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ABSTRACT
R. S. Jan?
B. S. REDDY! This article aims to examine the existence and Hyers-Ulam
stability of non-local random impulsive neutral stochastic in-
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tially, we prove the existence of mild solutions to the equa-

- tions by using the Banach fixed point theorem. Then, we
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investigate stability via the continuous dependence of solu-

tions on the initial value. Next, we study the Hyers-Ulam
stability results under the Lipschitz condition on a bounded
and closed interval. Finally, we give an illustrative example

of our main result.

RESUMEN

Este articulo examina la existencia y estabilidad de Hyers-
Ulam de ecuaciones integrodiferenciales con retardo no-
locales aleatorias impulsivas neutrales estocéasticas con saltos
de Poisson. Inicialmente probamos la existencia de solu-
ciones mild de las ecuaciones usando el teorema del punto
fijo de Banach. Luego, investigamos la estabilidad a través
de la dependencia continua de las soluciones respecto del
valor inicial. A continuacion, estudiamos resultados acerca
de la estabilidad de Hyers-Ulam bajo la condiciéon de Lips-
chitz en un intervalo cerrado y acotado. Finalmente, damos

un ejemplo ilustrativo de nuestro resultado principal.
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1 Introduction

A model to represent the system with the occurrence of a sudden change in state at some time
points is provided by impulsive differential equations. Differential equations (DEs) with fixed time
impulses have been studied by many authors [7, 15, 22]. However, in the real world, impulses
frequently occur at unpredictable times. Wu and Meng [21] introduced the generic DEs with
random impulses, where the impulsive moments are random variables and any solution of the
equations is a stochastic process, to better depict this phenomenon in reality. Examples of integer-
order DEs with random impulses that have moderate solutions have been mentioned in [9, 18, 19].
The stochastic differential equations (SDEs) with random impulse involving fractional derivatives

also have been studied in [10, 20, 24].

Poisson jumps are now a common modelling element in the fields of physics, biology, medicine,
economics, and finance. A jump term must naturally be included in the SDEs. Furthermore,
many real-world systems (such those that experience abrupt price changes or jumps as a result of
stock market crashes, earthquakes, epidemics, etc.) could experience some jump-type stochastic
disturbances. Since these system’s sample pathways are not continuous, stochastic processes with
jumps are a better fit for describing these models. These jump models typically come from Poisson
random measurements. Such system’s sample pathways (abbreviated c’adl’ag) are right continuous

and have left limits. For more details, see the monographs [1, 23| and references therein.

On the other hand, impulsive differential equations also caught the interest of researchers see
[2, 11, 12, 13]. Differential equations with fixed moments of impulses have become a natural
framework for modeling processes in economics, physics, and population dynamics. The impulses
usually exist at deterministic or random points. The properties of fixed-type random impulses
are investigated in many articles [18, 19]. A. Anguraj et al. [4] established the existence and HU
stability of random impulsive stochastic functional integrodifferential equations with finite delays.
Moreover, Lang, Wenxuan, et al. [16] investigated the existence and HU stability of solutions
for SDEs with random impulses. D. Chalishajar et al. [6] studied the existence, uniqueness, and
stability of non-local random impulsive neutral stochastic differential equations with Poisson jumps.
Recently, D. Baleanu, et al. [5] discussed the existence and stability results of mild solutions for
random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups
and resolvent operators in Hilbert spaces. R. Kasinathan et al. [14] investigated the existence and

stability results of mild solutions for RISIDEs with noncompact semigroups via resolvent operators.

In A. Anguraj et al. [3] have been studied the existence and UH stability of SDEs with random

impulse driven by Poisson jumps of the type
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d(z(t)) = f(t,z) + g(t, z)dW(t) —|—/ h(t, 2z, 2)K(ds,dz), t>tg, t#tg
st
2(oq) = bg(dg)z(0,), ¢=1,2,...

2z, = o={0c(0): =6 <0 <0}

Motivated by the above works, this paper aims to fill this gap by investigating the existence, sta-
bility and HU stability of non-local random impulsive neutral stochastic integrodifferential delayed

equations (NRINSIDEs) and Poisson jumps.

