most one maximal ideal.

Case (I): S contains a maximal ideal, say \mathfrak{m}_1 .

In this case, R can have only one maximal ideal other than \mathfrak{m}_1 . For, if \mathfrak{m}_2 and \mathfrak{m}_3 are distinct maximal ideals other than \mathfrak{m}_1 , then \mathfrak{m}_2 and \mathfrak{m}_3 are in K. Then, $\mathfrak{m}_2\mathfrak{m}_3 \in S$, $\mathfrak{m}_1 \in S$. Clearly, $\mathfrak{m}_1 + \mathfrak{m}_2\mathfrak{m}_3 = R$, a contradiction. Thus, R contains only one maximal ideal other than \mathfrak{m}_1 , say \mathfrak{m}_2 which belongs to K. Let $x_i \in \mathfrak{m}_i$ (i = 1, 2) with $x_1 + x_2 = 1$. As $\mathfrak{m}_2^2 + \mathfrak{m}_1 = R$, $\mathfrak{m}_2^2 \in K$ which implies $\mathfrak{m}_2^2 = \mathfrak{m}_2$. Similarly, as $Rx_2 + \mathfrak{m}_1 = R$, $Rx_2 \in K$ which implies $\mathfrak{m}_2 = Rx_2$. Then, \mathfrak{m}_2 is a finitely generated maximal ideal which is idempotent. Hence, \mathfrak{m}_2 is generated by an idempotent. So, $R \cong R_1 \times F$ where F is a field and \mathfrak{m}_2 is isomorphic to the ideal $R_1 \times \{0\}$. Further, R_1 must be local.

Case (II): S contains no maximal ideal.

In this case, R can have at most three maximal ideals, for, if $\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3$ and \mathfrak{m}_4 are distinct maximal ideals, $\mathfrak{m}_1\mathfrak{m}_2$ and $\mathfrak{m}_3\mathfrak{m}_4$ are in S which leads to a contradiction. If R has only two maximal ideals, say, \mathfrak{m}_1 and \mathfrak{m}_2 , then $\mathfrak{m}_1, \mathfrak{m}_2 \in K$. Since, $\mathfrak{m}_i^2 + \mathfrak{m}_i \neq R$ (i = 1, 2), we have $\mathfrak{m}_1^2, \mathfrak{m}_2^2 \in S$. But $\mathfrak{m}_1^2 + \mathfrak{m}_2^2 = R$. So, to avoid a contradiction we have to assume $\mathfrak{m}_1^2 = \mathfrak{m}_1$ or $\mathfrak{m}_2^2 = \mathfrak{m}_2$. That is, $R \cong R_1 \times F$ where F is a field and R_1 is a local ring. So, let us assume R has exactly 3 maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2$ and \mathfrak{m}_3 . Note that $\mathfrak{m}_i \in K$ (i = 1, 2, 3). Then, as $\mathfrak{m}_1 + \mathfrak{m}_2\mathfrak{m}_3 = R$, there exists $x_1 \in \mathfrak{m}_1$ such that $Rx_1 + \mathfrak{m}_2\mathfrak{m}_3 = R$ which implies $Rx_1 \in K$ and hence, $Rx_1 = \mathfrak{m}_1$. Similarly arguing with $\mathfrak{m}_1^2 + \mathfrak{m}_2\mathfrak{m}_3 = R$, we get $\mathfrak{m}_1 = \mathfrak{m}_1^2$. Then \mathfrak{m}_1 is generated by an idempotent. Similarly each \mathfrak{m}_j (j = 2, 3) is generated by an idempotent. Then by the Lemma 5.4, $R \cong F_1 \times F_2 \times F_3$ where F_i $(1 \le i \le 3)$ are fields.

References

- D. F. Anderson and P. S. Livingston, "The zero-divisor graph of a commutative ring", J. Algebra, vol. 217, no. 2, pp. 434–447, 1999.
- [2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Reading, MA: Addison-Wesley, 1969.
- [3] I. Beck, "Coloring of commutative rings", J. Algebra, vol. 116, no. 1, pp. 208–226, 1988.
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208, New York: Marcel Dekker, Inc., 1998.
- [5] M. I. Jinnah and S. C. Mathew, "On the ideal graph of a commutative ring", Algebras Groups Geom., vol. 26, no. 2, pp. 125–131, 2009.
- [6] M. I. Jinnah and S. C. Mathew, "When is the comaximal graph split?", Comm. Algebra, vol. 40, no. 7, pp. 2400–2404, 2012.
- [7] M. I. Jinnah and S. C. Mathew, "On rings whose Beck graph is split", Beitr. Algebra Geom., vol. 56, no. 2, pp. 379–385, 2015.
- [8] S. C. Mathew, "A study on some graphs associated with a commutative ring", Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, 2011.
- [9] K. R. Parthasarathy, Basic graph theory, New Delhi, New York: Tata-McGraw Hill, 1994.
- [10] C. Thomas, "A study of some problems in algebraic graph theory graphs arising from rings", Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, 2004.