The considered following NRINSIDEs with Poisson jumps of the type

dlz(t) + h(t, z)] = {f(h 2t) —|—/0 k(t, s, zs) ds] dt + g(t, z) dW () (1.1)

+/P(t,zt,z)f((ds,dz), t>ty, t#t,,
)1t

z(og) :bq((Sq)z(oq_), g=1,2,..., (1.2)

ztg +1(2) =20 =0={c(0) : =6 <0 <0}, (1.3)

where J, is a random variable defined from € to D, def (0,dq) for ¢ =1,2,..., where 0 < dy < o0.
Moreover, suppose that J, and J, are independent of each other as 2 # j for 2,7 = 1,2... Here

filto, TIXx€ =R h:ftg, TI x € =R, g:[tg, T] x €x — RX™ L [tg, T] X [to, T] x € = RY,
r: € — Cand by : Dy — R¥*? are Borel measurable functions, and z; is R%valued stochastic
process such that

ze={z2(t+0): =6 <0 <0}, 2z cRe

We assume that o9 = ¢y and o, = o4—1 + J§,; for ¢ = 1,2,... Obviously, {o,} is a process
with independent increments. The impulsive moments o, from a strictly increasing sequence, ¢.e.
=09 <01 <0y <--< lim o, =00, and z(0,) = lim z(t). Denote by {G(t),t > 0} the
k—o0 t—o,—0
simple counting process generated by {o,}, and {K(¢),t > 0} is a given m-dimensional Wiener
process, and denote 3’%1) the o-algebra generated by {G;,t > 0}, and denote 39) the o-algebra
generated by {K;,t > 0}. We assume that S(o?, 35,? and o are mutually independent. In (1.1)-(1.3),
K(dt,dz) = K(dt,dz) — dtv(du) denotes the compensated Poisson measure independent of W ()

and K (dt, dz) represents the Poisson counting measure associated with a characteristic measure v.
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Highlights:
(1) This work extends the work of A. Anguraj et al. [3].

(2) Time delay of NRINSIDEs and Poisson jumps is taken care of by the prescribed phase
space B.

The structure of this article is as follows: In section 2, we mention some concepts and principles.
Section 3 is devoted to studying the existence of mild solutions of the system (1.1)-(1.3). In
section 4, the stability of the mild solution of the equations (1.1)-(1.3) is studied. In section 5, we
investigate the HU stability of the system (1.1)-(1.3). An example is given to illustrate the theory

in section 6. At the end, the last section deals with the conclusion and acknowledgement.

2 Preliminaries

Suppose that (Q, 3§, P) is a probability space with filtration {F,}, ¢ > 0 fulfilling §; = El) U gf).
Let £7 = (2, R%) be the collection of all strongly measurable, p* integrable, §; measurable, R?-
random variables in z with the norm | z[| ¢, = (E[|z/|?)'/?. Let 6 > 0 and denote the Banach space
of all piecewise continuous R%valued stochastic process {o(t), t € [~d,0]} by €([-6,0], £(Q, R?))
equipped with the norm

1/p
||w||¢:( sup Enw(e)nf) .
—6<0<0

The initial data
2ty +1(2) =20 =0={c(f): =6 <6 <0}, (2.1)

is an §,, measurable, [—4, 0] to R?-valued random variable such that E|/c||? < oo.

2.1 Poisson jump process

Let (p(t))¢>0 be an H-valued, o-finite stationary §;-adapted Poisson point process on (£2,§, (§¢), P).

The counting random measure K defined by

K((ti,ta] x (w) = Y Tu(p(s)(w)),

t1<s<ts

for any 4 € B,(H) is called the Poisson random measure associated to the Poisson point process

p. This measure v is said to be a Levy measure. Then the measure K is defined by

RK((0,4] x ) = K((0,1] x 1) — tw(sL).
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This measure K (dt,du) is called the compensated Poisson random measure, and dt v(8l) is called

the compensator.

Definition 2.1. For a given T € (to,00), a R¥-valued stochastic process z(t) onty — 8 <t < T
is called the solution to equation (1.1)-(1.3) with the initial data (2.1), if for each to <t < T,
2ty = 0, {21 ho<t<T 18 Fi-adapted and

q

Hbz r(2) + h(0,0) — Hbz(é )h(t, z)

1=1

Hba

2(t) =

—

M- 1048

fszsder/fszs
1156

/
! / / (s,s,2¢) d<d3+// (s,s,2c) dsds
[IbG) [ otz amis+ / gls,22) AW (s)
.

/ S,Zs,U dS du / / S, 25, U dS du) I[O'q,o'q+1)(t)

q
[156
q
where Hb](dj) = 0g(0q)bg—1(0g—1) - - b,(8,), and I.(.) is the index function, i.e.,

@
Il

—_
<
-

_|_
M-

_|_
i1

+
M=

1

~

J=

<

1 if teLl,
0 if té¢L.

Ip(t) =

Definition 2.2 (HU stability). Suppose that w(t) is a R*-valued stochastic process. If there ewists
a real number N > 0, such that for arbitrary ¢ > 0, satisfying

H Z[Hb r(z) +h(0,0) — H tzt+ZHb /fszs

q=0 ~2=1 =1 1=1 3=1

t

—|—/ f(s,25) ds—i—ZHb / / (8,6, 2¢ dgds+/ / (s,6,2.)ds ds
1=1 j=1

a q Y
S TI06) [ otz awis + / (s, 2) W ()

1=1 3=1 9q

P

—|—ZHb / /P s, zg,u) K (ds, du) + / / s, zg,u) K (ds du)] Loy o) (@) <e

1=1 3=1 Tr—1 oq

For each solution z(t) with the initial value z;, = wy, = o, if there exists a solution z(t) of equations
(1.1)-(1.3) with
Ellw(t) — z(t)|| < Ne, Vit (to—7,T).
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Then equation (1.1)-(1.3) has the HU stability.

Lemma 2.3 ([8]). Let 9,1 € &([a,b], R?) be two functions. We suppose that 9(t) is nondecreasing.
If 2(t) € €([a,b], R?) is a solution of the following inequality

+ /atw(s)z(s) ds, te€]a,b],
then, =(t) < 9(t) exp ( / " o(s) ds) .

Lemma 2.4 ([17]). For any p > 1 and for any predictable process z € £
holds,

= [0, T] the inequality

dxm

t p/2
wﬂz@M@WfW%wnwﬂémmmwm@ te0,T).

3 Main results

In order to derive the existence and uniqueness of the system (1.1)-(1.3), we shall impose the

following assumptions:

(A1): The functions h : [ty, T] x € — R, f: [ty,T] x € = R? and g : [tg, T] x € — R¥>*™. There
exist positive constant L, > 0, Ly > 0 and L, > 0 such that,

E||A(t, ¢1) — h(t, ) |I” < LiEllvr — 2llg,
E[lr(t, )" < LuEllY |6
ENf(t,41) = £t 92)lI” < LeElYr — ¢2lle,
EIf @ )P < LBl
Ellg(t,v1) — (¢, ¥2)|I” < LgE|lvhr — allg,
Ellg(t, 9)[I” < LeEl[ [

for all ¢ € [tg, T] and 91,9 and ¢ € €.

(A2): The function k : [tg, T] X [to, T] x € — R?, there exists a positive constant Ly > 0 such
that,

t
/O E[|k(t, s, 1) — k(t, 5, 02) [P < LiEllvor — va]2
t
Aﬁmm&wwsumw%

for all ¢ € [to, T] and 11,12 and ¢ € €.
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(A3): The condition max { IT 115, (Tj)”} < o0o. That is to say, there exists a constant C' > 0 such

E <rr117%x {H ||bZ(T])||}> <C.

(A4): The function P : [tg, 7] x € x {f — R, there exists a positive constant Lp > 0 such that,

that

/ E|P(t, $1,u) — P(t, 4, 0)|Pw dz < LoEllgs — ol
S
/ E|P(t,s,9)|v dz < LpE[4|2
s

for all ¢ € [tg, T] and 11,19 and ¢ € €.
(A5): The function r : € — € is continuous and there exists some constant L, > 0 such that,
El|r(t,41) = r(t, ¥2) P < LeE[[¢r — ol
Ellr(t, Y)IIP < LeEl[¢l,
for all ¢ € [tg, T| and 11,19 and ¢ € €.

Theorem 3.1. Assume that the assumptions (A1)-(A5) are satisfied. Then the system (1.1)-(1.3)

has a unique solution in B.

Proof. Let B be the phase space B = &([tg — 4, T], £P(2,R?)) endowed with the norm

2l = sup [zl
tE[to,T]
where ||z¢[le = sup_s<,<; El|2||P. Denote B,, = {z € B, ||z|l)3 < m}, which is the closed ball with
center z and radius m > 0. For any initial value (¢, z0,) with ¢y > 0 and 2y € B,,, we define the

operator S : B — B by

o(t) —r(t), t € (o0, to]
> [Hbz(él)a(O) —7(t) + h(0,0) = [ [ bl(8)N(t, 2)
g=0 L1=1 =1

q o, o, s
+ Hb](T])/ (s, 2s d8+/ f(s,zs ds—i—ZHb / / k(s,s,2¢)dsds
o o,-1Y0

z:l]: 1—1 1=1 3=1

+/: k(s,s, 2 d§+ZHb / (s, 25)dW (s) ‘*‘/: g(s, z5)dW (s)

1=1 g=1 - q

—1—21__[6 / /Pszs, K (ds,du)
Op—1
/P s, zs,u) K (ds du)}]aqﬂqﬂ)(t), t € [to, T].
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Now we have to prove that S maps B into itself.

IS = i[Hb (1) + h(0,0)] - f[lbz@)h(t,zo
{iﬁm / fszéds—&-/fsza y
STt [ [ i [ s
+:§ﬁb]<a]>/ oo, ) W o)+ [ gto,2 ) aw(s)|
[STIb0 [ [ re ks [ [ 2ok,

[lo(0) = r(2) + h(0,0)|"]

—=
=
<
—
&
~—

E||Sz(t)||? < 4°7'E |:max
q

—e
&
-~
o
v

ii

<
M ——
- . 7,

+ 4P7'E| max

@
]
<

r q r t p
478 max {1 TR | | [ 1766020105 Ty 0]
1=y 4 LtJ%to
1 B q 1Pr t s P
o LTI | | [ ko620 dsds Ty, 0]
L » 1=y 4 LJtg
. r q pr P
+8[ma (LTI | [ tote2a () g, )]
1=
) r q P17 P
LR n}%x{l,HHbJ(éJ)H} /t /||Ps 2o u)K (ds, du) | ds Iy, (,qﬂ)(t)}
L v d 0

s
Il
~

< 4" 7ICElo(0)|I” + L, El|2|"] + 47T CLaE|o|” + 477 CLE|| 2|

t t
+4p71max{1,C}(t—to)pflLf/ EstH’éds+4p71max{1,C’}(t—to)pflLk/ E|jzs||e ds

to to

¢ t
44771 max{l,C}(t—to)p/Q_ngLp/ IEHzSHIéds+4p_1max{l,C}(t—to)p/Qchp/ Ellzs||% ds.
to to
Thus

sup  E[Sz(0)|P < 4 ICE[o(0)|P + LiE|oll?] + {47 C(Ly + Ly)(t — to) ™2
SE[t—T,t]

+ 4P max{1,C}H(t — to)P 'Ly + (t — to)? " Ly + (t — to)”/* 'Ly L,

+(t = to)"ep(Lp + L/ *)] }(t — to) s Ellzs e
se|t—9,t

Therefore S maps B into itself.
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Now, we have to prove that S is a contraction mapping.
p
Bl($2)(0) - (Sw)(OIF <3 E [max { [T DI 176D = )l 0]

+ 37K :maX{HHb }th(t,a)—h(t,wt)lll[aq,aﬁn(t)r

~

&
—
=
kx

pr t P
L3R LTI | [ 156,200 - f(s,ws>||dsf[gq,oq+1><t>]
LJtg

@
Il
<

—=
=
Q

t s P
5)l / / ||k<s,<,zg>—k(s,<,zg>||d<dsf[aq,0q+l)<t>}
L 0

s
Il
<

—=
=
&v

r pr P
+ 3R HzlaX 1, 0]l / llg(s,zs) — g(s, ws)||dW (s )dsI[oqyqu)(t)]

s
Il
<

max{
+ 37K max {1,

o1}
o1
o1
o

—=
=
Q

+3°7'E|m ax 1,

pr ~ P
/ /HP S, zs,u) — P(s, zs,u )||K(ds,du)I[aq,Uﬁl)(t)}

s
Il
<

< 3"ICE|r(z2) — r(w)|” + 3" CE[|A(t, z¢) — h(t, we)||”

3 max(1,C)0 - Ly x [ CENf (s, 22) — Fls,w0)|Pds

to

t s
+3p71max{170}(t—to)ka/ / E||k(s,s,zs) — k(s, s, we)||"dsds
to Jo

t
+37 max{1, C}(t — to)"* L, Ly / Ellg(s, zs) — g(s,ws)[[PdW (s)

to
t

+ 37 ' max{1,C}(t — to)pchP/ E||P(s,zs,u) — P(s,z2s,u)||"ds

to
< 3PT'CLE|z — w|? + 3P ' CLLE|z — w|?
+ 32" " max{1, C}(t — to)" LsE| 25 — ws]|/5ds
+ 37"  max{1, C}(t — to)" LyE||zs — ws|/2ds
+ 37" max{1, C}(t — to)?/? Ly LyE||zs — ws||hds
+ 37 " max{1, C}(t — to) cp(Lp + Lp/Q)IEHzS — ws|[Rds
< {3"7'C(Lr + Ln) + 3" max{1, C}[(t — to)" Ly + (t — to)" L

+(t—t0)"PLyLy + (t — to)’ep(Lp + LY*)]} sup E|lz(t+0) —w(t + 0)|%
0c[—46,0]
< {3"7'C(Ly + Ly) + 3°~ " max{1, C}[(t — to)" Ly + (t — to)" Ly

+ (t—to)"*LyLg + (t — to) ey (Lp + LY?)]} sup. Eu (s) — w(s)|%-

sE[t—

Taking the supremum over ¢, we get
1(52)(t) = (Sw)() ]Iz < UTIE[z — wl,
with

A(T) = 3" C(Ly + Lp) + 3° " max{1, C}[(t — to)"(Ls + Ly, + ¢,(Lp + LY*)) + (t — to)?/> L, L,].
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By taking a suitable 0 < 7; < 7 sufficient small such that 2(7) < 1. Hence S is a contraction on
Br,. Sz = z is a unique solution of equation (1.1)-(1.3) by the Banach fixed point theorem. O

4 Stability

The stability through continuous dependence of solutions on the initial condition is investigated.

Definition 4.1 ([4]). A mild solution z(t) of the system (1.1) and (1.2) with initial condition o
satisfying (2.1) is said to be stable in the mean square if for all e > 0, there exist, § > 0 such that,

Elz —w|! <e€, whenever,

EHUl — CTQHP < 6, fO’f‘ all te [to,T],

where w(t) is another mild solution of the system (1.1) and (1.2) with initial value o defined in

(1.3).

Theorem 4.2. Let z(t) and w(t) be mild solutions of the system (1.1)-(1.3) with initial values oq
and oy respectively. If the hypotheses of theorem 3.1 are fulfilled, the mean solution of the system
(1.1)- (1.3) is stable in the mean square.

Proof. Under assumptions, z(t) and w(t) be two mild solutions of the system (1.1)-(1.3) with initial

values o1 and o9 respectively.

2(t) - fﬁ [Hb o1 — o2] + [r(z)—r(w)]ﬂh(o,m)—h<o,az>]+ﬁlbl<52>[h<t,zt>—h(t,wtn
- ZHb / 5, 2) = 15,0 ds+/ /(5,2 —f(s,w.gnds}
S TIb0 [ [ -rnciaans [ [ bess -t el
v ZHb )7 otz =t aW )+ [ o) =gt ) W o)
+ ZHb / 1/[1»8 vt = Pl was ) K (ds, )

+/Jq /u[P S, zs,u) — P(s,ws,u )]f((dS,du)”I[gq,qu)(t).
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Then,

E||z(t) — w(t)||P < 4P~ C(1 + Lp)E|joy — o2||P + 427 CL,E|z — w||? + 4P~ CPLLE||2(t) — w(t)|?

¢
+4P_1max{1,0}(t—to)p_lLf/ E|z(s) —w(s)||Pds
to

+ 4P max{1, C}(t fto)”*lLk/ Ellz(s) — w(s)|[ds

to

t
+ 47 max{1,C}(t — to)p/2_1Lng/ Ellz(s) — w(s)|ds

to

t
+ 4P~  max{1, C}(t — to)p/QLPcp/ El[z(s) — w(s)|[Pds.

to

Furthermore,

sup  E|z(t) —w(t)||P <4P7'C(1 + Lp)E|oy — oa||P + 4P C(L, + L) sup E|z(t) — w(t)|P
sE[t—T,t] teft—r,t]
t
+ 4P~ max{1, C}(t — to)p_lLf / sup  E[[2(s) — w(s)|ds
to s€[t—7t]
t
F  max(LCY o) e [ sup Bla(s) - w(s)|Pds
to SE[t—T,t]
t
+ 4P~ max{1, C}(t — to)p/Q_ngLp/ sup E[[2(s) —w(s)[|ds
to s€[t—T,t]
t

+ 4P~ max{1, C}(t — tO)p_lLPcp/ sup  El|z(s) — w(s)||"ds.

to SE[t—T,t]
Thus,
sup  E[[2(t) — w(t)[|” < 1E[o1 — o2,
SE[t—T,t]
where,
477101+ L)
Y

L= [4971C(L, + Ly) + 47 max{1, O} (t — to)?[(Ly + i) + (t — to) P> Ly Ly + ¢y (Lp + LY)]]

Given € > 0, choose § = £ such that E[o1 — 02[[" < . Then,
Iz —wllz <.

This completes the proof. O]
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5 HU stability

In this section, we investigate the HU stability of equations (1.1)-(1.3) under the assumptions (A1)-
(A5). We have the following HU stability theorem.

Theorem 5.1. Under the assumptions (A1)-(A5). Then equations (1.1)-(1.3) has the HU stability.

Proof.

4&=§jh1wmwm—<>+mow—Ipw>mam

1=1 1=1

7 4q
+2Hb] / f(s,25) der/fszS

1=1 3=1

q K © &
+ZHbJ6)/ / k(s,g,zg)dgds—i—/ / k(s,s,z.)dsds

=1 =1 o,—1 40 oq J0

ﬁwmfzwwmm [@%mw>
z::f[ /(r 1/ s, 25, u) K (ds, du) + /al/ s, zg,u) K (ds, du) Iy o0i1)(©)-

It follows from the condition that
q

H i {ﬁb (2) + h(0,0) = [[ bu(r)R(t, 2)

1=1
4 q
—&—ZHb] / (s, z5) ds+/fszs
1=1 =1
7 q
+2Hbj / / (8,6, 2¢ dgder// (s,¢,2.)ds ds
1=1 g=1 Ogq

a q
3 1156, / @mm«>/<mmm>
1=1 j=1 9q
p
+ZHb / / S, Zg, U ds du) + / / s, zs,u) K (ds du)]l[aq,gqﬂ)(t) <e.
1=1 3= Ou—1 Tq
When t € [ty — 0, 19], we get E||w(t) — z(¢)||” = 0. And when ¢ € [0, T], we get
[e5S] q q
() - 201 < 28w - 3 [ T[5.6)0(0) = r(:) + 1(0.0) = [[ 08 0tt. )
q=0 ~21=1 =1

K3

—|—ZHb 7 / (s, zs ds+/ f(s,zs ds—l—ZHb /:il /Osk(s,g,zc)dcds

1=1 y=1 - 1=1 3=1
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+/UZ /OS k(s, s, 2 dcds+ZHb (05) / B (3>Zs)dW(5)+/: g(s, zs) dW (s)

=1 1=1 q

a 4 s
—|—ZHb3(6J)/ /P(s,zs, K(ds,du) + / /P s, zs,u) K (ds, du)} Iioy.oqe1) ()
o1 Tq

1=1 yj=1

+2°7'E i {ZHb / [f(s,zs) — f(s,ws)] ds—|—/t [f(s,25) — f(s,ws)] ds}
T _ZHb / JRCCESSERIERTS) asds+ [ [ 6050 = ks o
+ _ZHb / 9(5.20) = 95w OV(s) + [ Tgls,z2) — g(s,0.)] (o)
+ ZH() / / (s,2s,u) (s, ws, u)] K (ds, du)
/ / (s, 2s, (s, ws, )]f((ds,du)} I[quf’q+1)(t) ’
< 2P lte 4 9PTIN,
where
oo q q o, ot
S )> [ZHbJ ) [ 1) = fswlds [ (720 - f<s,ws>]ds}
=0 -1=1 y=1 O1—1 9q
r 4 q o, S s
+ _;Eb, / 1/0 [k(s,s,2c) — k(s,g,wg)]dgds—i—/l:]/o [k(s,s,2c) — k(s,g,wg)]dg]
r 4 q o, t
[ TIB) [ ez ot} ) + [ la(s.20) = o w ) ()
=1 g=2 - Tq
+ b s, U sy U )]R(d od )
;]1_11 /a 1/ (s,2 P(s,w s, du

p

/U/ 8, 2y U (5,5, u )}f((ds,du)”qom“)(ﬂ

<4 YA+ B+C+D).

p

Hb](dj) /01 [f(s, Zs) - f(S,’LUg)} ds +/ [f(s’ ZS) - f(S, ws)] d5:| I[Uqa0q+1)(t)

7 72— q

< (CP 4+ 1)(T —to)P~! / E[ f(s,25) — f(s,w5)]"ds

to

< (CP 4+ 1)(T - to)p_l/ E[[f(s25) = f(s,ws)||"ds

to

t
<@+ DLAT =t [z = w2
to
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By (A2), we have

oo

B=E

[z H b,(6,) /01 [k(s,<, 2c) — k(s,s,w)]ds ds

/ / (s,6,2¢) — (s,g,wg)] dcds]f[aq,oq“)(t)

< (CP 4 1)(T — to)! / E|[k(s, <. 2) — k(s, 5, w,)] deds

to

p

t
<@+ LT =t [z = il
to

Using Lemma 2.4, we have

(oo}

=k Z {ZHby(dj) /:1 [Q(szs) - Q(S,WS)]dW(S)

q=0 "1=1 3=

P

+ [ o2 —g(s,wsﬂdW(s)]f[aq,w(t)

q

< (O + 1) (p(p — 1)/2)(T — to)P=2/2 / E|lg(s, z:) — g(sw,)|[Pds

< (7 + DL = /DT = 102 [z~ s,

By (A4), we have

=E Zq:ﬁb /G / s, zg, 1) — P(s,ws, w)| K (ds, du)

/aq/ (s, 25,u) = P(s,ws,u )]f((ds,du)] Ioyogin) ()
< (@ De(T to>“[ / /u E|[P(s, 25, u) = P(s,ws, ) [Pv(dz) ds

(/ [ BIPG z0) = P, )||p/2v(dz)d5>l/2]

t
< (CP +1)cp(Lp + LY?)(T — )P ™! / |25 — ws|[pds
to

p

Therefore,

¢
FzH/ [|2(s) —w(s)H[éds, with
to

H = 4P (CP+1)(T = Go)"/* 7 [L (T —to)?/ >+ Li(T —t0)"” >+ Ly (p(p—1)/2)" >+ (Lp+ LY *) (T —t0)"'?].

Then, we get that

t
Bla(t) ~ w(®)] <2 e+ 207 [ fus) - () fads.
to



Considering,

Notice that, when t € [t — T, to],

Therefore,

So, we get

By Lemma 2.3, we have
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t t
[ lwts)==ofzds = [ swp Eluts +0) 205 +0)ds
to to 0€[—7,0]
t
= sup / Ellw(s+0) — z(s + 0)||Pds
0c[—7,0] J<¢o
t+6
= sup / E|lw(I) — z(I)||PdI.
0c[—7,0] Jto+0
E|lw(I) — z(I)||PdI = 0.
t46 t
/ |ws — ZSH¢CZS— sup / E|lw(I) —Z(I)deI:/ E|lw(I) — z(I)||PdI.
[—7,0] to
t
Elw(t) — z(t)||PF <27 te + 227 H [ E|jw(I) — 2(I)||PdI.
to
Ellw(t) — z(t)||P < 2P~ 'e + 2P~ L exp(2P~ 1 H).
Therefore, there exists N = 2P~ exp(2P~ 1K) such that
E|lw(t) — z(t)||P < Ne.
O

Thus the proof gets completed.

6 An application

The considered NRINSIDEs with Poisson jumps is of the form

d{(z(()—&—/_oaul(e)z(c—i—e)}:[/ HC10)+ /_a/ us(6 c+9} dc

+[/ <><<+9>] W)

Ua/“f’ C+9]~(ds,du), t>to, t#C
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Let @ > 0, z is R-valued stochastic process, o € €([—9,0], £2(Q,R)). §, is defined from © to
D, def (0,dq) for all ¢ =1,2,... Suppose that 7, follow Erlang distribution and let 6, and ¢, are
independent of every other as 1 # jfore,)=1,2,..., (o =090 <01 <02 <--- and oy =04-1+ 7,
for g =1,2,... Let W(t) € R be a one-dimensional Brownian motion, where b is a function of g.
u1,uz,u3 : [—5,0] — R are continuous functions. Define h : [(y, 7] x € = R, f: [¢o, T] x € — R,
g:[Co, T x € —=RXM ¢ € & k:[C,T]x[C,T]x€E—=REP:[,T] x €xuU— R and

by : Dy — R4 by

0 0

B 2(O)() = / w(0)2(C +0)do(),  F(C.2(O))() = / us(6)2(C + 0) dB(.),
0 0
K(C2(O)(0) = / us(8)2(C +6)d6(),  g(C.=(0))(.) = / wa(6)=(C + 6) d6(.).

0

PG = [ ua®)2(¢+0) o).

-

For z(t + 0) € €, we suppose that the following conditions hold:

(1) rrzlzx {HE||bz(§l)||2} < 00,

(2) /0 u1(0)%d6, ' ug(0)?db, ' uz(0)?do < /0 ug(0)?d0 < /0 us(0)?df < oo.

—x —x —Q —Qx —

Suppose the conditions (1) and (2) are fulfilled. Then the assumptions (A1)-(A5) holds. The
system (1.1)-(1.3) has a unique mild solution z and is HU stable.

Lemma 6.1. If P = 0in (1.1)-(1.3), then the system behaves as NRINSIDEs of the form:

dlz(t) + h(t, z)] = [f(t, ) +/Otk(t,s,zs)ds]dt—&-g(tzt)dW(t), t>ty, tF#t,,

2(0q) = by(0g)2(0,), ¢=1,2,...,

By applying Theorem 3.1 under the assumptions (A1)-(A5), then the above guarantees the exis-

tence of the mild solution.
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7 Conclusion

This article is devoted to discuss the existence and HU stability. First, we used the Banach fixed
point theorem to demonstrate the existence of mild solutions to the equations (1.1)-(1.3). Then,
we examined the stability via the continuous dependence of solutions on the initial value. Next,
we investigated the HU stability results under the Lipschitz condition on a bounded and closed
interval. In addition, this result could be extended to investigate the controllability of random im-
pulsive neutral stochastic differential equations finite/infinite state-dependent delay in the future.
The fractional order of NRINSDEs with Poisson jumps would be quite interesting. This will be

the focus of future research.
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